用户名: 密码: 验证码:
基于人体运动状态识别的可穿戴健康监测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可穿戴健康监测系统是可穿戴计算在医疗领域的典型应用,它将改变我国远程医疗和家庭保健医疗中终端用户传统的“被动”监测模式,实现低生理和心理负荷下人体生理信号自动、连续、动态地获取。国内外学者已在该研究领域做了大量的工作,然而现有的研究往往没有考虑实际应用中人体生理特征和运动状态相关联的特点,仅仅从生理数据就对用户的健康情况作出判断,缺乏当时的运动状态信息,造成一定程度的误判。因此将两者有效结合,研究基于人体运动状态识别的可穿戴健康监测系统具有重要的现实意义。
     本文依据用户活动自由的需要,设计可穿戴健康监测马甲以获取人体生理特征值和运动参数,并在运动状态实时识别的基础上对生理状态进行诊断,以提高日常运动环境下个人健康监测的准确性。论文主要从系统架构、人体运动状态识别、跌倒动作识别、系统能量管理策略这四个方面进行深入的研究。主要创新性研究成果如下:
     (1)提出基于人体运动状态识别的可穿戴健康监测系统架构。针对多种类型设备和多种传输方式共存的情况,建立基于Agent的系统架构模型,并对其通信协议、交互方式进行描述和定义。该架构独立于具体的硬件单元,便于系统的扩展和相关软件的配置和部署。
     (2)提出基于单个三轴加速度传感器的人体运动状态识别算法。根据人体日常活动具有短时持续性的特征,将其运动状态划分为稳定状态和非稳定状态。将三轴加速度矢量值转换为加速度幅值变化量,消除了传感器坐标系的佩戴相关性,使用卡尔曼滤波实时识别出稳定或非稳定状态;同时采用自适应阈值法对稳定状态时的跑步、走路动作进行识别。实验结果表明:该算法在状态识别方面达到较高的准确率;对于跑步、走路动作的识别准确率优于决策树识别算法。
     (3)提出一种基于单个三轴加速度传感器的危险性跌倒动作(相对一段时间不能自我恢复活动)识别算法。通过提取超重强度、持续失重时间、倾斜角度、持续静止时间为特征值,消除传感器坐标系的佩戴相关性并减少计算复杂性;根据运动状态动态调整传感器的重力参照值,提高测量准确度。实验结果表明:该算法的识别准确率优于一阶支持向量机算法和基于多轴向阈值的识别算法。
     (4)提出一种基于事件驱动的系统能量管理策略。为了解决移动终端持续感知情况下系统的能耗问题,建立事件模型:将人体正常情况下持续静止状态作为系统的休眠触发事件;将人体运动状态转换、生理特征异常作为系统的唤醒事件,采用事件触发机制,根据人体自身状态来自适应地调整系统工作周期。实验结果表明,该方法在保持系统实时性和准确性前提下,与不采用能量管理策略相比,节省约25%的电量。
     本文以人体运动状态识别为基础,结合可穿戴技术、信号处理技术、无线通信技术,使用加速度传感器、生物传感器、蓝牙模块、智能手机和后台服务器搭建“基于人体运动状态识别的可穿戴健康监测系统”。通过对志愿者的日常穿戴测试,系统在实现人体运动状态实时识别的基础上,对危险性跌倒动作和不同运动状态下的生理信号异常发出报警,并能根据用户状态采用能量管理策略节约系统能量,证明了基于人体运动状态识别的可穿戴健康监测架构的可靠性。
Wearable health-monitoring system is a typical application of wearablecomputing in healthcare field. It will change traditional "passive" usage mode oftelemedicine system and family healthcare in our nation, by providing continualmonitoring of physiological signals of end user with slight mental and physicalburden. International and local researchers have done much work in this field, butcurrent researches usually determine health status by only physiological signals,which ingore the relation between human physiological characteristics and activities.Lack of activity information at that time may causes misdiagnosis. Therefore, witheffective combination, it will show more practical significance to study wearablehealth-monitoring system based on human activity recognition.
     Meeting the requirement of user to move freely, this dissertation designed awaistcoat for wearable health-monitoring to get physiological and movement signals,and then determined health status based on recognition of activities in real time. Thismethod improves precise of human health monitoring in daily life. In thisdissertation, four aspects will be researched: system architecture, human activityrecognition, falling detection, and power management strategy for system. The majorcontributions of this dissertation are stated as follows:
     (1) Provide a general architecture of wearable health-monitoring system basedon human activity recognition. To address the issues with different type of devicesand communication methods, we construct system architecture based on agent model,and define its communication protocol, interaction processes. This architecture isindependent of hardware units, which makes the system more scalable and therelated softwares easily be deployed.
     (2) Propose an algorithm to classify activity states of human with singleaccelerometer. According to the constancy feature of daily movements in short time,activity states are divided into steady and unsteady ones. We transform raw datameasured from the three axis into changes of signal vector magnitude to avoiddependence on wearing coordinate, and apply Kalman filter to classify the above twostates in real time.Meanwhile, we use thresholds which are automatically adapted fordifferent users to recognize activities of running and walking when they are onsteady state. Experiment results showed that the algorithm got better performance inaccuracy of activity recognition. It performed higher accuracy for running and walking activities than the decision tree algorithm.
