用户名: 密码: 验证码:
钛酸铋钠无铅压电陶瓷与高温铋层无铅压电陶瓷探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料是能在外加机械力的作用下产生极化并形成表面电荷,或在外加电场作用下产生形变的功能材料。通过外力产生电荷的现象,称为正压电效应,是由居里兄弟于1880年发现的。压电效应是一种机电耦合效应,将机械能转换为电能,称为正压电效应。反之,压电晶体置于外电场中,由于外电场的作用引起晶体内部正负电荷中心的位移-极化位移而导致晶体发生形变,称为逆压电效应。这两种效应统称为压电效应。
     铋层状结构化合物由于其独特的结构特性和高居里温度引起了人们的重视。铋层状结构压电材料在滤波器、能量转换、高温高频领域具有广泛的应用前景。铋层状结构化合物是由二维的钙钛矿层和含铋的(Bi_2O_2)~(2+)层沿c轴有规则的相瓦交替排列而成。
     本文研究了(1-y)[(Na_(0.96-x)K_xLi_(0.04))_(0.5)Bi_(0.5)]TiO_3-yBa(Zr_(0.055)Ti_(0.945))O_3无铅压电陶瓷的压电介电特性,得到了压电系数d_(33)高达185(pC/N)的无铅压电陶瓷0.94[(Na_(0.80)K_(0.16)Li_(0.04))_(0.5)Bi_(0.5)]TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3。
     在对铋层结构陶瓷结构和极化过程改性上,A位或(和)B位替代被证明是有效的。而且已经证实,Ce掺杂可以有效的提高铋层结构陶瓷的电阻率和压电活性。本文研究了Ce掺杂Bi_3TiNbO_9系列超高温铋层结构无铅压电陶瓷,还研究了(LiCe)复合替代[(Na,K)_(0.5)Bi_(4.5)Ti_4O_(15)]系列、[(Na,K)_(0.5)Bi_(2.5)Nb_2O_9]系列高温铋层无铅压电陶瓷。本文分析了铋层结构压电陶瓷压电活性低的原因,探索出提高其压电活性和性能的方法。
     对(Li,Ce)的A位替代对A位含缺位的(Na,K)_(0.5)Bi_(2.5)Nb_2O_9系列陶瓷的影响进行了研究,使该系列陶瓷的压电活性获得了大幅度的提高。该(Na,K)_(0.5)Bi_(2.5)Nb_2O_9系列陶瓷的压电系数d_(33)达到了28 pC/N,比报道的高温铋层陶瓷的d_(33)值(~5-19pC/N)高出了50%。
     用传统固相烧结法方法制备了A位缺位的(Na,K)_(0.5)Bi_(4.5)Ti_4O_(15)系列陶瓷。(Li,Ce)掺杂极大的提高了(Na,K)_(0.5)Bi_(4.5)Ti_4O_(15)系列陶瓷的压电活性和介电系数。该(Na,K)_(0.5)Bi_(4.5)Ti_4O_(15)系列陶瓷的压电系数d_(33)达到了26 pC/N,该值达到了纯Na_(0.5)Bi_(4.5)Ti_4O_(15)陶瓷压电系数d_(33)值(~10pC/N)的2.5倍以上。
     在ScTa复合替代BTNO陶瓷中,Bi_3Ti_(0.96)Sc_(0.02)Ta_(0.02)NbO_9超高温陶瓷具有非常高的压电系数d_(33)值(12 pC/N)和超高居里温度T_C(905℃)。这一成果突破了前人T_C能达到900℃但压电活性却很低(d_(33)值为6 pC/N)的记录。
     为了提高其电阻率、进一步提高其压电活性,用CeO_2对ScTa替代的BTNO进行掺杂,系统研究了CeO_2对该陶瓷压电活性和电阻率的影响。Bi_3Ti_(0.96)Sc_(0.02)Ta_(0.02)NbO_9+xwt.%CeO_2(x=0.35)陶瓷的d_(33)提高到18 pC/N,该值是前人未改性的Bi_3TiNbO_9压电性能(6pC/N)的3倍。
     压电振子低频振动模式的高次泛音易与厚度振动模式的基频相耦合,导致厚度振动的基音串联谐振频率不能精确测量(或无法测量),造成传统泛音比法测定压电振子的机电耦合系数的精度和一致性变差或无法进行测定。为了克服传统泛音比法的这一弊端,本文提出了测定压电振子厚度振动机电耦合系数的高次泛音比法。此法通过测定3次和3次以上的高次串联谐振频率,用高次泛音比来测定压电振子厚度振动机电耦合系数。实验表明,与传统泛音比法相比,高次泛音比法具有精确度高和一致性好的明显优势。为了便于高次泛音比法的应用,提供了高次泛音比和机电耦合系数的对应表。
Piezoelectric materials are such a functional materials which can be polarized to generate the surface electric charge by exerting a mechanical stress on them, or can be deformed by exerting an electric field on them. The phenomenon of generating electrical charge by applying a stress on an object is called direct piezoelectric effect, which was first discovered by the brothers Curie in 1880. The piezoelectric effect is an electromechanical coupling effect, the direct piezoelectric effect transforms mechanical energy into electric energy. Otherwise, the converse piezoelectric effect describes the strain developed in a piezoelectric material due to the displacement of the positive and negative electric charge center (the polarization displacement) when an electric field is applied. The direct piezoelectric effect and the converse piezoelectric effect are both called the piezoelectric effect.
     The Aurivillius phase BLSF materials, possessing unique structure characteristic and high Curie temperature, have been given more attention. The bismuth layer-structured piezoelectrics have been widely used in filter, energy transform , high temperature and high frequency situations. The Aurivillius phase bismuth layer-structured compounds are comprised of planar pseudo-perovskite layers interleaved with (Bi_2O_2)~(2+) layers along the c axis of the BLSFs.
     In this thesis, (1-y)[(Na_(0.80)K_(0.16)Li_(0.04))_(0.5)Bi_(0.5)]TiO_3-yBa(Zr_(0.055)Ti_(0.945))O_3 lead-free piezoelectric ceramics were syetematically investigated. The 0.94 [(Na_(0.80)K_(0.16)Li_(0.04))_(0.5)Bi_(0.5)]TiO_3-0.06Ba(Zr_(0.055)Ti_(0.945))O_3 ceramics having a piezoelectric strain constant d_(33) as high as 185(pC/N) was obtained.
