用户名: 密码: 验证码:
轮式星球漫游车移动机构折展构型综合与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为更好地执行行星探测任务,世界各国都在发展不同类型的行星漫游车,以此携带科学仪器进行实地勘测从而得到详实的地貌、地质等相关信息。现阶段的研究还主要处在针对某一特定构型的漫游车进行各种性能研究的阶段,缺乏系统的理论或方法来指导漫游车从功能到结构化的设计。由于现阶段运载工具运输能力和容纳能力的限制,具有折展性能的漫游车渐成研究热点,很多不同构型的具有折展功能的漫游车也越来越多地出现于相关文献之中,但如何指导漫游车进行很好地折叠与展开设计仍是一个未被很好解决的问题。因此,研究漫游车从功能到结构化设计以及提出一种解决漫游车折展的方法对于我国深空探测具有很好的促进作用。
     考虑轮刺效应的影响,建立加装轮刺的沙土对车轮驱动力矩和阻力力矩数学模型,得到轮宽、轮径及轮刺高度在一定范围内时车轮沉陷与沙土对车轮驱动效率间的关系,并给出合理确定车轮数目的方法。分别研究车轮运动具有自适应性能的单轮、两轮及三轮悬架系统所需自由度,应用单开链叠加法对漫游车悬架进行运动链构型综合。在综合过程中基于构型拓扑图的关联矩阵,提出一种同构判别的方法,并给出进行同构判别的规则和步骤。在生成六轮漫游车悬架运动链拓扑图的顶点类配后,应用直接综合和组合综合的方法产生大量新悬架构型图谱,为悬架基本构型的选择奠定基础。
     研究漫游车的理想悬架机构,从悬架基本构型中选出一种名为多约束四边形悬架(MCQS,Muti-constraint quadrilateral suspension)进行折展研究。建立漫游车翻越台阶障碍、跨越壕沟及自身稳定性能的数学模型,得到这些性能与车体结构参数之间的关系,并给出保证这些性能顺利实现的约束条件。从降低能耗和保护车载仪器安全角度考虑,以越障时各车轮提供的合力矩和车体质心的平顺性能为优化目标,建立多目标优化函数并在ADAMS软件中进行漫游车的结构参数优化,得到悬架的最优结构尺寸。
     对MCQS悬架机构运动链进行分解,得到组成这些运动链的三种基本结构单元。借鉴变胞机构构态变换的描述以及生物学中细胞融合和变异的理论,研究悬架机构运动链基本单元的变异和融合方式。按照排列组合的方式将这些变异后有不同变异方案的基本运动链融合成一个悬架整体,筛选并得到15种折展方案并从中优选出一种方案进行后续研究。
     从一般机构入手,给出其构态发生变化时描述系统动能和势能的数学模型,并得到可展开机构展开过程中的动力学方程。针对MCQS的展开过程,给出杆件发生碰撞的三种分类方法并得到杆件碰撞前后速度变化表达式。建立发生构态变化的杆件质量和惯量数学模型,借鉴机器人学知识,建立所关心杆件质心点速度和位置的矩阵变换数学模型。规划MCQS的两种展开方式,对悬架展开过程中发生碰撞的杆件进行动力学研究,确定其整个过程杆件之间碰撞的持续时间以及受到的冲击力,计算结果表明产生的冲击力不会影响悬架结构的安全性。
     给出一般漫游车仿真时的地形信息和相关仿真参数的设定。建立MCQS漫游车虚拟仿真的三维模型,在多体系统动力学软件ADAMS中进行漫游车展开过程分析,检验其是否能顺利展开;模拟漫游车行驶过程中遇到的一些地形障碍,对漫游车在不同连接模式下的相关运动性能进行分析。根据仿真结果和优化后的结构尺寸,对漫游车原理样机进行结构设计并利用研制的原理样机进行了相关折展和运动性能实验研究。实验结果表明MCQS漫游车在顺利展开的同时也满足折叠比要求,能顺利越过大于车轮半径的垂直台阶障碍和25°倾角的斜坡。
To better implement planetary exploration missions, various rovers withdifferent configurations are presented to obtain detailed topography, geology andother related information with the help of scientific instruments. Now manyresearchers mainly focus on various performances of one specific rover and fewtheories or methods are employed to guide the design from function to structure.Constrainted by transport capacity of current rockets, planetary rover having foldingfunction has recently become a research focus. However, how to instruct designersin realizing folding function is still an unsolved problem. For deep spaceexploration, it will be a promotion if one folding method is proposed.
