用户名: 密码: 验证码:
耐超高温碳化硅纤维新型先驱体研究及纤维制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能的连续SiC纤维是制备耐高温复合材料的关键。先驱体法是目前制备此类纤维最成功的方法,制备基本原理和步骤是:(ⅰ)合成含有Si、C的先驱体聚合物;(ⅱ)将先驱体纺制成纤维;(ⅲ)利用化学反应使纺制的纤维交联成“热固性”纤维;(ⅳ)在1300℃以上的惰性气氛中煅烧得到陶瓷纤维。(即:合成、纺丝、交联、烧成)。先驱体是制备SiC纤维的关键。目前SiC纤维的主要产品由于含有大量的氧和富余碳以及在高温下晶粒快速增长使其使用温度限制在1200℃以下;提高纤维的耐高温性能是SiC纤维的主要发展方向。
     本文合成了SiC纤维的两种新型先驱体PACS和BN-PCS-PMS,并分别制备成含少量铝的SiC(Al)和含少量B和N的SiC(BN)耐超高温陶瓷纤维。研究了先驱体合成机理、结构及性质,探讨了陶瓷纤维的组成、结构与性能,及其它们之间的相互关系。
     PACS先驱体采用PSCS与Al(AcAc),在常压500℃反应合成,反应机理是Kumada重排以及PACS中的Si-H与Al(AcAc),反应生成Si-O-Al键和少量Si-Al-Si键。PACS的软化点在200℃左右可调,流变性能良好,可以纺制成连续的PACS纤维。为降低陶瓷纤维中的氧含量,先驱体纤维的交联采用轻度空气交联和热交联相结合。交联后的PACS纤维在1300℃烧成后得到SiC(OAl)陶瓷纤维,然后在1800℃烧成得到具有耐超高温性能的SiC(Al)陶瓷纤维。
     BN-PCS-PMS杂化先驱体的合成主要有三步:第一步是合成PCS、PMS、Borazine及其聚合物PBN;第二步是合成BN-PCS和BN-PMS;第三步是将BN-PCS和BN-PMS杂化成BN-PCS-PMS先驱体。PCS采用裂解PDMS合成;PMS采用Na缩合MeHSiCl_2合成;Borazine的合成通过NaBH_4和(NH_4)2SO_4反应来实现;将PCS与1wt.%PBN在300℃反应得到BN-PCS;PMS与1wt.%Borazine在70℃反应得到BN-PMS。BN-PCS与BN-PMS以重量比1/4在100℃反应得到BN-PCS-PMS杂化先驱体。BN-PCS比PCS的陶瓷产率提高10wt.%,分子量高出两倍以上,机理是PBN与PCS反应后,SiC_4/SiC_3H比例明显提高,同时PBN中的N-H键与PCS中的Si-H等反应生Si-N键。PMS与1wt.%Borazine
    
     国防科技大学研究生院学位论文
     反应得到BN-PMS后,由油状液体PMS变成可溶固态的BN-PMS,陶瓷产率从
     30Wt二%提高到83wt.%,数均分子量从700左右提高到3000以上;其主要反应
     机理主要有两方面:一是Borazine作为催化剂促使PMS发生自交联;二是Borazine
     中的N-H键等与PMS中的St-H键等反应生成St-N键。BN.PCS-PMS杂化先驱
     体的合成主要通过分子量相近的 BN干CS和 BNFMS先驱体混合后形成一种均
     匀、稳定的杂和相以及两者之间的反应来实现。其陶瓷产率和分子量均比两种
     中间先驱体高。BN-PCS-PMS是一种可溶但不熔融的先驱体,制备BN-PCS-PMS
     纤维采用适当粘度的溶液拔丝来实现,然后进行热交联,最后在 1400 ’C烧成得
     到SIC(B)陶瓷纤维,其具有耐超高温性能。
     S汇K悯瓷纤维的化学组成为出;C;;p*。/*;。;其主要结构是卜SIC,同时
    一 含有少量铝元素和aS。氧含量和游离碳含量均大大低于Nicalon纤维,纤维
     表层O含量和8含量略高于纤维内部,纤维内部m、C、O、AI元素分布均匀。
     S汇(BN)纤维主要由p七汇组成,同时含有很少量的O、B和N;纤维表层O含
     量和 St含量略高于纤维内部,纤维内部以、C、O、B、N元素分布均匀。
     SIC(Al)纤维的平均直径为12pm,平均强度为1.4GPa。SIC(BN纤维的平均
     直径为13卜m,平均强度为1.SGPa。在1400oCta气中处理1/J’时后,两者的强
     度保留率均在95%以上,前者略高于后者;在1800oCta气中处理1小时后,前
     者的强度保留率为 刀%,后者的为80%。两种纤维的高温稳定性高于Nicalon
     NL201、Tyranno (Lo M)牙 Tyranno (ZMI等商品 SIC 纤维,但低 于Tyranno SA
     纤维。SICK)纤维的高温抗蠕变性能明显高于Nicalon纤维。
     S汇K)纤维和 S汇用)纤维耐超高温性能诀定于两者的低氧含量、低富余碳
     含量以及异元素川8的助烧结作用和在高温下抑制S汇晶粒长大的作用石汇(AI)
     纤维良好的抗蠕变性能主要决定于其高结晶度和低含量的m汇xO,相。
Continuous SiC fibers are critical for high-performance composites. The strategy to prepare SiC fibers is in four steps:(1) synthesis of a precursor polymer,usually polycarbosilane (PCS),consisting of Si and C elements,(2) spinning of the precursor polymer into "green fibers",(3) curing the fibers to make the polymer chains crosslinked and (4) pyrolysis of the cured fibers at above 1300 in inert atmosphere. Although SiC is famous in being durable in rigorous environment,in practice,the temperature limitation of general grade SiC fibers is under 1200 due to high content of oxygen,free carbon and coarseness of crystalline. This work is focusing on preparing SiC fibers with higher temperature resistance.