     The A-site substitution or/and B-site substitution have been shown to be effective approaches in modifying the structure and polarization process of the BLSF ceramics, and it has been demonstrated that doping Ce into the BLSF is an effective way to increase their resistivity and improve their piezoactivity. In this thesis, the Ce doped ultrahigh Curie temperature bismuth layer-structured ferroelectrics bismuth titanate niobate (Bi_3TiNbO_9) compound is investigated, the (LiCe) co-substituted sodium potassium bismuth titanate [(N,K)_(0.5)Bi_(4.5)Ti_4O_(15)] and sodium potassium bismuth niobate [(Na,K)_(0.5)Bi_(2.5)Nb_2O_9] materials are investigated. We analyzed the origin of low piezoelectric activity of the reported BLSFs, and put forward a new idea to improve the piezoelectric activity for bismuth layer-structured compound.
     The effect of (Li,Ce) substitution for A-site on the properties of (Na,K)_(0.5)Bi_(2.5)Nb_2O_9-based ceramics with A-site vacancy was investigated. The piezoelectric activity of (Na,K)_(0.5)Bi_(2.5)Nb_2O_9-based ceramics is significantly improved by the modification of lithium and cerium. The piezoelectric coefficient d_(33) of the (Na,K)_(0.5)Bi_(2.5)Nb_2O_9-based ceramic was found to be 28 pC/N, 50% higher than the reported d_(33) values of other BLSF systems (-5-19pC/N).
     (Na,K)_(0.5)Bi_(4.5)Ti_4O_(15)-based materials with A-site vacancy were synthesized using conventional solid state processing. The (Li,Ce) modification of (Na, K)_(0.5)Bi_(4.5)Ti_4O_(15)-based materials resulted in the obvious improvement of the piezoelectric activity and dielectric permittivity. The piezoelectric coefficient d_(33) of the (Na,K)_(0.5)Bi_(4.5)Ti_4O_(15)-based ceramic was found to be 26 pC/N, more than 2.5 times as large as the d_(33) value of the pure Na_(0.5)Bi_(4.5)Ti_4O_(15) ceramics (-10pC/N).
     Among the ScTa co-substituted BTNO, fabricated Bi_3Ti_(0.96)Sc_(0.02)Ta_(0.02)NbO_9 ceramics has a quite high piezoelectric constant d_(33) of 12 pC/N and an ultrahigh T_C of 905℃.The result has broken the former record that the T_C can reach to 900℃but the piezoactivity is quite low( d_(33)-6 pC/N ).
     To increase the resistivity and further improve the piezoactivity of ScTa co-substituted BTNO, the effects doping CeO_2 into ScTa co-substituted BTNO on its resistivity and piezoactivity were systematically investigated. The d-(33) of Bi_3Ti_(0.96)Sc_(0.02)Ta_(0.02)NbO_9+xwt.%CeO_2(x=0.35) was found to be 18 pC/N, which is the highest value among the Bi_3TiNbO_9-based ceramics, and 3 times as large as the d_(33) values of the former not modified BTNO ceramics (-6pC/N).
     The thickness fundamental resonance is liable to coupling with the higher overtone of low-frequency-resonant modes, which leads to a bad measurement accuracy of the thickness series resonance fundamental frequencies or a failure of the resonance fundamental frequency measurement, resulting in deteriorating the accuracy and the identity of the electromechanical coupling factor determined by the traditional overtone ratio method. To overcome the shortcoming of the traditional overtone ratio method, a higher overtone ratio method to determine the thickness vibration electromechanical coupling factors was advanced in the paper. The higher overtone ratio method determines the thickness vibration electromechanical coupling factors by measuring third-tone and higher-tone series resonance frequencies. Experiments showed that the higher overtone ratio method has a distinct advantage over the measurement accuracy and the identity of the electromechanical coupling factor in comparison with the traditional overtone ratio method. To facilitate the application of the higher overtone ratio method, a table of the higher overtone ratio with the corresponding electromechanical coupling factors was provided.
引文
[1]:张沛霖、钟维烈,压电材料与器件物理,山东科学技术出版社,1994年.
    