     Considering the effect of wheel grousers, mathematic model of single wheel isestablished using wheel-soil interaction terramechanics, and the relationshipbetween sinkage and drive efficience caused by soil is obtained while wheel width,wheel radius and height of wheel grouser all locate in certain range, and then oneapproach is presented to determine reasonable numbers of wheels. DOFs requiredfor single, double and three wheel suspension systems with self-adaptiveperformance are analyzed, and structural synthesis of rover suspension is carriedout based on single-open chain method. A new isomorphism identification methodis presented and used in the synthesis process using incident matrixes of topologicalgraph with identification rules and steps. After obtaining vertice combinations ofsix-wheel rover suspension topology, lots of new suspension configurations arecreated by direct synthesis and combination synthesis methods.
     Ideal suspension mechanism has been studied and MCQS (Muti-constraintquadrilateral suspension) is chosen for further research from all synthesizedconfigurations. Mathematic models of step-climbing performance, ditch-crossingperformance and the stability of the rover are established, and the relationshipbetween motion performances and structural parameters is achieved. Someconstraint conditions are goven to realize rover perfprmances well. For lowingenergy consuming and safing instruments, resultant torque provided by wheels andsmooth performance of rover mass center are used as the optimization objective.Muti-objective function is established in ADAMS to optimize the structural parameters of MCQS rover for optimal structure size.
     MCQS is decomposed and three basic kinematic chains are obtained. Based onstructure change in metamorphic mechanisms and cell fusion and variation theory inbiology, fusion and variation manners of some basic units are studied. Three basicchains with various variation manners have been fused into one suspensionaccording to the permutation and combination mode. Thus one is determined forfurther research by optimal selection in all obtained15folding schemes.
     For general mechanisms, mathematical models of kinetic and potential energyare established and dynamic equations used for unfolding course of deployablemechanisms are developed. Especially for the unfolding process, three collisionclassifications are given followed by velocity change expressions. Model mass andinertia of changed links and the matrix transformations for velocity and position ofmass center are given. Two unfolding modes of MCQS are presented and dynamicanalysis of collided links in the unfolding process are carried out to determine theimpact time and force. The result shows that impact force has little influence on thesafety of rover structure.
     Lunar terrain and parameter settings for simulation are introduced, virtual3DMCQS rover is built in ADAMS and then is simulated to determine whether foldedrover can unfold successfully or not. Simulating some lunar obstacles and relatedlocomotion performances of MCQS rover under two different connection modes areanalyzed. Based on simulation results and optimized structure size, the structuraldesign of rover sample is completed. Unfolding and some locomotion performanceexperiments are carried out, these results show MCQS rover can unfold well withmeeting the required folding ratio and can also pass over step-obstacle whose heightis larger than wheel radius and slope with25°inclination angle.
引文
[1] H.H. Koelle.21世纪的航天[J].国际航天,1999,11:11.
    [2]胡群芳,陈永杰.中国掀起月球车研制热[J].中国航天,2004,5:8-9.
    [3]欧阳自远,邹永廖等.月球探测与人类社会的可持续发展[J].矿物岩石地球化学通报,2003,22(4):328-333.
    [4]吴伟仁,刘旺旺,唐玉华,等.深空探测及几项关键技术发展趋势[C].中国宇航学会深空探测技术专业委员会第十届学术年会论文集,2013:1-8.