     (3) Propose an algorithm to recognize dangerous fall of human body with singleaccelerometer, where “dangerous fall” means subject could not return to his/hernormal behaviors after impacting on the ground. Features of overweight, continuousweightless time, tilting angle and continuous still time are abstracted, which are allindependent of the sensor orientation with respect to the body, and simplifycomplexity of computing. To improve accuracy of measurement, the referencedgravity output value will be adapted with activity states. Experimental resultsshowed higher accuracy than one-class SVM algorithm and the algorithms based onmulti-axial directions.
     (4) State the event-driven strategy for power management of system. In order toreduce energy consumption on mobile device when continuous sensing, an eventmodel is built which regards continually being still on healthy situation as sleepevent, activity state transitions and abnormal physical signals as waken event.Duration of the system working cycle can be adapted automatically according to thestate of subjects. Experimental results demonstrated that, keeping performance inreal time and accuracy, the system could save25%energy than that without thispower management strategy.
     This dissertation combines physiological monitoring with human activityrecognition to construct "wearable health-monitoring system based on recognition ofhuman activity state (WHMSHAR)", which applies technology of wearablecomputing, signal processing, wireless communication with accelerometer, physicalsensors, Bluetooth, and runs on smart phone and server. Worn by volunteers in dailylife, the tested system can successfully send out alert in case of dangerous fall eventsand abnormal physiological signals in different activity states, which is evidence ofthe reliability of wearable health-monitoring architecture based on human activityrecognition.
引文
[1]陈东义.可穿戴计算机的发展与趋势[J].重庆大学学报(自然科学版),2000,23(3):119-124
    [2] T.A. Pearson, G.A. Mensah, RW Alexander. Markers of Inflammation and CardiovascularDisease-Application to Clinical and Public Health Practice-A Statement for HealthcareProfessionals from the Centers for Disease Control and Prevention and the America HeartAssociation[J]. Circulation.2003,107(3):499-511
    [3] A.S.Levey, J. Coresh, E.Balk. National Kidney Foundation Practice Guidelines for ChronicKidney Disease: Evaluation, Classification, and Stratification. Annals of Internal Medicine[J].2003,139(2):137-147
    [4]沈若玲.人口老龄化与老年社区护理现状[J].现代护理,2007,13(12):1117-1119
    [5] L.Roger Veronique, S. Go Alan, M. Donald. Heart Disease and Stroke Statistics-2011Updata aReport from theAmerican HeartAssociation[J]. Circulation,2011,123(4): E18-E209
    [6]蒋贤海.智能远程健康监护系统生理参数数据分析及预报的研究[D].广州:华南理工大学机械与汽车工程学院,2010
    [7] F.Axisa, P.M.Sshmitt, C.Gehin. Flexible Technologies and Smart Clothing for CitizenMedicine, Home Healthcare, and Disease Prevention[J]. IEEE Transactions on InformationTechnology in Biomedicine.2005,9(3):325-336
    [8] J.C.Yao, R.Schmitz, S. Warren. A Wearable Point-of-Care System for Home Use thatIncorporates Plug-and-Play and Wireless Standards[J]. IEEE Transactions on InformationTechnology in Biomedicine.2005,9(3):363-371
    [9] Steve Mann. Humanistic Computing: WearComp as a New Framework and Application forIntelligent Signal. Proceeding of the IEEE,1998[C]. USA.IEEE,86(11):2123-2151
    [10]时锐,宁录游,温东新.穿戴计算机无线网络的探讨.2001年全国穿戴计算技术学术会议论文专辑[C].北京:《高技术通讯》杂志社.2001:79-83.
