用户名: 密码: 验证码:
耐酸性反刍兽月形单胞菌构建及对瘤胃微生物发酵的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究无菌采取健康奶牛瘤胃液,按照乳酸杆菌分离鉴定的方法步骤,利用乳酸杆菌分离培养基SL培养基,共筛选出8株瘤胃内耐酸的乳酸杆菌,通过形态学特征及生物化学反应特性分析,并对其进行16S rRNA基因扩增、测序,经BLAST与GenBank数据库进行同源性分析对其进行鉴定,通过耐酸性试验,最终获得一株能在pH值3.24条件下生存的耐酸能力强的乳酸杆菌-粘膜乳杆菌。
     对本实验室保存的反刍兽月形单胞菌K6及分离鉴定的粘膜乳杆菌lm4208进行了菌株生长曲线绘制,确定了粘膜乳杆菌lm4208及反刍兽月形单胞菌K6的对数生长期,粘膜乳杆菌lm4208对数生长期为4~12h,反刍兽月形单胞菌K6对数生长期为8~16h。
     采用L9(34)正交实验法确定了粘膜乳杆菌lm4208及反刍兽月形单胞菌K6原生质体制备及再生的最佳条件。
     确定了粘膜乳杆菌lm4208原生质体的热灭活条件:56℃下灭活60min,反刍月形单胞菌K6的最低生长pH值为5.4。
     采用化学融合法即在融合剂PEG作用下将反刍兽月形单胞菌K6和灭活的粘膜乳杆菌lm4208原生质体进行了融合,在再生培养基上获得4株融合子,经传代最终获得一株遗传稳定的融合子F-K6-lm4208。
     对融合子F-K6-lm4208进行了形态学、生理生化性质及DNA分子量的鉴定,证明其是双亲产生的融合子,酸耐受试验表明融合子能在pH值5.1条件下存活。
     取健康奶牛瘤胃液,分别加入反刍兽月形单胞菌原始菌K6和耐酸工程菌F-K6-lm4208,并设立对照组,在体外模拟急性瘤胃酸中毒,于培养0、2、4、6、8、10、12、14、16、18h,检测培养液中pH、乳酸、乙酸、丙酸、丁酸含量,研究其对瘤胃微生物发酵的影响。结果表明工程菌组培养液pH值在培养第4h之后达到最低点然后显著升高(p<0.01),培养液中乳酸没有蓄积。添加原始菌和工程菌都能影响瘤胃微生物的发酵,影响乙酸和丙酸的生成比例,使发酵倾向于生成丙酸,但工程菌影响的程度要大于原始菌。
Based on the isolation program of lactobacillus and using the SL culture mediums which were specific for isolating acid-tolerant lactobacillus from ruminal fluids.Eight acid-tolerant lactobacilli(named 1,2,3,4,5,6,7,8) were isolated from ruminal fulid and the morphological and biochemical characteristics were observe and analyzed.The consensus primers were designed according to the conservative region of bacterial 16S rRNA and the 16S rRNA genes were cloned from their genome.The 16S rRNA genes of the eight strains were amplified by polymerase chain reaction (PCR) and sequenced. The sequence obtained was 98% identical to those of Lactobacillus casei, Lactobacillus curvatus, Lactobacillus coryniformis, Lactobacillus brevis, Lactobacillus mucosae in GenBank.The strains 1,2,3,4,5,6,7,8 were identified through morphology and biochemical characteristics and 16S rRNA gene sequence as Lactobacillus casei, Lactobacillus curvatus, Lactobacillus coryniformis, Lactobacillus casei,Lactobacillus curvatus, Lactobacillus brevis, Lactobacillus mucosae, Lactobacillus mucosae,respectively.
     The growth curve of Selenomonas ruminantium K6 and Lactobacillus mucosae lm4208 were drawn and the logarithmic phase of them are definited. The lm4208’s logarithmic phase is 4h to 12h and the K6’s is 8h-16h.
     To establish the optimum conditions of the protoplast preparation and regeneration of the lactobacillus mucosae lm4208 and Selenomonas ruminantium K6,the L9(34)orthogonal experiments were used.The results showd that the optimized conditions of the strain of lm4208 as follows: 10h incubation was for protoplast release,100μg/mL lysing enzyme for protoplast preparation, 37℃and 60min. for the release of protoplast.And the ratios of protoplast preparation and regeneration were 98.3% and 24%,respectively.The optimum conditions of K6 were as follows: 30min of treating time, 600μg/mL lysozyme and 12h incubation time.Under the optimum conditions,the ratios of formation and regeneration protoplast were 94% and 17.2%,resperctively.