    Two new precursors,PACS (polyalumicarbosilane) and hybrid BN-PCS-PMS (borazine modified polycarbosilane-polymethylsilane) were synthesized,from which two kinds of SiC fibers consisting small amount of Al,or SiC(Al),and B-N,or SiC(BN),were prepared respectively. The reaction mechanism,composition,structure and properties of the precursors and the ceramic fibers were studied systematically.
    The synthesis of PACS was preformed using the reaction of polysilocarbosilane,or PSCS,with Al(AcAc)3 at 500 and ambient pressure. The reaction mechanism was found to be related to Kumada rearrangement,while the connection between Si-H bond in PSCS with Al(AcAc)3 leads into Si-O-Al and Si-Al-Si units in the structure. The PACS was suitable for spinning into green fibers owing to its adjustable soften point around 200 with good Theological properties. The green fibers were cured by slight air-oxidation followed by thermal-crosslinking to minimize the oxygen introduction. SiC(OAl) fibers were thus derived at 1300 and SiC(Al) fibers were finally obtained by sintering at 1800 Another precursor,hybrid BN-PCS-PMS,was synthesized at 100 by hybridization of BN-PCS with BN-PMS by weight ratio of 1:4. BN-PMS was prepared at 70 by the reaction of PMS (polymerized by dehalo-coupling of MeHSiCl2 with sodium) with lwt.% borazine (synthesized by reaction of NaBH4 with (NH4)2SO4);and BN-PCS was obtained at 300 by the reacti
    on of PCS (prepared by thermolysis of PDMS) with lwt.% polyborazine (PBN).
    With the addition of small amount of PBN,the molecular weight of PCS increased significantly and the ceramic yield of BN-PCS was much higher than that of PCS due to higher crosslinking and some new Si-N bonds. In a similar way,the introduction of small
    
    
    amount of BN into PMS makes the molecular weight 4 times higher and ceramic yield increased from 30% of PMS to 83% of BN-PMS due to higher crosslinking catalyzed by borazine. Because of the similar molecular structure and the bonds formed with each other,the above two polymers yield the hybrid BN-PCS-PMS as a homogeneous system. BN-PCS-PMS hybrid is infusible but soluble. From the solution,BN-PCS-PMS fibers were prepared by hand-drawing. The fibers were then cured by thermal-crosslinking,thus SiC(BN) fibers were finally obtained by pyrolysis at 1400.
    The composition of SiC(Al) fibers was described in the formula Si1CL15O0.026A10013,in which there was mainly P-SiC grains in size of 95nm,0.84wt.% aluminum,small amount of a-SiC,SiCxOy phase and free carbon. The content of SiCxOy phase and free carbon was much lower than that of Nicalon fibers. The content of oxygen and silicon on the surface of the fibers were some higher than inside;while Si,C,O and Al are uniformly distributed inside the fibers. The SiC(BN) fibers was mainly composed of P-SiC in addition to small amount of O,B and N,in which the surface is a little rich in oxygen and silicon,while the inside distribution of Si,C,O,B and N are uniform.