    [2]:钟维烈,铁电体物理学,科学出版社,1996年.
    
    [3]:方俊鑫,殷之文,电介质物理学,科学出版社,1998年.
    
    [4]:许煜寰等编,铁电与压电材料,科学出版社,1978年.
    
    [5]:刘梅冬,许毓春,压电铁电材料与器件,华中理工大学出版社,1990年.
    
    [6]: Cross L E, Relaxor ferroelectrics: an overview, Ferroelectrics, 1994, 151:305-320.
    
    [7]: Thomas N W, A new framework for understanding relaxor ferroelectrics, J PhysChem Solid, 1990,51(12): 1419-1431.
    
    [8]: Uchio K, Nomura S, Cross L E, Jang S J, Newnham R E, Electro strictive effectin lead magnesium niobate single crystal, J. Appl. Phys., 1980, 51(2): 1142-1145.
    
    [9]:廖梅松,陈文,徐庆等.NBT基无铅压电陶瓷的研究进展.陶瓷学报,2003,24(4).
    
    [10]: Juhyun Yoo, Dongon Oh, Yeongho Jeong, Jaeil Hong, Moonyoung Jung, Dielectric and piezoelectric characteristics of lead-free Bi_(0.5)(Na_(0.86)K_(014))_(0.5)TiO_3 ceramics substitution with Sr, materials Letters .2004, 58: 3831-3835.
    
    [11]:杨群保,荆学珍,李永祥,王东,王天宝,无铅压电陶瓷研究的新进展,电子元件与材料,2004,11.
    
    [12]: Geguzine G A, Reznitzhenko L A, Atomic substitution effects in binary solid solution systems based upon NaNbO_3, Ferroelectrics, 1998, 214:261-271.
    
    [13]:张福学,现代压电学,科学出版社,北京,2002年.
    
    [14]:许煜寰,铁电与压电材料,科学出版社,1978年.
    
    [15]: Yasuyoshi Saito, Hisaaki Takao, Toshihiko Tani, Tatsuhiko Nonoyama,Kazumasa Takatori, Takahiko Homma, Toshiatsu Nagaya and Masaya Nakamura,Lead-free piezoceramics, nature, 2004,4:84-87.
    
    [16]: Xu Yuhuan, Chen Huanchu, L. E. Cross, Ferroelectrics, 1984, 54: 123.
    
    [17]: Spinolad U P, Moreira E N, Bassora L A, et al, Pyroelectric and piezoelectricproperties of SBN ceramics, 1996 IEEE Ultrasonics Symposium, 1996, 523-526.
    [18]: Umakantham K, Narayana S, Effect of rare-earth ions on the properties of modified (SrBa)Nb_2O_6 ceramics, J Mater Lett., 1987,6: 565-567.
    
    [19]: Robin A I, Prasadar A V, Sabasiv A R, et al, Effect of rare earth substitution on the dielectric and piezoelectric properties of Ba_2AgNb_5O_(15), Ferroelectrics, 1994, 153(1-4): 285-290.
    
    [20]: Sambasiva R K, Satyanayan A C, Piezoelectric and ferroelectric properties of rare-earth modified filled tungsten bronze barium silver niobate ceramics, Ferroelectrics, 1994, 154(1-4): 195-200.
    
    [21]: Robin A I, Paradar A V, Ferroelectric and piezoelectric studies of lanthanum and praseodymium modified Ba_2AgNb_5O_(15) ceramics, J Mater Lett, 1994, 13: 1381-1383.
    
    [22]: Masahiko K, Tadahiro M, Arira A, Temperature characteristics of (Ba_(1-x)Sr_x)_2NaNb_5O_(15) ceramics. Jpn J Appl Phys, 1997, 36(9B): 6051 -6054.
    
    [23]: Smolensky G A, Isupov V A, Agranovskaya A I, et al. New ferroelectrics complex composition. Sov Phys-Solid State, 1961,2(11):2651-2654.
    
    [24]: Isupov V A, Pronin I P, et al, Temperature Dependence of birefringence and opalescence of sodium-bismuth titanate crystals, Ferroelectrics Letters, 1984, 2:205-208.
    
    [25]: Suchanicz J, Investigations of the phase transitions in Na_(0.5)Bi_(0.5)TiO_3, Ferroelectrics, 1995, 172: 455-458.
    
    [26]: Suchanicz J, Kwapulinshi J, X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3, Ferroelectrics, 1995,165: 249-253.
    
    
    [27]: Suchanicz J, Behaviour of Na0.5Bi0.5TiO3 ceramics in the A. C. electric field, Ferroelectrics, 1998, 209: 561-568.
    
    [28]: Suchanicz J, Peculiarities of phase transitions in Na_(0.5)Bi_(0.5)TiO_3, Ferroelectrics, 1997,190:77-81.
    
    [29]: Suchanicz J, Poprawski R, Maryjasik S, Some properties of Na_(0.5)Bi_(0.5)TiO_3, Ferroelectrics, 1997, 192: 329-333.
    
    [30]: J. Suchanicz, J. Kusz, H. Duda, J. P. Mercurio, K. Konieczny, Structural and dielectric properties of (Na_(0.5)Bi_(0.5))_(0.7)Ba_(0.30)TiO_3 ceramics, Journal of the European
    ??Ceramics Society .2003,23: 1559-1564.
    
    [31]: X. X. Wang, X.G. Tang, and H. L. W. Chan, Electromechanical and ferroelectricproperties of (Bi_(1/2)Na_(1/2)) TiO_(3-) (Bi_(1/2)K_(1/2))TiO_3-BaTiO_3 lead-free piezoelectricceramics, Applied Physics Letters, 2004, 85: 91-93.
    
    [32]: Z. H. Zhou, J. M. Xue, W. Z. Li, and J. Wang, Ferroelectric and electricalbehavior of (Na_(0.5)Bi_(0.5))TiO_3 thin films, Applied physics Letters, 2004,85:804-806.
    
    [33]: Bao-Jin Chu, Jeong-Ho Cho, Yong-Hyeun Lee, Byung-Ik Kim and Da-RenChen, The potential application of BNT-based ceramics in large displacementactuation, Journal of Ceramic Processing Research,2002,3( 3): 231-234.
    
    [34]: Hui-dong Li, Chu-de Feng, Wen-long Yao, Some effects of different additiveson dielectric and piezoelectric properties of (Na_(0.5)Bi_(0.5))TiO_3-BaTiO_3 morphotropic-phase-boundary composition, Materials Letters ,2004,58:1194-1198.
    
    [35]: J. Suchanicz, J. Kusz, H. Bohm, Structural and electric characteristics of(Na_(0.5)Bi_(0.5))_(0.50)Ba_(0.50)TiO_3 and (Na_(0.5)Bi_(0.5))_(0.20)Ba_(0.80)TiO_3 ceramics, Materials Scienceand Engineering, 2004, B97: 154-159.
    