    [11] Len Bass, Chris Kasabach, Richard Martin, Dan Siewiorek, Asim Smailagic, John Stivoric.The Design of a Wearable Computer. Proceedings of the1997Conference on Human Factorsin Computing Systems,1997[C].Atlanta,GA,USA.ACM:140-146
    [12] Committee on Quality of Health Care in America, Institute of Medicine. Crossing the QualityChasm: A New Health System for the21stCentury[M]. Washington D.C.: National AcademyPress,,2001
    [13] A.Pentland. Healthwear: Medical Technology Becomes Wearable[J]. Computer.2004,37(5):42-51
    [14] Sungmee park, Sundaresan Jayaraman. Enhancing the Quality of Life through WearableTechnology[J]. IEEE Engineering in Medicine and Biology Magazine,2003,22(3):41-48
    [15] Alexandros Pantelopoulos, Nikolaos G. Bourbakis. A Survey on Wearable Sensor-basedSystems for Health Monitoring and Prognosis[J]. IEEE Transactions on Systems, Man, andCybernetics-paper C: Applications and Reviews.2010,40(1):1-12
    [16] Xiaohui Liang, Barua M, Le Chen, et al. Enabling pervasive healthcare through continuousremote health monitoring[J]. Wireless communications.2012,19(6):10-18
    [17] Adam Darkins, Patricia Ryan, Rita Kobb, Linda Foster, Ellen Edmonson, Bonnie Wakefield,Anne E. Lancaster. Care Coordination/Home Telehealth: The Systematic Implementation ofHealth Informatics, Home Telehealth, and Disease Management to Support the Care of VeteranPatients with Chronic Conditions[J]. Telemedicine Journal and e-Health.2009,14(10):1118-1126
    [18] G. Eysenbach. What is e-Health?[J]. Journal of Medical Internet Research.2001,3(2): e20
    [19] Dimitar H. Stefanov, Zeungnam Bien, Won-Chul Bang. The Smart House for Older Personsand Persons with Physical Disabilities: Structure, Technology Arrangements, andPerspectives[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering.2004,12(2):228-250
    [20] Tony O’Donovan, John O’Donoghue, Cormac Sreenan, David Sammon, Philip O’Reilly,Kieran A.O’Connor. A Context Aware Wireless Body Area Network.3rdInternationalConference on Pervasive Computing Technologies for Healthcare.2009[C]. London,UnitedKingdom, IEEE Computer Society:1-8
    [21] L. Gatzoulis, I. Iakovidis. Wearable and Portable eHealth Systems[J]. IEEE Engineering inMedicine and Biology Magazine,2007,26(5):51-56
    [22] Urs Anliker, Jamie A. Ward, Paul Lukowicz, Gerhard Troster, Francois Dolveck, Michel Baer.AMON: A wearable Multiparameter Medical Monitoring and Alert System[J]. IEEETransactions on Information Technology in Biomedicine.2004,8(4):415-426
    [23] http://www.polar.fi/en
    [24] M. Sung, C. Marci, A. Pentland. Wearable Feedback System for Rehabilitation[J]. Journal ofNeuroEngineering and Rehabilitation.2005,2(17):1-12
    [25] Rita Paradiso, Giannicola Loriga, Nicola Taccini. A Wearable Health Care System based onKnitted Integrated Sensors[J]. IEEE Transactions on Information Technology in Biomedicine.2005,9(3):337-344
    [26] Fabrice Axisa, Pierre Michael Schmitt, Claudine Gehin, Georges Delhomme, Eric McAdams,Andre Dittmar. Flexible Technologies and Smart Clothing for Citizen Medicine, HomeHealthcare, and Disease Prevention[J]. IEEE Transactions on Information Technology inBiomedicine.2005,9(3):325-336.
    [27] J.Luprano, J. Sola, S. Dasen, J.M. Koller, O. Chetelat. Combination of Body SensorNetworks and on-Body Signal Processing Algorithms: the Practical Case of MyHeart Project.International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06).2006[C], Massachusetts, USA.:76-79
    [28] David Malan, Thaddeus Fulford-Jones, Matt Welsh, Steve Moulton. CodeBlue: An Ad HocSensor Network Infrastructure for Emergency Medical Care. The International Workshop onWearable and Implantable Body Sensor Networks.2004:50-53
    [29] Alexandros Pantelopoulos, Nikolaos G. Bourbakis. A Survey on Wearable Sensor-basedSystems for Health Monitoring and Prognosis. IEEE Transactions on Systems, Man, andCybernetics-part C: Applications and Reviews.2010,40(1):1-12
    [30]秦晓华.一种老年人移动健康监护系统的研究[D].清华大学.2012
    [31]张海进.基于嵌入式的个人健康监护系统的研究与开发[D].电子科技大学(成都).2012
    [32]杨杰,周小四,沈利.家庭远程医疗监护报警和咨询智能系统[J].高技术通讯.2002.6:4-9
    [33]孙振华.腕带式多参数健康监护系统的研究[D].哈尔滨工业大学.2012
    [34]王鲁,王志良.基于Zigbee技术的老人身体状态监测系统设计[J].2011,32(9):1841-1844
    [35]谭啸,朱小兵.10年之后的数字医疗[J].计算机世界。2010,34(9):1-4
    [36]郑捷文,可穿戴实时诊断、报警、移动健康监护系统[D],北京:中国人民解放军军事医学科学院,2008
    [37] G.C.Cimino Mario, Marcelloni Francesco. An Efficient Model-based Methodology forDeveloping Device-Independent Mobile Applications[J]. Journal of Systems Architecture.2012,47(9):2164-2173.
    [38] Charles Abrams, Roy W. Schulte. Service-Oriented Architecture Overview and Guide to SOAResearch[J]. Gartner.2008,3:1-10
    [39]丁士拥,常天庆,牛春平,张建伟.基于Agent的建模技术研究[J].计算机工程与设计.2007,28(8):1747-1750.
    [40]毛新军.面向主体的软件开发[M].北京:清华大学出版社.2005.
    [41]毛新军,常志明,王戟,王怀民.面向Agent的软件工程:现状与挑战[J].计算机研究与发展.2006,43(10):1782-1789.