    The average tensile strength of SiC(Al) and SiC(BN) fibers were 1.4GPa and l.SGPa,with the average diameter 12um and 13um,respectively. The initial tensile strength of the both ceramic fibers remained 95% after the treatment at 1400 for Ih in argon. After sintering at 1800 for Ih in argon,SiC(Al) fibers remained initial tensile strength by 71%;while SiC(BN) by 80%. The high temperature stability
引文
1. D. W. Johnson, A. G. Evans, R. W. Goettler, M. P. Harmer, J. Lipowitz, K, Luthra, P. D. Palmer, K. M. Prewo, R. E. Tressler, D. Wilson, Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century, Publication NMAB-494, National Academy Press, Washington, D. C. 1998. Pp. 1-49.
    2. Y. C. Song, Y. Hasegawa, S. J. Yang and M. Sato, J. Mater. Sci, 1988,23, 1911.
    3. Y. Hasegawa, C. X. Feng, Y. C. Song and Z. L. Tan, J. Mater. Sci., 1991,26, 3657.
    4. H. Yamaoka, T. Ishikawa and K. Kumagawa, J. Mater. Sci., 1999,34, 1333.
    5. T. Ishikawa, Y Kohtoku and K. Kuagawa, J. Mater. Sci., 1998,33, 161.
    6. M. Takeda, A. Urano, J. Sakamoto and Y. Imai, J. Nucl. Mater., 1998, 258-263, 1594.
    7. S. M. Dong, G. Chollon and C. Labrugere, et. al. J. Mater. Sci., 2001,36,2371.
    8. G. Chollon, B. Aldacourrou, L. Capes, R. Pailler and R. Nasain, J. Mater. Sci., 1998,33, 901.
    9. http://inisjp.tokai.jaeri.go.jp/ACT95E/03/0303. htm.
    10. 黄勇,谢志鹏,杨金龙等,先进结构陶瓷发展前言高级研讨班,1998年10月.
    11. W. E. C. Creyke, I. E. J. Sainsbury, R. Morrell, Design with Non-Ductile Materials, Applied Science Publishers, London and New York, 1982, Pp. 15-107.
    12. P. K. Mallick, Fiber Reinforced Composites-Materials, Manufacturing and Design, Marcel Dekker Inc., 1988, Pp. 25.
    13. P. Baldus, M. Jansen and D. Sporn, Science, 1999,30, 285.
    
    