    [36]: Z. F. Li, C. L. Wang, W. L. Zhong, J. C. Li, and M. L. Zhao, Dielectric relaxorproperties of K_(0.50)Bi_(0.50)TiO_3 ferroelectrics prepared by sol-gel Applied Physics, 2003,94(4): 2548-2552
    
    [37]: Hajime Nagata, Tadashi Takenaka, Additive effects on electrical properties of(Bi_(1/2)Na_(1/2))TiO_3 ferroelectric ceramics, Journal of the European Ceramics Society,2001,21:1299-1302.
    
    [38]: Yoshio A, Mikiya S. Piezoelectric ceramic material and its production method[P], JP-11 -180769, 1999-07-06.
    
    [39]:赁敦敏,肖定全,朱建国,余萍,庄严,(BiNa_(1-x-y)K_xLi_y)_(0.5)TiO_3压电陶瓷的 制备、性能与微结构, 电子元件与材料,2004, 11:1001-2008.
    
    [40]:赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈, 溶胶.凝胶法制备的高 压电常数(Bi_(0.5)Na_(0.5))TiO_3系无铅压电陶瓷, 物理学报,2004,7:53.
    
    [41]:赵明磊, 王春雷, 钟维烈,王矜奉,陈洪存, 溶胶.凝胶法制备 (Bi_(0.5)Na_(0.5))TiO_3陶瓷及其电学特性, 物理学报,2003,1:52.
    
    [42]: Wang Xiaoxing, Chan Helen Lai-Wa, Choy Chung-loong. Piezoelectric and??Dielectric properties of CeO_2-added (Bi _(1/2)Na_(1/2))_(0.84)Ba_(0.06)TiO_3 lead-free ceramics.Solid State communications, 2003,125:395-399.
    
    [43]: Dunmin Lin, Dingquan Xiao, Jianguo Zhu, Ping Yu. Piezoelectric andferroelectric properties of Bi_(0.5)(Na_(1-x-y)K_xLi_y)_(0.5)TiO_3 lead-free piezoelectric ceramics,App. Phys. Lett. 2006, 88:062901-3.
    
    [44]: Subbarao E C, A family of ferroelectric bismuth compounds, J Phys ChemSolids, 1962,23:665-676.
    
    [45]: Aurivillus B.Ferroelectric versus relaxor behaviour in Na_(0.5)Bi_(4.5)Ti_4O_(15)-BaBi_4Ti_4O_(15) solid solutions, Ark Kemi, 1949,1:463-467
    
    [46]: Marima V, Caballero A C, Calos M, et al, Factors affecting the electricalconductivity of donor-doped Bi_4Ti_3O_(12) piezoelectric ceramics, J Am Ceram Soc, 1999,82(9): 2411-2416.
    
    [47]:黄宣武,李承恩,Ca-(Na,Ce)-Bi-Ti系列高温压电陶瓷材料及其压电性能的研究,无机材料学报,1998,13(1):59-63.
    
    [48]: Gelfusom V, Synthesis and structural, ferroelectric, and piezoelectric of SrBi_4Ti_4O_(15) ceramics, J Am Ceram Soc, 1999, 82(9): 2368-2372.
    
    [49]: Tsuguto T, Toshihiko T, Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method, Jpn J Appl Phys, 1999, 38(9B): 5553-5556.
    
    [50]: Jimene Z B, Pard O L, Castro A, et al, Influence of the preparation on the microstructure and ferroelectricity of the (SBN)_(1-x)(BTN)_x ceramics, Ferroelectrics,2000,241:279-286.
    
    [51]: Megriche A, Lebrun L, Trocca Z M, et al, Materials of Bi_4Ti_3O_(12) type for hightemperature acoustic piezo-sensors, Sensors and Actuatos, 1999, 78: 88-91.
    
    [52]: Kazu O S, Mizuka A, Yasu O U, et al, Preparation and properties of SrBi_2Ta_2O_9ceramics, Jpn J Appl Phys, 1998,37: 5273-5276.
    
    [53]: Yan H, Li C, A-Site (MCe) substitution effects on the structures and propertiesof CaBi_4Ti_4O_(15) ceramics, Jpn JAppl Phys, 2000,39(11): 6339-6342.
    
    [54]: Subbarao E. C.,J.Phys.Chem.Solids,1962, 23:665-676.
    
    [55]: Holly S. Shulman, Martin Testorf, Dragan Damjanovic and Nava Setter.Microstructure, Electrical Conductivity, and Piezoelectric Properties of BismuthTitanate, J.Am. Ceram.Soc., 1996,79( 12):3124-3128.
    
    [56]: Haixue Yan, Chengen Li,Jiaguang Zhou etal.,A-Site (MCe) Substitution Effectson the Structures and Properties of CaBi_4Ti_4O_(15) Ceramics[J]. Jpn. J. Appl. Phys.,2000,39: 6339-6342.
    
    [57]: Pardo, A. Castro, P. Millan etal., (Bi_3TiNbO_9)_x(SrBi_2Nb_2O_9)_(1-x) Aurivillus TypeStructure Piezoelectric Ceramics Obtained From Mechanochemically ActivatedOxides, 2000,48: 2421-2428.
    
    [58]: Haixue Yan, Hongtao Zhang, Rick Ubic et al, A Lead-Free High-Curie-PointFerroelectric Ceramic, CaBi_2Nb_2O_9)[J]. Advanced Materials,2005,17,1261-1265.
    
    [59]: M. Villegas, T. Jardiel, G Farias, et al., Sintering and electrical properties ofBi_4Ti_(2.95)W_xO_(11.9+3x) piezoelectric ceramics, J. Eur. Cera. Soc, 2004, 24:1025-1029.
    