    [42] Ko Eun Jung, Lee Hyung Jik, Lee Jeun Woo. Ontology-based Context Modeling andReasoning for U-HealthCare[J]. IEICE Transactions on Information and Systems.2007,E90D(8):1262-1270
    [43] Boulos Maged Kamel, Wheeler Steve, Tavares Carlos. How Smartphones are Changing theFace of Mobile and Participatory Healthcare: an Overview, with Example from eCAALYX[J].Biomedical Engineering online.2011,10(24)
    [44]刘蓉.人体运动信息获取及物理活动识别研究[D].武汉:华中科技大学,2009
    [45] U. Lindemann, A. Hock, C. KeckWand Becker. Evaluation of a Fall Detector Based onAccelerometers: a Pilot Study[J]. Medical&Biological&Engineering&Comput.2005,43(5):548–51
    [46] G. Baker, N. Mutrie. Are Pedometers Useful Motivational Tools for Increasing Walking inSedentary Adults? The6th International Conference on Walking in the21st Century.2005[C],Zurich, Switzerland. IEEE
    [47] J.K.AGGARWAL, M.S.RYOO. Human Activity Analysis: a Review[J]. ACM ComputingSurveys,2011,43(3):1-16
    [48] A.K.Bourke, J.V.O’Brien, G.M.Lyons. Evaluation of a Threshold-based Tri-axialAccelerometer Fall DetectionAlgorithm[J]. Gait&Posture.2007,26(2):194-199
    [49] H.Nakamura, I.Karube. Current Research Activity in Biosensors[J]. Analytical andBioanalytical Chemistry.2003,377(3):446-468
    [50] Van Gent Rene, Van Der Ent Cornelis, E.M.Liesbeth, van Essen-Zandvliet. No Differences inPhysical Activity in (Un)diagnosed Asthma and Healthy Controls[J]. Pediatr Pulmonology.2007,42(11):1018-1023
    [51] H.Bruce Dobkin, Xu xiaoyu, Batalin Maxim. Reliability and Validity of Bilateral AnkleAccelerometer Algorithms forActivity Recognition and Walking Speed after Stroke[J]. Strole.2011,42(8):2246-2353
    [52] Gavrila D. The Visual Analysis of Human Movement: a Survey[J]. Computer Vision andImage Understanding.1997,73(1):82-98
    [53] E.M.Tapia. Using Machine Learning for Real-time Activity Recognition and Estimation ofEnergy Expenditure[D]. USA. MIT,2008.
    [54] Ghasemzadeh Hassan, Jafari Roozbeh, Prabhakaran Balakrishnan. Body Sensor NetworkWith Electromyogram and Inertial Sensors: Multimodal Interpretation of MuscularActivities[J]. IEEE Transactions on Information Technology in Biomedicine.2010,14(2):198-206
    [55] Westerterp Klaas R. Assessment of Physical Activity: A Critical Appraisal[J]. EuropeanJournal of Applied Physiology.2009,105(6):655-661.
    [56] Bonomi A.G., Plasqui G.,Goris A.H.C.. Improving Assessment of Daily Energy Expenditureby Identifying Types of Physical Activity with a Single Accelerometer[J]. Journal of AppliedPhysiology.2009,107(3):655-661
    [57] Merryn Mathie. Monitoring and Interpreting Human Movement Patterns Using a TriaxialAccelerometer[D]. USA,The University of New South Wales.
    [58]曹玉诊,蔡伟超,程杨.基于MEMS加速度传感器的人体姿态检测技术[J].纳米技术与精密工程.2010,8(1):37-43
    [59] Lee Myong-Woo, Khan Adil Mehmood, Tae-Seong. A Single Tri-axial Accelerometer-basedReal-time Personal Life Log System Capable of Human Activity Recognition and ExerciseInformation Generation[J]. Personaland and Ubiquitous Computing.2011,15(8):887-898.
    [60] Bhattacharya Subhamoy, Krishna A.Murali, Lombardi Domenico. Economic MEMS based3-axis Water Proof Accelerometer for Dynamic Geo-engineering Applications[J]. SoilDynamics and Earthquake Engineering.2012,36:111-118
    [61] Taraldsen Kristin, F.M. Chastion Sebastien, I.Ingrid Riphagen. Physical Activity Monitoringby Use of Accelerometer-based Body-worn Sensors in Older Adults: A Systematic LiteratureReview of Current Knowledge andApplications[J]. Maturitas.2012,71(1):13-19
    [62] R.W. DeVaul, S. Dunn. Real-time Motion Classification for Wearable ComputingApplications[R], MIT Media Laboratory,2001
    [63] J.J. Kavanagh, H.B. Menz. Accelerometry: a Technique for Quantifying Movement PatternsDuring Walking[J]. Gait Posture,2008,28(1):1-15
    [64] V.C. Carlijin, R. Kodde, J.D. Janssen. A Triaxial Accelerometer and Portable Data ProcessingUnit for the Assessment of Daily Physical Activity[J]. IEEE Transactions on BiomedicalEngineering.1997,44(3):136-147
    [65] J.E.Bardram, H.B.Christensen. Pervasive Computing Support Fot Hospitals: an Overview oftheActivity-based Computing Project[J]. Pervasive Computing.2007,6(1):44-51
    [66] E. Miluzzo, N.Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. Eisenman, X. Zheng, A.Campbell. Sensing Meets Mobile Social Networks: The Design, Implementation andEvaluation of the CenceMe Application. Proceeding of the6thACM Conference onEmbedded Networked Sensor System.2008[C], Raleigh, NC. Association for computingMachinery:337-350.