     The thermal inactivating conditions of strains lm4208 were determined by survival rate.In 56℃,the strain lm4208 treated for 60min were optimal,and the lowest pH of K6 to grow is 5.4.
     Following all conditions were optimized, preparation,fusion and regeneration of protoplast were done and four recombinant strains were selected according to the rate of survival strains at the pH5.4 in the regenerating medium.After the future generation,the fusant F-K6-lm4208 was gained at last.
     The fusant F-K6-lm4208 can’t make gelatin liquefy,but can hydrogenize the nitrate,and ferment maltose, xylose, glucose, fructose, cellobiose, lactose, glucopyranoside, sorbose and mannose,but can’t ferment rhamnose,aesculin and salicin.The biochemical and physiological characteristics of the fusants F-K6-lm4208 are similar to Selenomonas ruminantium K6. The molecular weight of the fusants was larger than their parents. According to the morphological,the biochemical and physiological characteristics,the molecular weight and the acid resistant experiment, the fusants were identified as acid-tolerant fusants and can survive at pH5.1.
     The influence of the liminary strain K6 and the engineering bacteria F-K6-lm4208 on in vitro rumen fermentation was studied using co-incubating the strains with mixed rumen micro-organisms of dairy cows as incoculums. Culture fluid and ruminal fluid was sampled for analysis of pH and Volatile Fatty Acid (VFA) at 0、2、4、6、8、10、12、14、16、18h.
     The results showed that the pH in engineering bacteria group was the lowest after 4h incubation then stepped up significantly.The lactic acid was not accumulated and at the 18h ,its concentration was 0.53 mmol/L.Compared to control group at 18h,the concentration of VFAs in the liminary bacteria group and the engineering bacteria group increased by 24% and 105%,the ratio of acetic acid decreased by 12% and 16%, the ratio of propanoic acid increased by 22% and 35%,respectly.And the ratio of acetic acid to propanoic acid decreased 0.42and 0.57,respectly.This demonstrate that the liminary strains K6 and its engineering bacteria both can have effect on the fermentation and the ratio of acetic acid to propanoic acid,and can make the fermentation prone to propionic acid production but the effects of the engineering bacteria were more marked higher than the liminary strains K6.
引文
[1]汪天虹.微生物分子育种原理与技术[M] .北京:化学工业出版社,2005:1-5.
    [2]施巧琴,吴松刚.工业微生物育种学(第二版)[M] .北京:科学出版社,2003:2-3
    [3]房耀维,范赫,牛艳芳,等.工业微生物育种技术研究进展[J].内蒙古师范大学学报,2003,32(2):158-161.
    [4]杨林,王布强,刘刚.有益微生物育种技术的研究进展[J].中国食物与营养,2008,5:17-20.
    [5]汪杏莉,李宗伟,陈林海,等.工业微生物物理诱变育种技术的新进展[J].生物技术通报,2007,2:114-118..
    [6]罗雯,陈志勤.微生物原生质体融合技术及其在育种中的应用[J].西安联合大学学报,2003,6(4):5-9.
    [7]Kim B K, Kang J H,Jin M,et al.Mycelial protoplast isolation and regeneration of Lentinus lepideus [J].Life Sci ,2000,66(14):1359-1367.
    [8]Barski G,Hebd C R.Seances Acid Sci.[M].Oxford:Blackwell,1960:1825-1827.
    [9]Okada Y.Exp cell[M].New York:Academic Press,1962:98-107.
    [10]Ferencezy L,Kevei F,Zsolt J.Fusion of fungal Protoplast.Nature,1974,248:793 -794.
    [11]Kao K N. A method for high-frequency intergeneric fusion of plant protoplast [J].Planta,1974,115:355-367.
    [12]Sipiczki,M,Ferenczy,L.Protoplast fusion of Schizosaccharomyces pombe auxotrophic mutants of identical mating type.Molecular and General Genetics, 1977,151:77-81.
    [13]Pesti M,Ferenezy L. Formation and regeneration of protoplast from Phytopht- hora infestans.Acta Phytopathol[J].Aead.Sci.Hung.1979(14):1-5.
    [14]Zimmermann U,Pilwat G.[C]Sixth Int Biophys Congr Kyoto Abstr,Ⅳ-19 (H) . 1978:140.