    [5]韩鸿硕,陈杰.21世纪国外深空探测发展计划及进展[J].航天器工程,2008,17(3):1-22.
    [6] B. Burkhalter. Lunar Roving Vehicle: Historical Origins, Development andDeployment[J]. Journal of the British Interplanetary Society,1995,4:1-4.
    [7]焦玉书.登月———到月球去采矿[J].中国矿业,2012,21:13-14.
    [8]法文哲,金亚秋.“嫦娥一号”多通道微波辐射计测量估算全月球月壤层氦3含量[J].科学通报,2010,55(32):3097-3101.
    [9]一平.中国月球探测急需开发月球车[J].交通与运输.2002,5:25-26.
    [10] K. Schilling, C. Jungius. Mobile robots for planetary exploration[J]. ControlEngineering Pratice,1996,4(4):513-524.
    [11] Michel Maurette. Robots for Lunar Exploration: Present and Future[J].Advance Space Research,1999,23(11):1894-1855.
    [12]吴爽,张扬眉.国外地外天体漫游车发展状况研究[J].国际太空,2012:1-13.
    [13]杨孝文.登陆外星的漫游车[J].太空探索,2012,5:22-25.
    [14]陈芳允.月球探测机器人移动系统的研究现状和发展趋势[J].井冈山学院学报(自然科学),2006,27(8):38-42.
    [15]崔平远,于正湜,朱圣英.火星进入段自主导航技术研究现状与展望[J].宇航学报,2013,34(3):448-454.
    [16] P.C. Leger, A.Trebi-Ollennu, J.R. Wright, et al. Mars exploration roversurface operations:driving spirit at Gusev Crater[C].2005IEEEInternational Conference on Systems, Man and Cybernetics,2005,2:1815-1822.
    [17] J.J. Biesiadecki, E.T. Baumgartner, R.G. Bonitz, et al. Mars ExplorationRover surface operations: driving opportunity at Meridiani Planum[C].2005IEEE International Conference on Systems, Man and Cybernetics,2005,2:1823-1830.
    [18] J. Krajewski, K. Burke, C. Lewicki, et al. MER:From landing to six wheelson Mars... twice[C].2005IEEE International Conference on Systems,Man and Cybernetics,2005,2:1791-1798.
    [19]苏波,江磊,杨树岭,等.主被动结合式月球车悬架设计[J].机械设计与制造,2011,5:15-17.
    [20] Deepak Bapna, Eric Rollins, John Murphy, et al. The Atacama Desert Trek:Outcomes[C]. IEEE international Conference on Robotics and Automation,1998:597-604.
    [21] A. Winterholler, M. Roman, T. Hunt, et al. Design of a high-mobilitylow-weight lunar rover[C]. The8th International Symposium on ArtificalIntelligence, Robotics and Automation in Space, Munich, Germany,2005.
    [22] Takashi Kubota, Yashuharu Kuniil. Micro Planetary Rover ‘Micro5’[C].The5thInternational Symposium on Artificial Intelligence, Robotics andAutomation in Space,1999.
    [23] Takashi Kubota, Yoji Kuroda, Yasuharu Kunii, Ichiro Nakatani. Small,light-weight rover “Micro5” for lunar exploration[J]. Acta Astronautica,2003,52:447-453.
    [24] Yoji Kuroda, Koji Kondo, Takeshi Miyata, et al. A Study of SuspensionSystems for Micro Planetary Rover[C]. The16thAnnual Conference ofthe Robotics Society of Japan,1998.
    [25] Yoji Kuroda. Low Power Mobility System for Micro Planetary Rover‘Micro5’[C]. The5thInternational Symposium on Artificial Intelligence,Robotics and Automation in Space,1999.
    [26]刘方湖,马培荪,曹志奎,等.五轮铰接式月球机器人的运动学建模[J].机器人,2001,23(6):481-482.