    [67] David Curone, Gian Mario Bertolotti, Andrea Cristiani, Emanuele Lindo Secco. A Real-timeand Self-calibrating Algorithm based on Triaxial Accelerometer Signals for the Detection ofHuman Posture and Activity[J]. IEEE Transactions on Information Technology inBiomedicine.2010,14(4):1098-1215
    [68] T. Degen, H. Jaeckel, M. Rufer, S. Wyss. SPEEDY: a Fall Detector in a Wrist Watch.Proceedings-7th International Symposium on Wearable Computers2003[C], White Plains,NY. IEEE International Society:184–189
    [69] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, B. G. Celler. Implementationof a Real-time Human Movement Classifier Using a Triaxial Accelerometer for AmbulatoryMonitoring[J]. IEEE Transactions on Information Technology in Biomedicine.2006,10(1):156–167
    [70] Tivive Fok Hing Chi, Bouzerdoum Abdesselam, Amin Andmoeness G. A Human GaitClassification Method Based on Radar Doppler Spectrograms[J]. Eurasip Journal onAdvances in Signal Processing.2010
    [71] Stephen J. Preece, John Yannis Goulermas, Laurence P. J. Kenney, David Howard. AComparison of Feature Extraction Methods for the Classification of Dynamic Activities fromAccelerometer Data[J]. IEEE Transactions on Biomedical Engineering.2008,56(3):871-879
    [72] Jimenez-Rodriguez L.O., Arzuaga-Cruz E., Velez-Reyes M. Unsupervised LinearFeature-Extraction Methods and Their Effects in the Classification of High-Dimensional Data[J]. IEEE Transactions on Geoscience and Remote Sensing.2007,45(2):469-483
    [73] Tam Huynh, Bernt Schiele. Analyzing Features for Activity Recognition. Proceeding of the2005Joint Conference on Smart Objects and Ambient Intelligence: InnovativeContext-Aware Services: Usages and Technologies,2005[C], Grenoble, France. ACM:159–164
    [74] Tam Huynh, Bernt Schiele. Towards Less Supervision in Activity Recognition from WearableSensors. the10th IEEE International Symposium on Wearable Computers,2006[C],Montreux, Switzerland. IEEE Computer Society:3–10
    [75] Tam Huynh, Bernt Schiele. Unsupervised Discovery of Structure in Activity Data UsingMultiple Eigenspaces. Second International Workshop on Location-and Context-Awareness.2006[C], Dublin, Ireland. Springer Verlag:151–167
    [76] T. Chau. A Review of Analytical Techniques for Gait Data: Part1. Fuzzy, Statistical andFractal Methods[J]. Gait Posture2001,13(1):49–66
    [77] Raj A, Subramanya A, Bikmes J, Fox D. Rao-blackwellized particlefilters for recognizingactivities and spatial context from wearable sensors. In experimental Robotics: the10thInternational Symposium, Springer Tracs in Advanced Robotics (STAR),2006[C],Springer-Verlag,2006
    [78] Ward J A, Lukowicz P, Troster G, Atrash A, Starner T. Activity Recognition of AssemblyTasks Using Body-Worn Microphones and Accelerometers[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence.2006,28(10):1553-1567
    [79] Juha Parkka, Luc Cluitmans, Miikka Ermes. Personalization Algorithm for Real-time ActivityRecognition Using PDA, Wireless Motion Bands, and Binary Decision Tree[J]. IEEETransactions on InformationTechnology in Biomedicine,2010,14(5):1211-1215.
    [80] J. Maitland, S. Sherwood, L. Barkhuus, I. Anderson, M, Hall, B.Brown. Increasing theAwareness of Daily Activity Levels with Pervasive Computing.1st International Conferenceon Pervasive Computing Technologies for Healthcare.2006[C], Innsbruck, Austria. Inst. OfElec.And Elec. Eng. Computer Society
    [81] S. Consolvo, D. McDonald, T. Toscos, M. Chen, J.Froehlich, B. Harrison, P. Klasnja. ActivitySensing in the Wild: a Field Trial of Ubifit Garden. Proceeding of the twenty-sixth AnnualSIGGHI Conference on Human Factors in Computing Systems,2008[C], Florence, Italy.ACM:1797-1806.