    [15]卜宗式.激光诱导金盏菊原生质体融合方法初探[J].激光生物学,1993,2:282- 283, 275.
    [16]程树培,崔益斌,夏伏虎,等.光合细菌与酵母跨界融合子发酵味精废水研究[J].环境科学学报,1996,16(1):66-73.
    [17]吴伟,余晓丽,李咏梅,等.诺卡氏菌与假丝酵母的跨界融合及对退化养殖生态的修复[J].水产学报,2002,26(1):35-41.
    [18]王娟娟,贾彦军.微生物原生质体融合方法的综述[J].畜牧兽医科技信息,2005,10:17-19.
    [19]周永斌,王娟娟.微生物原生质体融合子筛选法的概述[J].畜牧兽医科技信息,2005,11:9-10.
    [20]高玉荣,李大鹏,高年发.利用单灭活原生质体融合技术选育降酸能力强的葡萄酒酵母[J].中国食品学报,2006,6(3):106-110.
    [21]王燕.双亲灭活米曲霉原生质体融合中原生质体制备的研究[J].中国酿造,2007,5:19-22.
    [22]唐洁,车振明,王艳紫.紫外灭活原生质体融合选育米曲霉新菌株的研究[J].食品工业科技,2006,8:66-68.
    [23]陈代杰,朱宝泉.工业微生物菌种选育与发酵控制技术[M].上海科学技术文献出版社,1994.
    [24]孙剑秋,周东坡.微生物原生质体技术[J].生物学通报,2002, 37(7): 9-11
    [25]焦瑞身.细胞工程[M]北京:化学工业出版社,1989
    [26]贺敏霞,史济平,褚志文.诺卡氏菌原生质体融合重组研究[J].生物工程学报, 1989,5(4):303-308.
    [27]柳君科.棘孢小单孢菌和灰色链霉菌原生质体融合的研究[J].遗传学报, 1989,16(1):49-55.
    [28]林荣团,杨毓芬.天然无抗菌活性链霉菌种间原生质体融合与活性重组体的分离[J].生物工程学报,1990,6(2):134-139.
    [29]徐京宁,米贯东,唐孝宣.应用原生质体融合技术定向改造林可霉素产生菌的探索[J].生物工程学报,1992,8(3):237-242.
    [30]曾洪梅,张震霖.原生质体融合提高农抗武夷菌素的效价[J].微生物学报, 1995,35(5):375-380.
    [31]朱昌雄,李永慧.中生菌素高产菌株的选育[J].中国生物防治,1996,12(1):15-19.
    [32]陈五岭.酯酶同工酶技术在选育BT新菌株中的应用[J].西北大学学报,1997, (4):355-358.
    [33]王金盛,李春波.电场诱导棘孢小单胞菌原生质体融合[J].生物技术,1998,8(6):6-8.
    [34]王兴龙,刘玉斌,冯来坤.多杀性巴氏杆菌X73株与P1059株原生质体融合株的构建[J].中国兽医学报,1994,14(2):177-180.
    [35]张元和,康素兰,姚敏.痢疾杆菌D15和EiTor弧菌88-2原生质体融合的初步研究[J].中国微生态学杂志,1995,7(4):62-63.
    [36]任涛,黄青云,欧守杼.大肠杆菌O2(Norr,Chls)、O78(Chlr,Nors)原生质体制备和再生的研究[J].华南农业大学学报19(1) 1998:49-53.
    [37]蒋文泓,黄青云.禽多杀性巴氏杆菌与大肠杆菌原生质体融合的研究[J].畜牧兽医学报, 1999,30(3): 267-272.
    [38]吴孔兴,黄青云,丘家军.禽巴氏杆菌大肠杆菌融合二联弱毒菌株F4的培育[J].华南农业大学学报,2002,28:139-142.
    [39]钟蕾,肖克宇.肠型点状产气单胞菌和鱼害粘球菌原生质体融合的耐药性遗传标记的选择[J].湖南农业大学学报(自然科学版),2002,28(2):150-153.
    [40]Seki I S,Mykga S,Genetic construction of yeast[SC]strains for high ethanol production[J].Bioteehno1.Let.,1983,5(5):351-356.
    [41]方霭祺,李绍兰.耐热酵母与酿酒酵母原生质体融合的研究[J].生物工程学报,1990,6(3):224-22.
    [42]文钱桥.酵母菌属间原生质体融合构建耐高温酵母菌株[J].微生物学报,1999,2:141-147.