    15. J. A. Dicarlo, J. Mater. Sci., 1986, 21(1) , 214.
    16. X. J. Ning, P. Pirouz, P. D. Lagerlof and J. A. Dicarlo, J. Mater. Res., 1990, 5, 2865.
    17. M. E. Buck, Mater. Res., 1987, 8(5) , 272.
    18. G. C. Wei and P. F. Becher, Am. Ceram. Soc. Bull., 1985, 64(2) , 298.
    19. S. Yajima, Y. Hayashi, M. Omori and K. Okamura, Nature, 1976, 261, 683.
    20. S. Yajima, H. Kayano, K. Okamura and M. Omori, et. al.J. Am. Cer. Soc., 1976, 55, 1065.
    21. S. Yajima, K. Okamura, J. Hayashi and M. Omori, J. Am. Cer. Soc., 1976, 59, 324.
    22. S. Yajinla, T. Shishido and H. Kayano, Nature, 1978,273, 525.
    23. S. Yajima, Y. Hasegawa, J. Hayashi and M. limura, J. Mater. Sci., 1978,13, 2569.
    24. Y. Hasegawa, M. limura and S. Yajima, J. Mater. Sci., 1980,15,720.
    25. Y. Hasegawa and K. Okamura, J. Mater. Sci., 1983,18, 3633.
    26. Y. Hasegawa and K. Okamura, J. Mater. Sci., 1986, 21, 321.
    27. H. Ichikawa, F. Machino, S. MitSuno and T. Ishikawa, et. al. J. Mater. Sci., 1986, 21, 4352.
    28. M. Birot, J. P. Pillot and J. Dunogues, Chem. Rev., 1995, 95, 1443.
    29. R. M. Laine and F. Babonneau, Chem. Mater., 1993, 5, 260.
    30. C. L. Schilling and T. C. Williams, Am. Chem. Soc. Polym. Prepr., 1984, 25, 1.
    31. C. L. Schilling, Bin. Polym. J., 1986,18, 355.
    32. R. D. Miller and J. Michl, Chem. Rev., 1989, 89, 1359.
    33. C. K. Whitmarsh and L. V. Interrante, Organomet., 1991,10, 1336.
    34. H. Wu and L. V. Interrante, Polym. Prepr., 1992,33, 210.
    35. H. Wu and L. V. Interrante, Chem. Mater., 1989,1, 564.
    36. W. R. Schimdt, L. V. Interrante, R. H. Doremus and T. K. Trout, et. al. Chem. Mater., 1991, 3, 257.
    37. T. L. Smith, U. S. Pat., 4,631,179.
    38. E. Bacque, J. P. Pillot, M. Birot and J. Dunogues, Macromol, 1988, 21, 34.
    39. S. Q. Zhou, G. Manuel and W. P. Weber, Macromol., 1990, 23, 1583.
    40. S. Q. Zhou and W. P. Weber, Macromol., 1992, 25, 1639.
    41. S. Y. Park, L. V. Interrante and B. L. Farmer, Polym., 2001, 42(9) , 4261.
    42. S. Y. Park, L. V. Interrante and B. L. Farmer, Polym., 2001, 42(9) , 4253.
    43. L. V. Interrante and Q. Shen, Silicon-Containing Polymers, Kluwer Academic Pubs., 2000, 244-321.
    44. T. Apple, L. V. Interrante, M. Lienhard and C. Wiegand, Polym. Prepr., 2000, 41, 570.
    45. R. Corriu, C. Guerin, B. Henner, A. Jean and P. Mutin, J. Organomet. Chem., 1990, 396, C35.
    46. R. Corriu, C. Guerin, B. Henner, A. Jean, F. Gamier and A. Yassar, Chem. Mater., 1990, 2, 351.
    
    
    47. R. Corriu, R. P. Gerbier, C. Guerin, B. Henner, A. Hean and P. Mutin, Organomet., 1992, 11, 2507.
    48. R. Corriu, R. B. Boury and L. Carpenter, Eur. Pat., Appl. 300,862, 1989.
    49. B. Boury, L. Carpenter and R. Corriu, Angew. Chem., 1990,102, 818.
    50. B. Boury, R. Corriu, D. Leclercq, P. Mutin and J. M. Planeix, Organomet., 1991,10, 1457.
    51. L. J. Procopio and D. H. Berry, J. Am. Chem. Soc., 1991,113, 4039.
    52. R. West. Pure Appl. Chem., 1974, 51.
    53. R. West. L. D. David, P. I. Djurovich and K. L. Stearley, J. Am. Chem. Soc., 1981,103, 7352.
    54. R.M. Laine and A. Sellinger, The Chemistry of Organic Silicon Compounds, Vol. 2, Ed. Z. Rappoport and Y. Apeloig, J. Wiley & Sons Ltd. London, 1998, Pp. 2245.
    55. R.M. Laine and A. Sellinger, U.S. Pat., 6,133,396,2000.
    56. A. T. Hemida, M. Birot, J. P. Pillot, J. Dunogues and R. Pailler, J. Mater. Sci., 1997,32, 3475.
    57. R. Riedel and A. O. Gabriel, Adv. Mater., 1999,11, 207.
    58. D. Seyferth and C. A. Sobon, J. Borm, J. Chem., 1990,14, 545.
    59. D. Seyferth and Y. F. Yu, Design of New Materials, Ed. D. L. Cocke and A. Clearfield, Plenum Press, N.Y. 1987, Pp. 79-94.
    60. D. Seyferth, Y. F. Yu and G. E. Koppetsch, U.S. Pat., 4,719,273, 1988.
    61. H. J. Seyferth and J. L. Tracy, U. S. Pat., 5,204,380, 1993.
    62. R. M. Laine, F. Babonneau and K. Y. Blohowiak, et. al. J. Am. Ceram. Soc., 1995, 78, 137.
    63. E. Bouillon, R. Pailler, R. Naslain, E. Bacque and J. P. Pillot, et. al. Chem. Mater., 1991, 3, 356.
    64. A. Watanabe, M. Fujitsuka, O. Ito and T. Miwa, Jpn. J. Appl. Phys., 1997,36, 1265.
    65. N. R. Langley, G. E. Legow and J. Lipowitz, Reinforced Ceramic Composites, Ed. K. S. Mazdiyasni, Noyes, Park Ridge, NJ, 1989, Pp. 63.