    [82] A. Andrew, Y.Anokwa, K. Koscher, J.Lester, G. Borriello. Context to Make You More Aware.The27th International Workshop on Smart Appliances and Wearable Computing,2007[C],Toronto, ON, Canada, Institute of Electrical and Electronics Engineers Inc.:49-54
    [83]陈雷,杨杰,沈红斌,王双全.基于加速度信号几何特征的动作识别[J].上海交通大学学报.2008,42(8):219-222
    [84] Altun Kerem, Barshan Billur. Human Activity Recognition: Using Inertial/Magnetic SensorUnits.1st International Workshop,,2010[C], Istanbul, Turkey. Springer Verlag:38-51
    [85] R.S. Abdul, Bukhari. Use Accelerometers for Vibration Measurement and Control[J].Electronic Design.2000,10(1):20-28
    [86]朱荣,周兆英.基于MEMS的姿态测量系统[J],测控技术,2002,21(10):6-13
    [87] M.Ermes, J.Parka, J.Mantyjarvi, and I.Korhonen, Detecion of Daily Activities and Sportswith Wearable Sensors in Controlled and Uncontrolled Conditions[J]. IEEE Transactions onInformation Technology in Biomedicine.2008,2(1):20-26
    [88] Adil Mehmood Khan, Young-Koo Lee. A Triaxial Accelerometer-Based Physical-ActivityRecognition via Augmented-Signal Features and a Hierarchical Recognizer[J], IEEETransactions on Information Technology in Biomedicine.2010,14(5):1166-1172
    [89] R.E.Kalman, A New Approach to Linear Filtering and Prediction Problems[R], J.Basic Eng,1960:35-45
    [90]霍宏伟,张宏科,Youzhi Xu.基于室内无线传感器网络射频信号的老年人跌倒检测研究[J].电子学报,2011,39(1):195-200
    [91]陈炜,佟丽娜,宋全军,葛运建.基于惯性传感器件的跌倒检测系统设计[J],传感器与微系统,2010,29(8):117-125
    [92]周白瑜,于普林.老年人跌倒和心血管疾病[J].中华老年医学杂志.2006,25(3):224-227
    [93]赵祥欣.基于三维加速度传感器的跌倒监测研究[D],浙江大学,2008
    [94]朱月妹,袁浩斌,陈雷.老年人跌倒及其预防的认识和行为调查[J].家庭护士,2007,7(5):11-16
    [95] Wu Ge, Xue Shuwan. Portable Preimpact Fall Detector with Inertial Sensors[J]. IEEETransactions on Neural Systems and Rehabilitation Engineering.2010,16(2):178-183
    [96] Michael R. Narayanan, Stephen J. Redmond, Maria Elena Scalzi, et.al. Longitudinal falls-riskestimation using triaxial accelerometer[J]. IEEE Transactions on Biomedical Engineering.2010,57(3):534-541
    [97] S.R.Lord, H.B.Menz, A.Tidemann. A Physiological Profile Approach to Fall Risk Assessmentand Prevention [J]. Physical Therapy.2003,83(3):237-252
    [98] Ge Wu, Shuwan Xue. Portable Preimpact Fall Detector with Inertial Semsors[J]. IEEETransactions on Neural Systems and Rehabilitation Engineering.2008,16(2):178-183
    [99] M.N.Nyan, Francis E.H.Tray. E.Murugasu. A Wearable System for Pre-impact FallDetection[J]. Journal of Biomechanics.2008,41(16):3475-3481
    [100] W. H. Wu, A.A. Bui, M.A. Batalin, D. Liu, W. J. Kaiser. Incremental Diagnosis Method forIntelligent Wearable Sensor Systems[J]. IEEE Transactions on Information Technology inBiomedicine.2007,11(5):553–562
    [101] M. N. Nyan, F. E. Tay, A.W. Y. Tan, K. H. Seah. Distinguishing Fall Activities from NormalActivities by Angular Rate Characteristics and High-speed Camera Characterization[J].Medical Engineering&Physics.2006,28(8),842–849
    [102] M. N. Nyan, F. E. Tay, K. H. Seah, Y. Y. Sitoh. Classification of Gait Patterns in theTime-frequency Domain[J]. Journal of Biomechanics.2006,39(7):2647–2656
    [103] A. K. Bourke, G. M. Lyons. A Threshold-based Fall-detection Algorithm Using a Bi-axialGyroscope Sensor[J]. Medical Engineering&Physics.2008,30(1):84–90
    [104] A.K.Bourke, K.J.O’Donovan, G. Olaighin. The Identification of Vertical Velocity ProfilesUsing an Inertial Sensor to Investigate Pre-impact Detection of Falls[J]. Medical Engineering&Physics.2008.30(9):937–946
    [105] M. J. Mathie, B. G. Celler, H. Lovell Nigel. Classification of Basic Daily Movements Usinga Triaxial Accelerometer[J]. Medical and Biological Engineering and Computing.2004,42(5):679-687