    [60]: Guorong Li, Liaoying Zheng, and Qingrui Yin, Microsturcture and ferroelectricproperties of MnO_2-doped bismuth-layer (Ca,Sr)Bi_4Ti_4O_(15) ceramics, J. Appl. Phys.,2005,98:064108.
    
    [61]: Frit B, Mercurio J P, The crystal chemistry and dielectric properties of theAurivillius family of complex busmuth oxides with perovskites-like layeredstructures J Alloys Comp, 1992,188: 27-35.
    
    [62]: Subbarao E C. A family of ferroelectric bismuth compounds. J Phys ChemSolids, 1962,23:665-676.
    
    [63]: Yan H X, Li C E, Zhou J G, et al. A-site (Mce) substitution effects on thestructures and properties of CaBi_4Ti_4O_(15) ceramics. Jpn J Appl Phys, 2000, 39:6339-6342.
    
    [64]:舒剑风,铁电陶瓷的技术进展及其应用, 佛山陶瓷,6, 32, (2000)
    
    [65]:高瑞平,李晓光,先进陶瓷物理与化学原理及技术,科学出版社,北京,2001.
    
    [66]:山东大学物理系电介质教研室,压电材料与器件, 讲义, (1983)
    
    [1]:李承恩,李毅,徐曾华,无铅压电材料NBT-BZT陶瓷压电性能及改进,电子元 件与材料,2003,22(5):21-23.
    
    [2]: Juhyun Yoo,Dongon Oh,Yeongho,Jaeil Hong, Moonyoung Jung, Dielectric and piezoelectric characteristics of lead-free Bi_(0.5)(Na_(0.84)K_(0.16))_(0.5)TiO_3 ceramics ubstituted with Sr, Materials letters, 2004,58:3831-3835.
    
    [3]: Lin Dunmin, Xiao Dingquan, Zhu Jiangguo, Yu Ping, Yan Hongjian , Li Lingzhi, Synthesis and piezoelectric properties of lead-free piezoelectric [Bi_(0.5)(Na_(1-x-y)K_xLi_y)_(0.5)]TiO_3 ceramics, Materials letters, 2004,58:615-618.
    
    [4]:陈文,李月明,周静,(1-3x)NBT-2xKBT-xBT系无铅压电陶瓷性能研究,电子元 件与材料,2004,23(11):24-27.
    
    [5]: Lin D M. Xiao D Q. Zhu J G. Yu P. et al., The Relations of Sintering Condition and Microstrctures of [Bi_(0.5)(Na_(1-x-y)K_xLi_y)_(0.5)]TiO_3 Piezoelectirc Ceramics, Cryst Res Technol. , 2004, 39(1): 30-33.
    
    [6]: Chu B J, Chen D R, Li G R and Yin Q R, Electric Properties of Na_(1/2)Bi_(1/2)TiO_3 -BaTiO_3 Ceramics, Journal of European Ceramic Society, 2002,22:2115-2121.
    
    [7]: Wang X X. Chan H L. Choy C L., Piezoelectric and Dielectric Properties ofCeO_2- Added 0.94(Bi_(0.5)Na_(0.5)) TiO_3-0.06 BaTiO_3 Lead-Free Ceramics, Solid StateCommunications, 2003, 125: 395-399.
    
    [8]: Dai X, Xu Z, Viehland D, Normal to relaxor ferroelectric transformations inlanthanum- modified tetragonal-structured lead zirconate titanate ceramics, J ApplPhys, 1996,79 (2): 1021-1027.
    
    [9]: Fan H Q, Kong L B, Zhang LY, Yao X, Phase transitions due to polar regionstructure in disordered ferroelectrics, J Mater Sci, 1999, 34: 6143-6149
    
    [10]: Kunharuangrong S, Diffuseness of Pb-doped Bi_(0.5)Na_(0.5)TiO_3, J Mater Sci Lett,1999,18:1155-1157
    
    [1]: M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics andRelated Materials (Clarendon, Oxford, 1979).
    
    [2]: T. Takenaka , K. Sakata, J. Appl. Phys., Grain orientationeffects on electricalproperties of bismuth layer-structured ferroelectric Pb_((1-x))(NaCe) _(x/2)Bi_4Ti_4O_(15) solidsolution,1984,55: 1092.
    
    [3]: A. Ando, M. Kimura and Y. Sakabe, Jpn. J. Appl Phys. , High-PowerPiezoelectric Vibration Characteristics of Textured SrBi_2Nb_2O_9 Ceramics, 2003,42:520.
    
    [4]: A. Ando, Ph.D Thesis, Tokyo Institute of Technology, July, 2003.
    