    [27] R. Bertrand, P. Lamon, et al. The SOLERO Rover for Regional Explorationof Planetary Surfaces[C]. EGS-AGU-EUG Joint Assembly,2003.
    [28] T. Estier, Y. Crausaz, B. Merminod, et al. An Innovative Space Rover withExtended Climbing Abilities[C].4thInternational Conference andExposition on Robotics in Challenging Environments,2000.
    [29] T. Thueer, P. Lamon, et al. CRAB–Exploration Rover with AdvancedObstacle Negotiation Capabilities[C].9thESA Workshop on AdvancedSpace Technologies for Robotics,2006.
    [30] T. Thueer, A. Krebs, R. Siegwart. Comprehensive Locomotion PerformanceEvaluation of All-Terrain Robots[C]. IEEE International Conference onIntelligent Robots and Systems,2006.
    [31] T. Thueer, A. Krebs, R. Siegwart. Comprehensive Locomotion PerformanceEvaluation of All-Terrain Robots[C]. IEEE/RS International Conferenceon Intelligent Robots and Systems,2006.
    [32] K. Iagnemma, H. Shibl, A. Rzepniewski, et al. Planning and controlalgorithms for enhanced Rough terrain rover mobility[C].6thinternationalsymposium on Artificial Intelligence and Robotics&Automation in space,2001.
    [33]陈百超,王荣本,贾阳,等.高通过性与平稳性月球车移动系统设计[J].机械工程学报,2008,44(12):143-148.
    [34]尚建忠,罗自荣,张新访,等.双曲柄滑块联动月球车设计及样机研制[J].中国机械工程,2007,18(3):348-351.
    [35]张朋.月球车移动系统构型综合与ALR原理样机的研制[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [36]邱雪松.八轮扭杆摇臂式月球车可展开移动系统研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007.
    [37] R.A. Lindemann, D.B. Bickler, B.D. Harrington, et al. Mars exploratin rovermobility development—Mechanical mobility hardware design, developmentand testing[J]. IEEE Robotics&Automation Magazine,2006,13:19-26.
    [38]梁斌,王巍,王存恩.未来我国发展月球车的初步设想[J].中国航天,2003:29-33.
    [39] R. Lindemann. Dynamic testing and simulation of the mars explorationrover[C].5th International Conference on Multibody Systems, NonlinearDynamics, and Control,2005.
    [40] R.A. Lindemann, D.B. Bickler, B.D. Harrington, et al. Mars ExplorationRover mobility development-Mechanical mobility hardware design,development,and testing[J]. IEEE Robotics and Automation Magazine,2006,13(2):19-26.
    [41] R.A. Cook. The Mars exploration rover project [J]. Acta Astronautica,2005,57:116~120.
    [42] D.Brian, Harrington, Chris Voorhees. The Challenges of Designing theRocker-Bogie Suspension for the Mars Exploration Rover[C].37thAerospace Mechanisms Symposium, Johnson Space Center,2004.
    [43] V. Kucherenko, A.Bogatchev, M.V. Winnendael. Chassis Concepts for theExoMars Rover[C].8thESA Workshop on Advanced Space Technologies forRobotics and Automation ‘ASTRA2004’ ESTEC,2004.
    [44] A. Vladykin, S. Manykjan. Engineering Support on Rover Locomotion forExoMars Rover PHASE A-“ESROL-A”[R]. Science&Technology RoverCo. ltd.2004:212-217.
    [45]邓宗全,方海涛,董玉红,等.六圆柱-圆锥轮式月球车多轮协调运动控制研究[J].哈尔滨工程大学学报,2008,29(1):73-77.
    [46]罗建国,韩建友.基于构件关系拓扑图论的机构自由度和奇异分析[J].机械设计,2010,27(7):60-63.
    [47]李树军,戴建生.基于扩展Assur杆组的变胞机构组成原理[J].机械工程学报,2010,46(13):22-29.