    [106] N Ravi, N Dandekar, P Mysore, et al. Activity Recognition from Accelerometer Data.Proceeding of the20th National Conference on Artificial Intelligence and the17thInnovativeApplications of Artificial Intelligence Conference, Pittsburgh, PA, United states.2005[C],AmericanAssociation forArtificial Intelligence:1541-1546
    [107] Guangyi Shi, Cheung Shing Chan, WenJung Li, Kwok-Sui Leung, Yuexiao Zou, Yufeng Jin.Mobile Human Airbag System for Fall Protection Using MEMS Sensors and EmbeddedSVM Classifier[J]. IEEE Sensors Journal.2009,9(5):495-503
    [108] Toshiyo Tamura, Takumi Yoshimura, Masaki Sekine, Mitsuo Uchida, Osamu Tanaka. AWearable Airbag to Prevent Fall Injuries[J]. IEEE Transactions on Information Technology inBiomedicine.2009,13(6):910-914
    [109] Bagala Fabio, BeckerClements, Caooello Angelo. Evaluation of Accelerometer-Based FallDetectionAlgorithms on Real-World Falls[J]. Plos One.2012,7(5),特刊1
    [110] Miguel Angel Estudillo-Valderrama, Laura M. Roa, Javier Reina-Tosina, DavidNaranjo-Hernandez. Design and Implementation of a Distributed Fall DecisionSystem-Personal Server[J]. IEEE Transactions on Information Technology in Biomedicine.2009,13(6):874-881
    [111] Tong Zhang, Jue Wang, Liang Xu, Ping Liu. Fall Detection by Wearable Sensor andOne-class SVM Algorithm. International Conference on Intelligent Computing.2006[C],Kunming, China. Intelligent Computing in Signal Processing and Pattern Recognition:858-863
    [112] Bourke AK, van de Ven P, Gamble M, O’Connor R, Murphy K, Bogan E, et al. Evaluationof Waist-mounted Tri-axial Accelerometer based Fall-detection Algorithms During Scriptedand Continuous UnscriptedActivities[J]. Journal of Biomechanics.2010,43(15):3051–7
    [113] Klenk J, Becker C, Lieken F, Nicolai S, Maetzler W,Alt W, et al. Comparison ofAcceleration Signals of Simulated and Real-world Backward Falls[J]. Medical Engineering&Physics.2011,33(3):368–73.
    [114] M.Kangas, I.Vikman,L.Nyberg, R.Korpelainen, J.Lindblom,T.Jamsa. Comparison ofReal-life Accidental Falls in Older People with Experimental Falls Middle-aged TestSubjects[J]. Gait&Posture.2012(35):500-505
    [115] M.Lange, Kramer-Schadt, S.Biome. Disease Severity Declines over Time after a Wild BoarPopulation has been Affected by Classical Swine Fever-Legend or Actual EpidemiologicalProcess?[J]. Preventive Veterinary Medicine.2012,106(2):185-195
    [116] M.Kangas, A.Konttila, I.Winblad, T.Jamsa. Determination of Simple Thresholds forAccelerometry-based Parameters for Fall Detection.29th Annual International Conferenceof the IEEE EMBS, Enginnering in Medicine and Biology Society.2007[C], Lyon, France.Inst. Of Elec. Eng. Computer Society:1367-1370
    [117] Brezmes Tomas,Gorricho Juan-Luis, Cotrina Josep. Activity Recognition fromAccelerometer Data On a mobile phone.10thInternational Work-Conference on ArtificialNeural Networks.2005[C], Salamanca, Spain, Springer Verlag:1–18
    [118] La Corte Valentina, Dalla Barba Gianfranco, Lemarechal Jean-Didier. Behavioural andMagnetoencephalographic Evidencce for the Interaction Between Semantic and EpisodicMemory in Healthy Elderly Subjects[J]. Brain Topography.2012,25(4):408-422
    [119] Benoit Latre, Bart Braem, Ingrid Moerman, Chris Blondia, Piet Demeester. A Survey onWireless BodyArea Network[J]. Journal: Wireless Networks.2011,17(6):1-18
    [120] H.Dobkin Bruce, Andrew Dorsch. The Promise of mHealth: Daily Activity Monitoring andOutcome Assessments by Wearable Sensors[J]. Neurorehabilitation and Neural Repair.2012,25(9):788-798.