    [5]: R. Z. Hou and X. M. Chen, J. Mater. Res., Synthesis and Dielectric Properties ofBismuth Layer-structured Compounds A_(n-3)Bi_4Ti_nO_(3n+3) (A=Ba, Sr, Ca) with n>4,2005, 20:2354.
    [6]: R. Z. Hou and X. M. Chen, Solid State Commun., La~(3+) Substitution in Four-Layers Aurivillius Phase SrBi+4Ti_4O_(15),2004,130:469.
    [7]: Y. Noguchi, I. Miwa, Y. Goshima, and M. Miyayama, Jpn. J. Appl. Phys., Defect Control for Large Remanent Polarization in Bismuth Titanate Ferroelectrics —Doping Effect of Higher-Valent Cations—, 2000,39: L1259.
    [8]: Y. Yao, C. Song, P. Bao, D. Su, X. Lu, J. Zhu and Y. Wang, J. Appl. Phys., Doping effect on the dielectric property in bismuth titanate, 2004,95: 3126.
    [9]: Z. Zhang , H.Yan, X. Dong, Y. Wang, Materials Research Bulletin, Preparation and electrical properties of bismuth layer-structured ceramic Bi_3NbTiO_9 solid solution, 2003,38:241.
    [10]: M. Villegas, T. Jardiel and G Farias, J. European Ceram. Soc., Sintering and electrical properties of Bi_4Ti_(2.95)W_xO_(11.9+3x) piezoelectric ceramics, 2004,24:1025.
    [11]: L. Zhang, R. Chu, S. Zhao, G Li and Q. Yin, Microstructure and electrical properties of niobium doped Bi_4Ti_3O_(12) layer-structured piezoelectric ceramics. Mater. Sci. Eng. 5,2005,116:99.
    [12]: S. Hong, J. Horn, S. Trolier-McKinstry, G. L. Messing, Dielectric and ferroelectric properties of Ta-doped bismuth titanate, J. Mater. Sci. Lett., 2000, 19:1661.
    [13]: H. X. Yan, C. E. Li, J. G. Zhou, A-Site (MCe) Substitution Effects on the Structures and Properties of CaBi_4Ti_4O_(15) Ceramics., Jpn J Appl Phys., 2000, 39:6339.
    [14]: J. T. Zeng, Y. X. Li, D. Wang and Q. R. Yin, Lanthanum distribution and dielectric properties of intergrowth Bi_(5-x)La_xTiNbWO_(15) ferroelectrics, Appl Phys. Lett., 2005,87:202901.
    [15]: A. Moure, C. Alemany and L. Pardo, Temperature dependence of piezoelectric, elastic and dielectric coefficients at radial resonance of piezoceramics with an Aurivillius-type structure, IEEE Trans. Ultrason, Ferro. Freq. Contr., 2005, 52:570.
    [16]: X. Zhang, Z. Huang, H. Chan, K. Kwok and C. Choy, Preparation and properties of(Ba_(0.6)Sr_(0.4))Bi_2Ta_2O_9 ceramic, J. Euro. Ceram. Soc, 1999, 19:985.
    [17]: Y. Noguchi, M. Miyayama, Cation-vacancy-induced low coercive field in
    ??La-modified SrBi_2Ta_2O_9, J Appl Phys., 2004,95:4261.
    
    [18]: H. X. Yan, C. E. Li, J. G. Zhou, Effects of A-Site (NaCe) Substitution withNa-Deficiency on Structures and Properties of CaBi_4Ti_4O_(15)-BasedHigh-Curie-Temperature Ceramics, Jpn J Appl Phys. ,2001,40:6501.
    
    [19]: Subbarao E C. A family of ferroelectric bismuth compounds. J Phys ChemSolids, 1962,23:665-676.
    
    [20]: Yan H X, Li C E, Zhou J G, et al. A-site (Mce) substitution effects on thestructures and properties of CaBi_4Ti_4O_(15) ceramics. Jpn J Appl Phys, 2000, 39:6339-6342
    
    [21]: R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki, Synthesis and electricalproperties of sodium bismuth niobate Na_(0.5)Bi_(2.5)Nb_2O_9, Mater. Res. Bull., 2003,38: 25.
    
    [22]: T. Takenaka and K. Sakata, Piezoelectric Properties of Bismuth Layer-StructuredFerroelectric Na_(0.5)Bi_(4.5)Ti_4O_(15) Ceramic, Jpn. J. Appl. Phys., 1985,24(3): 117.
    
    [23]: IEEE Std on Piezoelectricity, ANSI/IEE Std. 176-1987.
    
    [1]: M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics andRelated Materials (Clarendon, Oxford, 1979).
    
    [2]: T. Takenaka , K. Sakata, J. Appl. Phys., Grain orientationeffects on electricalproperties of bismuth layer-structured ferroelectric Pb_((1-x))(NaCe) _(x/2)Bi_4Ti_4O_(15) solidsolution,1984,55:1092.
    
    [3]: A. Ando, M. Kimura and Y. Sakabe, Jpn. J. Appl. Phys. , High-PowerPiezoelectric Vibration Characteristics of Textured SrBi_2Nb_2O_9 Ceramics, 2003,42:520.
    
    [4]: A. Ando, Ph.D Thesis, Tokyo Institute of Technology, July, 2003.
    
    [5]: R. Z. Hou and X. M. Chen, J. Mater. Res., Synthesis and Dielectric Properties ofBismuth Layer-structured Compounds A_(n-3)Bi_4Ti_nO_(3n+3) (A=Ba, Sr, Ca) with n>4,2005,20:2354.
    
    [6]: R. Z. Hou and X. M. Chen, Solid State Commun., La~(3+) Substitution inFour-Layers Aurivillius Phase SrBi_4Ti_4O_(15),2004,130:469.
    
    [7]: Y. Noguchi, I. Miwa, Y. Goshima, and M. Miyayama, Jpn. J. Appl. Phys., DefectControl for Large Remanent Polarization in Bismuth Titanate Ferroelectrics -Doping Effect of Higher-Valent Cations—, 2000,39: L1259.
    
    [8]: Y. Yao, C. Song, P. Bao, D. Su, X. Lu, J. Zhu and Y. Wang, J. Appl. Phys., Doping effect on the dielectric property in bismuth titanate, 2004,95: 3126.
    
    [9]: Z. Zhang , H.Yan, X. Dong, Y. Wang, Materials Research Bulletin, Preparation and electrical properties of bismuth layer-structured ceramic Bi_3NbTiO_9 solid solution, 2003,38:241.
    
    [10]: M. Villegas, T. Jardiel and G Farias, J. European Ceram. Soc., Sintering and electrical properties of Bi_4Ti_(2.95)W_xO_(11.9+3x) piezoelectric ceramics, 2004,24:1025.
    