    [48]丁希仑,刘颖,戴建生,等.李群李代数在机构学中的应用简析[C].第五届中日机械技术史及机械设计国际学术会议,2005.
    [49]吕世增,张大卫,刘海年.基于吴方法的6R机器人逆运动学旋量方程求解[J].机械工程学报,2010,46(17):35-41.
    [50]荆学东,尚久浩.应用旋量理论建立闭链机器人的动力学方程[J].机械科学与技术,2003,22(1):58-60.
    [51]张国庆,杜建军.基于螺旋理论的空间自由度分析方法[J].机械设计与制造,2009,1:10-12.
    [52] http://baike.baidu.com/view/6888963.htm
    [53]关富玲,徐彦,郑耀.充气可展开结构技术在空间探索领域中的应用[J].载人航天,2009,4:40-48.
    [54]罗鹰,段宝岩.星载可展开天线结构现状与发展[J].电子机械工程,2005,21(5):30-34.
    [55] http://www.hi1718.com/news/research-focus/16193.html
    [56]戈冬明,陈务军,付功义,等.盘绕式空间可展折叠无铰伸展臂的屈曲分析理论研究[J].计算力学学报,2007,24(5):615-619.
    [57]关富玲,戴璐.双环可展桁架结构动力学分析与试验研究[J].浙江大学学报(工学版),2012,46(9):1605-1610.
    [58]徐彦,关富玲,川口健一.充气薄膜结构的悬垂和充气展开过程[J].浙江大学学报(工学版),2011,45(1):75-80.
    [59]张惠峰,关富玲.可展桁架天线热-结构耦合分析[J].浙江大学学报(工学版),2010,44(12):2320-2325.
    [60]王宏建,徐彦,关富玲,等.星载环境充气可展开天线硬化技术研究[J].遥感技术与应用,2010,25(4):591-595.
    [61]杨玉龙,关富玲.展开桁架天线热致振动数值分析[J].空间科学学报,2009,29(4):432-437.
    [62]胡其彪.空间可伸展结构的设计与动力学分析研究.浙江:浙江大学,2001.
    [63]刘吉成,邓宗全,高海波.行星探测车车轮构型研究综述与思考[J].机械设计与制造,2007:209-211.
    [64]刘吉成,高海波,邓宗全,等.鼓形驱动轮与松散沙土相互作用力学分析[J].哈尔滨工程大学学报,2009,30(9):1029-1034.
    [65]丁亮,高海波,邓宗全等.基于应力分布的月球车轮地相互作用地面力学模型[J].机械工程学报,2009,45(7):49-54.
    [66] G. BEKKER. Introduction to terrain–vehicle systems [M]. Michigan:University of Michigan Press, Ann Arbor,1969.
    [67]丁亮,高海波,邓宗全,等.基于月球车轮地作用地面力学积分模型的月壤力学参数辨识方法[J].航空学报,2011,32(6):1112-1120.
    [68]江磊,刘兴杰,蒋云峰.月球车轮壤作用模型研究[J].车辆与动力技术,2013,129:1-6.
    [69]郭建娟,江磊.月面巡视器刚性轮的指数型滑转沉陷模型研究和模型的参数辨识及修正[C].中国宇航学会深空探测技术专业委员会第七届学术年会论文集,2010:185-190.
    [70]余志生.汽车理论[M].北京:机械工业出版社,2000.
    [71]袁勇,丁同才,胡震宇.月球车车轮驱动能力研究[C].第三届中国宇航学会深空探测技术专业委员会论文集,西安,2006.
    [72]丁亮.月/星球车轮地作用地面力学模型及其应用研究能力研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [73]郑永春,欧阳自远,王世杰等.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19.
    [74] O. ONAFEKO, A.R. RECCE. Soil stresses and deformations beneath rigidwheels [J]. Journal of Terramechanics,1967,4(1):59-80.
    [75]谷侃锋,王洪光,赵明扬.滑转率对月球车车轮驱动力学特性的影响分析[J].计算机仿真,2008,25(6):25-29.