    66. J. Lipowitz, Ceram. Bull., 1991, 70, 1888.
    67. 宋永才,国外碳化硅纤维研究开发概况(学术报告) ,2001.
    68. T. Ishikawa, Y. Kohtoku, K. Kummagawa, T. Yamamura and T. Nagasawa, Nature, 1998,391, 773.
    69. E. J. Richard, P. Dan, R. Jim and S. Andy, J. Nucl. Mater., 2000, 283, 287.
    70. T. Mah, N. L. Hecht, D. E. McGullum and J. R. Hoenigman. et. al. J. Mater. Sci., 1984,19, 1191.
    71. G. Simon and A. R. Bunsell, J. Mater. Sci., 1984,19, 3649.
    72. T. J. Clark and M. Jaffe, Ceram. Eng. Sci. Proc. 1986, 4, 901.
    73. Y. Sasaki, Y. Nishina, M. Sato and K. Okamura, J. Mater. Sci., 1987,22,443.
    74. K. Okamura, Composites, 1987,18, 107.
    75. D. J. Pysher, K. C. Goretta, R. S. Hodder and R. E. Tressler, J. Am. Cer. Soc., 1989, 72, 284.
    76. G. Simon and A. R. Bunsell, J. Mater. Sci., 1984,19, 3658.
    
    
    77. L. C. Sawyer, R. T. Chen, F. Halmbach and P. J. Harget, Ceram. Eng. Sci. Proc., 1986, 901.
    78. E. Bouillon, D. Mocaer, J. F. Villeneuve, R. Pailler and R. Naslain, J. Mater. Sci., 1991, 26, 1517.
    79. K. L. Luthra, J. Am. Ceram. Soc., 1986, 69, C231.
    80. T. Mah, N. L. Hecht, D. E. McGullum and J. R. Hoenigman. et. al. J. Mater. Sci., 1984,19, 1191.
    81. T. J. Clark, R. M. Arons. J. B. Stamatoff and J. Rabe, Ceram. Eng. Sci. Proc., 1985, 576.
    82. Y. Hasegawa, Compos. Sci. Tech., 1990, 37, 37.
    83. K. Okamura, M. Sato and Y. Hasegawa, J. Mater. Sci. Lett., 1983, 2, 769.
    84. M. Jaffe and L. C. Sawyer Ultrastructure processing of advanced ceramics, D. Mackenzie, D. R. Ulrich Eds., John Wiley & Sons, New York, Pp.725-736. 1989.
    85. Z. F. Zhang, S. Scotto and R. M. Laine, Ceram. Eng. Sci. Proc., 1994,15, 152.
    86. Y. Mu, R. M. Laine and J. F. Harrod, Appl. Organomet. Chem., 1994, 8, 95.
    87. Z. F. Zhang, Ph.D. Thesis, University of Michigan, 1994.
    88. W. Toreki, G. J. Choi, C. D. Batich and M. D. Sacks, Ceram. Eng. Sci. Proc., 1992,13, 198.
    89. W. Toreki, C. D. Batich and G. J. Choi, Polym. Prepr., 1991, 32, 584.
    90. T. Sehuchi, Jpn. Pat., 0,340,814.
    91. T. Sehuchi, JPn. Pat., 0,311,9113.
    92. Z. Y. Chu, Y. C. Song, Y. S. Xu and Y. B. Fu, J. Mater. Sci. Lett., 1999,18(21) , 1793.
    93. Z. Y. Chu, Y. C. Song, Y. S. Xu and Y. B. Fu, J. Mater. Sci. Lett., 2000,19(19) , 1771.
    94. Y. Hassegawa, J. Inorg. Organomet. Polym., 1991, 2(1) , 161.
    95. Y. Hasegawa, Compos. Sci. Technol., 1994, 51, 161.
    97. A. T. Hemida, R. Pailler and R. Naslain, J. Mater. Sci., 1997, 32, 2359.
    98. G. J. Choi, W. Toreki and C. D. Batich, J. Mater. Sci., 2000, 35, 2421.
    99. A. T. Hemida, H. Tenailleau, L. Bardeau and M. Birot, et. al. J. Mater. Sci., 1997,32, 5791.
    100. T. Ishikawa, S. Kajii, T. Hisayuki, K. Matsunaga and T. Hogami, Key Eng. Mater., 1999,15, 164.
    101. T. Ishikawa, S. Kajii, T. Hisayuki and Y. Kohtoku, Ceram. Eng. Sci. Proc., 1998,19(3) , 283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700