    [11]: L. Zhang, R. Chu, S. Zhao, G. Li and Q. Yin, Microstructure and electrical properties of niobium doped Bi_4Ti_3O_(12) layer-structured piezoelectric ceramics, Mater. Sci. Eng. 5,2005,116:99.
    
    [12]: S. Hong, J. Horn, S. Trolier-McKinstry, G. L. Messing, Dielectric and ferroelectric properties of Ta-doped bismuth titanate, J. Mater. Sci. Lett., 2000, 19:1661.
    
    [13]: H. X. Yan, C. E. Li, J. G. Zhou, A-Site (MCe) Substitution Effects on the Structures and Properties of CaBi_4Ti_4O_(15) Ceramics., Jpn J Appl Phys., 2000,39:6339.
    
    [14]: J. T. Zeng, Y. X. Li, D. Wang and Q. R. Yin, Lanthanum distribution and dielectric properties of intergrowth Bi_(5-x)La_xTiNbWO_(15) ferroelectrics, Appl. Phys. Lett., 2005,87:202901.
    
    [15]: A. Moure, C. Alemany and L. Pardo, Temperature dependence of piezoelectric, elastic and dielectric coefficients at radial resonance of piezoceramics with an Aurivillius-type structure, IEEE Trans. Ultrason., Ferro. Freq. Contr, 2005, 52:570.
    
    [16]: X. Zhang, Z. Huang, H. Chan, K. Kwok and C. Choy, Preparation and properties of(Ba_(0.6)Sr_(0.4)) Bi_2Ta_2O_9 ceramic, J. Euro. Ceram. Soc, 1999,19:985.
    
    [17]: Y. Noguchi, M. Miyayama, Cation-vacancy-induced low coercive field in La-modified SrBi_2Ta_2O_9, J Appl Phys., 2004,95:4261.
    
    [18]: Subbarao E. C, A Family of Ferroelectric Bismuth Compounds, J. Phys. Chem. Solids, 1962,23:665-676.
    
    [19]: Holly S. Shulman, Martin Testorf, Dragan Damjanovic and Nava Setter. Microstructure, Electrical Conductivity, and Piezoelectric Properties of Bismuth
    
    ??Titanate, J.Am. Ceram.Soc., 1996,79( 12):3124-3128.
    
    [20]: Haixue Yan, Chengen Li,Jiaguang Zhou etal.,A-Site (MCe) Substitution Effectson the Structures and Properties of CaBi_4Ti_4O_(15) Ceramics[J]. Jpn. J. Appl. Phys. ,2000,39: 6339-6342.
    
    [21]: Pardo, A. Castro, P. Millan etal., (Bi_3TiNbO_9)_x(SrBi_2Nb_2O_9)_(1-x) Aurivillus TypeStructure Piezoelectric Ceramics Obtained From Mechanochemically ActivatedOxides, 2000,48: 2421-2428.
    
    [22]: Haixue Yan, Hongtao Zhang, Rick Ubic et al, A Lead-Free High-Curie-PointFerroelectric Ceramic, CaBi_2Nb_2O_9[J]. Advanced Materials, 2005,17,1261-1265.
    
    [23]: M. Villegas, T. Jardiel, G. Farias, et al., Sintering and electrical properties ofBi_4Ti_(2.95)W_xO_(11.9+3x) piezoelectric ceramics, J. Eur. Cera. Soc, 2004,24:1025-1029.
    
    [24]: Guorong Li, Liaoying Zheng, and Qingrui Yin, Microsturcture and ferroelectricproperties of MnO_2-doped bismuth-layer (Ca,Sr)Bi_4Ti_4O_(15) ceramics, J. Appl. Phys.,2005,98:064108.
    
    [25]: H. X. Yan, C. E. Li, J. G. Zhou, Effects of A-Site (NaCe) Substitution withNa-Deficiency on Structures and Properties of CaBi_4Ti_4O_(15)-BasedHigh-Curie-Temperature Ceramics, Jpn J Appl Phys. ,2001,40:6501.
    
    [26]: R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki, Synthesis and electricalproperties of sodium bismuth niobate Na_(0.5)Bi_(2.5)Nb_2O_9, Mater. Res. Bull., 2003, 38: 25.
    
    [27]: T. Takenaka and K. Sakata, Piezoelectric Properties of Bismuth Layer-StructuredFerroelectric Na_(0.5)Bi_(4.5)Ti_4O_(15) Ceramic, Jpn. J. Appl. Phys., 1985,24(3): 117.
    
    [28]: IEEE Std on Piezoelectricity, ANSI/IEE Std. 176-1987.
    [1]: R. W. Wolfe, R. E. Newnham, D. K. Smith, Ferroelectrics., 1971, 3:1-7.
    
    [2]: Z. Zhang , H. Yan, X. Dong, Y. Wang, Preparation and electrical properties of bismuth layer-structured ceramic Bi_3NbTiO_9 solid solution, Materials Research Bulletin, 2003, 38: 241.
    
    [3]: A. Moure ,L. Pardo, Microstructure and Texture Dependence of the Dielectric Anomalies and dc Conductivity of Bi_3TiNbO_9 Ferroelectric Ceramics, J. Appl. Phys., 2005, (97): 084103.
    
    [4]: A. Lisinska-Czekaj, D. Czekaj, M. J. M. Gomes, and M. F. Kuprianov, Investigationson the Synthesis of Bi_3NbTiO_9 Ceramics, J. Eur. Ceram. Soc., 1999,19: 969.
    
    [5]: Z. Zhang, H. X. Yan, X. L. Dong, and Y. L. Wang, Preparation and Electrical Properties of Bismuth Layered-Structured Ceramic Bi_3NbTiO_9 Solid Solution, Mater. Res. Bull. ,2003, 38:241-8.
    