    [76]丁希仑,石旭尧,Alberto Rovetta,等.月球探测(车)机器人技术的发展与展望[J].机器人技术与应用,2008:5-9.
    [77] E.R.E. Crossley. The permutations of Kinematic Chains of Eight Membersor Less From the Graph Theoretic Viewpoint[J]. Developments inTheoretical and Applied Mechanics,1965,2:467-486
    [78]曹惟庆.平面杆组的结构分析及其类型综合[J].陕西机械学院学报,1978,2:1-21.
    [79] E. R. Tuttle. Further Application of Graph Theory to the Enumeration andStructural Analysis of Basic Kinematic Chains[J]. Trans. ASME J. of Mech.Trans. and Auto. in Design,1989,111(4):494-497.
    [80] E. R. Tuttle. Enumeration of Basic Kinematic Chains Using the Theory ofFinite Graphs[J]. Trans. ASME J. of Mech. Trans. and Auto. in Design,1989,111(4):498-503.
    [81] W.J. Sohn, F. Freudenstein. An Application of Dual Graphs to the AutomaticGeneration of the Kinematic Structure of Mechanisms[J]. Trans. ASME J. ofMech. Trans. and Auto. in Design,1986,108:392-398.
    [82] T.S. Mruthyunjaya. A Computerized Methodology for Structural Synthesisof Kinematic Chains[J]. Mech. and Mech. Theory.1984,19(6):487-530.
    [83] T.L. Yang, F.H. Yao. The Topological Characteristics and AutomaticGeneration of Structural Analysis and Synthesis of Plane Mechanisms, Part1: Theory, Part2: Application[C]. Proc. of ASME Mech. Conf.,1988.
    [84]杨廷力.机械系统基本理论——结构学·运动学·动力学[M].北京:机械工业出版社,1996.
    [85]张春林,余跃庆.高等机构学[M].北京:北京理工大学出版社,2006.
    [86] H.J. LEE, Y.S. YOON. Automatic Method for Enumeration of Complete Setof Kinematic Chains[J]. JSME international journal. Ser. C, Dynamics,control, robotics, design and manufacturing,1994,37(4):812-818.
    [87]徐俊明.图论及其应用[M].合肥:中国科学技术出版社,2010.
    [88] J.P. Cubillo, J.B. Wan. Comments on mechanism kinematic chainisomorphism identification using adjacent matrices[J]. Mechanism andMachine Theory,2005,40:131–139.
    [89] Z. Chang, C. Zhang, Y.H. Yang, et al. A new method to mechanismkinematic chain isomorphism identification[J]. Mechanism and MachineTheory,2002,37:411–417.
    [90] A. Dargar, A. Hasanb, R. A. Khanb. Identification of Isomorphism AmongKinematic Chains and Inversions Using Link Adjacency Values[J].International Journal of Mechanical and Materials Engineering,2009,4(3):309–315.
    [91] P. R. He, W. J. Zhang, Q. Li, et al. A New Method for Detection of GraphIsomorphism Based on the Quadratic Form[J]. Journal of MechanicalDesign,2003,125:640–642.
    [92] A. Dargar, R. A. Khan, A. Hasan. Application of link adjacency values todetect isomorphism among kinematic chains[J]. Int J Mech Mater Des,2010,6:157-162.
    [93] A.C. Rao. Application of fuzzy logic for the study of isomorphism,inversions, symmetry, parallelism and mobility in kinematic chains[J].Mechanism and Machine Theory,2000,35:1103–1116.
    [94] T.J. Li, W.Q. Cao. Detection of Isomorphism Among Kinematic Chains andMechanisms Using the Powers of Adjacent Matrix[J]. Mechanical Scienceand Technology(in chinese),1998,17(1):12–14.