    [121] Marc A.Viredaz, Lawrence S. Brekmo, William R.Hamburgen. Energy Management onHandheld Devices[J]. Queue-power Management.2003,1(7):44-48
    [122] M.J.Miller, N.H.Vaidya.A MAC Protocol to Reduce Sensor Network Energy ConsumptionUsing a Wakeup radio[J]. IEEE Transactions on Mobile Computing.2005,4(3):228-242
    [123] Yi Wang, Jialiu Lin, Murali Annavaram. A Framework of Energy Efficient Mobile Sensingfor Automatic User State Recognition.7thInternational Conference on Moblie Systems,Applications and Services,2009[C], Krakow, Poland. ACM:1-14
    [124] Mikkel Baun Kjargaard, Sourav Bhattacharya, Henrik Blunck, Petteri Nurmi.Energy-efficient Trajectory Tracking for Mobile Devices. Proceedings of the9thInternationalConference on Mobile Systems, applications and Services.2011[C], Bethesda, MD, USA.ACM:307-320
    [125] Kamat, P.Sachin. Energy Management Architecture for Multimedia Applications in BatteryPowered Devices[J]. IEEE Transactions on Consumer Electronics.2009,55(2):763-767
    [126] Hong Lu, Jun Yang, Zhigang Liu, Nicholas D. Lane, Tanzeem Choudhury, Andrew T.Campbell. The Jigsaw Continuous Sensing Engine for Mobile Phone Applications.Proceeding of the8thACM Conference on Embedded Networked Sensor Systems,2010[C],Zurich, Switzerland,ACM:71-84
    [127] Srikanth Sundaresan, Israel Koren, Zahava Koren, C.Mani Krishna Georgia Tech.:Event-driven Adaptive Duty-cycling in Sensor Networks[J]. International Journal of SensorNetworks.2009,6(2):89-100
    [128] Bodhi Priyantha, Dimitrios Lymberopoulos, Jie Liu. EERS: Energy Efficient ResponsiveSleeping on Mobile Phones. In Proceeding of Phone Sense.2010
    [129] Bodhi Priyantha, Dimitrios Lymberopoulos, Jie Liu. LittleRock: Enabling Energy-efficientContinuous Sensing on Mobile Phones[J]. Pervasive Computing.2010,10(2):12-15
    [130] E.Shih, P.Bahl, and M.J.Sinclair. Wake on Wireless: an Event Driven Energy SavingStrategy for Battery Operated Devices. Procedings of the8thAnnual International Conferenceon Mobile Computing and Networking.2010[C],Atlanta, GA, USA.ACM:1-12
    [131] Andreas Krause, Matthias Ihmig, Edward Rankin. Trading off Prediction Accuracy andPower Consumption for Context-aware Wearable Computing. Proceeding of the2005NinthIEEE International Symposium on Wearable Computers.2005[C], Osaka, Japan, IEEEComputer Society:20-26
    [132] E. Miluzzo, N. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. Eisenman, X. Zheng,and A. Campbell.: Sensing Meets Mobile Social Networks: The Design, Implementation andEvaluation of the CenceMe Application. In Proceedings of SenSys08.2008[C]. New York,NY, USA,ACM:337-350
    [133] I. Constandache, S. Gaonkar,M. Sayler, R. R. Choudhury, and L. P. Cox.: Energy EfficientLocalization Via Personal Mobility Profiling. In The First Annual International Conferenceon Mobile Computing, Applications, and Services,2009[C], San Diego, CA, United States.Springer Verlag:203-222
    [134] Hughes Laurie, Wang Xinheng, Chen Tao. A Review of Protocol Implementations andEnergy Efficient Cross-layer Design for Wireless Body Area Networks[J]. Sensors,2012,12(11):14730-14773
    [135] Eslaminejad Mohammadreza, Abd Razak Shukor, Ismail Abdul Samad Haji. EEDARS: AnEnergy-Efficient Dual-Sink Algorithm with Role Switching Mechanism for Event-DrivenWireless Sensor Networks[J]. Ksii Transactions on Internet and Information Systems,2012,6(10):2473-2492
    [136] Eugene Shih, Paramvir Bahl, Michael J.Sinclair. Wake on Wireless: an Event Driven EnergySaving Strategy for Battery Operated Devices. Proceedings of the Annual InternationalConference on Mobile Computing and Networking,2002[C], Atlanta, GA, United States,ACM SIGMOBILE:23-26
    [137] Di Giorgio Alessandro, Pimpinella Laura. An Event Driven Smart Home ControllerEnabling Consumer Economic Saving and Automated Demand Side Management[J].Applied Energy.2012,96:92-103.
    [138]刘家红,吴泉源.一个基于事件驱动的面向服务计算平台[J].计算机学报,2008,31(4):588-599
    [139] D. Florescu, D. Chamberlin, J. Robie. Quilt: an XML Query Language for HeterogeneousData Sources[J]. The World Wide Web and Databases Lecture Notes in Computer Science.2001,1-25
    [140] Rosa Sanchez-Guerrero, Florina Almenarez, Daniel Diaz-Sanchez. An Event Driven HybridIdentity Management Approach to Privacy Enhanced e-Health[J]. Sensors.2012,12(5):6129-6154
    [141] David Kammer,李静译.蓝牙应用开发指南[M].北京科学出版社.2003:220~240
    [142] Andrea Mannini, Sabatini Angelo Maria. Machine Learning Methods for Classifying HumanPhysicalActivity from on-bodyAccelerometers[J]. Sensors.2010,10(2):1154-1175
    [143] Takuya Maekawa, Yutaka Yanagisawa, Yasue Kishino. Object-based Activity Recognitionwith Heterogeneous Sensors on wrist.8th International Conference on Pervasive Computing.2010[C], Helsinki, Finland, Springer Verlag:246-264.
    [144] L. Bao, S.S.Intille. Activity Recognition from User-annotated Acceleration Data.2ndInternational Conference on Pervasive Computing.2004[C], Linz, Austria. PervasiveComputing,3001:1-17
    [145] Analog Devices, datasheet of ADXL345, http://www.analog.com/zh/mems-sensors/mems-inertial-sensors/adxl345/products/product.html
    [146] Howard W. Johnson, Martin Graham.High-speed Digital Design-AHandbook of BlackMagic. Prentice-Hall PTR Prentice-Hall Inc.2003:133-281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700