    [6]: Z. Zhang, H. X. Yan, P. H. Xiang, X. L. Dong, and Y. L. Wang, Grain Orientation Effects on the Properties of a Bismuth Layer-Structured Ferroelectric (BLSF) Bi_3TiNbO_9 Solid Solution, J. Am. Ceram. Soc, 2004,87:602-5.
    
    [7]: A. Moure and L. Pardo, Microstructure and Texture Dependence of the Dielectric Anomalies and dc Conductivity of Bi_3TiNbO_9 Ferroelectric Ceramics, J. Appl. Phys., 2005, 97: 084103.
    
    [8]: B. Jimenez, A. Castro, L. Pardo, P. Millan, and R. Jimenez, Electric and Ferro-Piezoelectric Properties of (SBN)_(1-x)BTN)_x Ceramics Obtained from Amorphous Precursors, J. Phys. Chem. Solids, 2001,62:951.
    
    [9]: L. Sagalowicz, F. Chu, P. D. Martin, and D. Damjanovic, Microstructure Structural Defects, and Piezoelectric Response of Bi_4Ti_3O_(12) Modified by Bi_3TiNbO_9, J. Appl. Phys., 2000, 88:7258.
    
    [10]: J. P. Mercurio, A. Souirti, M. Manier, and B. Frit, Phase Transitions and Dielectric Properties in Some Compounds with Bismuth Oxide Layer Structure, Mater.
    
    ??Res. Bull., 1992,27:1992.
    
    [11]: L. V. Korzunova and L. A. Shebanov, New Perovskite-Like High TemperatureFerroelectrics, Ferroelectrics, 1989,93:111.
    
    [12]: Z.Y.Zhou, X.L.Dong, Structural and Electrical Properties of W~(6+)-DopedBi_3TiNbO_9 High-Temperature Piezoceramics, J.Am.Ceram.Soc., 2006, 89: 1756.
    
    [13]: M. Matsushita, Piezoelectric Properties of Sodium Bismuth TantalateNa_(0.5)Bi_(2.5)Ta_2O_9 Dense Ceramics, Jpn. J. Appl. Phys., 2004,43: 164.
    
    [14]: R. Aoyagi et, Piezoelectric Properties of Vanadium-Substituted StrontiumBismuth Niobate, Jpn. J. Appl. Phys., 2005,44: 7055.
    
    [15]: R. Aoyagi, H. Takeda, S. Okamura, T. Shiosaki, Synthesis and electricalproperties of sodium bismuth niobate Na_(0.5)Bi_(2.5)Nb_2O_9, Mater. Res. Bull., 2003, 38:25.
    
    [16]: H. X. Yan, C. E. Li, J. G. Zhou, Effects of A-Site (NaCe) Substitution withNa-Deficiency on Structures and Properties of CaBi_4Ti_4O_(15)-BasedHigh-Curie-Temperature Ceramics, Jpn J Appl Phys., 2001,40: 6501.
    
    [17]: T. Takenaka, K. Sakata, Piezoelectric Properties of Bismuth Layer-StructuredFerroelectric Na_(0.5)Bi_(4.5)Ti_4O_(15) Ceramic, Jpn. J. Appl. Phys., 1985,19: 31.
    
    [18]: Z. G. Gai, J. F. Wang, Effect of (Li, Ce) doping in Aurivillius phase materialNa_(0.25)K_(0.25)Bi_(2.5)Nb_2O_9,Appl. Phys. Lett., 2007,90: 052911.
    
    [19]: C. M.Wang, J. F. Wang, Z. G. Gai, Enhancement of dielectric and piezoelectricproperties of M_(0.5)Bi_(4.5)Ti_4O_(15) (M = Na, K, Li) ceramics by Ce doping, ScriptaMaterialia., 2007, 57: 789.
    
    [1]张沛霖,钟维烈,王玉国,压电材料与器件物理,济南:山东科学技术出版社, 1996:380-383.
    
    [2]张沛霖,张仲渊.压电测量,北京:国防工业出版社,1983:209-218.
    
    [3] Onoe M, TIERSTEN H F, MEITGLER A H, Shift in the location of resonantfrequencies caused by large electromechanical coupling in thickness-modelresonators, J Acoust Soc Am, 1963,35(1): 36-42.
    
    [4] Wang J. F., Zhang L., Qin Z. K., Measurement of all electro-elastic constants oflithium tetraborate (Li_2B_4O_7) crystal, Chinese J Acoust, 1990,9(2): 123-128.
    
    [5] Wang J F, Chen C, ZHANG L, et al., Determination of the dielectric,piezoelectric, and elastic constants of crystals in class 32, Phys Review B, 1989,39(17): 12888-12890.
    
    [6] Wang J F, Liu S F, ZHOU Z Q, et al., Thickness vibrations of thin piezoelectricplates and the determination of the electro-elastic constants of Al_(0.88)Ga_(0.12)PO_4crystal, J Appl Phys, 1996,79(2): 1696-1700.
    
    [7] Jaffe B, Cook W R, Jaffe H, Piezoelectric ceramic, London and New York:Academic Press, 1971.
    
    [8] : Takenaka T, Sakata K, Piezoelectric properties of (Bi_(1/2)Na_(1/2)TiO_3 basedceramics, Ferroelectics, 1990,106(1-4): 375-380.
    
    [9] : Chu B J, Chen D R, Electric properties of Na_(1/2)Bi_(1/2)TiO_3-BaTiO_3 ceramics,Journal of European Ceramic Society, 2002,22(13): 2115-2121.
    
    [10]: Wang X X, Chan H L, Piezoelectric and dielectric properties of CeO_2-added(Bi_(0.5)Na_(0.5))_(0.94)Ba_(0.06)TiO_3 lead-free ceramics, Solid State Communications, 2003,125(7-8): 395-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700