    [95] A. K. Singh, V. P. Eathakota, K.M. Krishna, et al. Evolution of a FourWheeled Active Suspension Rover with Minimal Actuation for RoughTerrain Mobility[C]. IEEE International Conference on Robotics andBiomimetics, Guilin, China.2009.
    [96]张艳华,吴立勋,杜秀菊. Stephenson六杆机构近似位姿的计算机辅助几何法[J].现代制造工程,2012,3:37-41.
    [97] F. Barlas. Design of a Mars Rover Suspension Mechanism[D]. Izmir, Turkey:Izmir Institute of Technology, Master thesis,2004.
    [98]罗昌杰,邓宗全,刘荣强等.基于零力矩点理论的腿式着陆器着陆稳定性研究[J].机械工程学报,2010,46(9):40.
    [99]王险峰,李建平,王辉.基于ZMP的仿人机器人跑步运动模式[J].计算机研究与发展,2013,50(10):2206-2211.
    [100]付根平,杨宜民,陈建平,等.基于ZMP误差校正的仿人机器人步行控制[J].机器人,2013,35(1):39-44.
    [101]张颖超,葛壮,胡凯.仿人机器人的可变ZMP步态规划[J].南京信息工程大学学报(自然科学版),2011,5:471-473.
    [102] K. Iagnemma, A. Rzepniewski, S. Dubowsky. Control of Robotic Vehicleswith Actively Articulated Suspensions in Rough Terrain[J]. AutonomousRobots,2003,14:5-16.
    [103] E.G. Papadopoulos, D.A. Rey. A New Measure of Tip over Stability Marginfor Mobile Manipulators[C]. IEEE International Conference on Roboticsand Automation,1996.
    [104] A.C. GILLIE. Binary arithmetic and Boolean algebra[M]. New York:McGraw-Hill,1965.
    [105]王德伦,戴建生.变胞机构及其综合的理论基础[J].机械工程学报,2007,43(8):32-41.
    [106] S.J. Li, Y.L. Zhang, S. Yang, et al. Joint-gene Based Variable TopologicalRepresentations and Configuration Transformations[C]. ASME/IFToMMInternational Conference on Reconfigurable Mechanisms and Robots,London,2009.
    [107](美)克来格著,贠超等译.机器人学导论[M].北京:机械工业出版社,2006.
    [108]华卫江,章定国.柔性机器人系统碰撞动力学建模[J].机械工程学报,2007,43(12):223-228.
    [109]程燕平.理论力学[M].哈尔滨:哈尔滨工业大学出版社,2008.
    [110]郑焕武.碰撞时间的定量计算[J].四川师范大学学报(自然科学版),2001,24(3):307-309.
    [111] http://space.kexue.com/2011/0527/16968.html
    [112] http://qhyccd.com/cn/left/page3-1/qhy5-series-1/
    [113] http://news.xinhuanet.com/politics/2007-12/02/content_7185178.htm
    [114]张玥.月球表面地形数据分析及仿真研究[D].合肥:国防科学技术大学博士学位论文,2008.
    [115]杨艳春,鲍劲松,金烨.一种真实感虚拟月面建模方法[J].系统仿真学报,2007,19(11):2515-2517.
    [116]贾彦辉.基于Vortex的月球车移动性能仿真与评价[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [117]焦震,高海波,邓宗全,等.基于地面力学的月球车爬坡轮—地相互作用模型[J].机器人,2010,32(1):70-75.
    [118]李建桥,邹猛,李因武,等.驱动轮结构参数对月球车牵引性能影响研究[J].深空科学学报,2008,28(4):335-339.
    [119]谷侃锋.滑转率对月球车车轮驱动力学特性的影响分析[J].计算机仿真,2008,25(6):25-29.
    [120]邹猛.模拟月壤地面力学性质试验研究[J].岩土力学,2011,32(4):1057-1061.
    [121]丁亮,高海波,邓宗全,等.月球车轮刺效应的理论分析与实验研究究[J].宇航学报,2009,30(4):1351-1357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700