    [43]孙君社,李雪,李军席.原生质体融合构建耐高温酵母菌株[J].食品与发酵工业,28(5):1-5.
    [44]张莉滟,张德纯.双歧杆菌与乳杆菌原生质体的融合及筛选[J].生物技术,2003,13(4):14-15.
    [45]黎永学.双歧杆菌和酿酒酵母原生质体融合的研究[D].重庆:重庆医科大学,2002.
    [46]王玉华,张桂荣,刘景圣.原生质体融合提高嗜酸乳杆菌耐酸及耐胆盐能力[J].食品科学,2006,27(3):96-99.
    [47]王登宇,臧威,孙剑秋.细菌原生质体融合育种技术及其应用进展[J].中国酿造,2008,7:1-6.
    [48]王东升,严作廷,李世宏,等.奶牛围产期能量负平衡及其危害[J].中国奶牛,2008,7:19~21.
    [49]Geelen M, Wensing T. Studies on hepatic lipidosis and coinciding health and fertility problems of high-producing dairy cows using the Utrecht fatty livermodel of dairy cows. A review. VET QUART, 2006,28:90-104.
    [50]安娟.反刍动物发生瘤胃酸中毒的营养机制及其防治[J].中国饲料,2007,2:23-26.
    [51]Herdt T H. The history and influence of the ICPD. In:Proceedings of the 12th International Conference on Production Diseases in Farm Animals. Wageningen Academic Publishers, The Netherlands, 2006, p. 7.
    [52]Le Blanc S J. Post-partum uterine disease and dairy herd reproductive performance-a review. Vet J ,2008,176(1):102-114.
    [53]Houe H.,Ostergaard S., Thilsing-Hansen T.,et al. Agger, J.F., Blom, J.Y., 2001. Milk fever and subclinical hypocalcaemia– an evaluation of parameters on incidence risk, diagnosis, risk factors and biological effects as input for a decision support system for disease control. Acta Veterinaria Scandinavica 42,1-29.
    [54]Curtis C R, Erb H N, Sniffen C J, et al. Association of parturient hypocalcaemia with eight periparturient disorders in Holstein cows[J].J AM VET MED ASSOC, 1983, 183:559-561.
    [55]Le Blanc S J, Leslie K E, Duffield T F,.Metabolic predictors of displaced abomasums in dairy cattle[J].J Dairy Sci,2005a, 88:159-170.
    [56]Le Blanc, S.J.,Lissemore, K.D.,Kelton,D.F.,et al. Major advances in disease prevention in dairy cattle. Journal of Dairy Science 2005b, 89,1267–1279.
    [57]Enemark J M D. The monitoring, prevention and treatment of subacute ruminal acidosis (SARA) -a review[J].Vet J, 2008,176 (1):32-43.
    [58]田萍,郝贵增.奶牛脂肪肝病因学研究进展[J].安徽农业科学,2007,35(8): 2295- 2296.
    [59]Grummer R R. Nutritional and management strategies for the prevention of fatty liver in dairy cattle[J].Vet J,2008,176(1):10-20.
    [60]Dann, H.M., Morin, D.E., Bollero, G.A., et al. Prepartum intake, postpartum induction of ketosis and periparturient disorders affect the metabolic status of dairy cows. Journal of Dairy Science,2005,88, 3249–3264.
    [61]Kim I H, Suh G H. Effect of the amount of body condition loss from the dry to near calving periods on the subsequent body condition change, occurrence ofpostpartum diseases, metabolic parameters and reproductive performance in Holstein dairy cows[J]. Theriogenology,2003, 60:1445-1456.
    [62]Kimura K, Reinhardt T A, Goff J P.Parturition and hypocalcemia blunts calcium signals in immune cells of dairy cattle[J].J Dairy Sci 2006,89: 2588-2595.
    [63]Goff J P.The monitoring, prevention, and treatment of milk fever and subclinical hypocalcaemia in dairy cows[J].Vet J The Veterinary Journal,2008,176 (1):50- 57.
    [64]Kleen J L, Hooijer G A, Rehage J, et al, Subacute ruminal acidosis (SARA): a review[J].J VET MED A,2003,50:406-414.
    [65] Plaizier J C, Krause D O, Gozho G N, et al.Subacute ruminal acidosis in dairy cows, the physiological causes,incidence and consequences[J].Vet J,2008,176 (1):21-31.
    [66]胡红莲,卢德勋,刘大程.反刍动物瘤胃酸中毒发病机理的研究进展[J].饲料工业,2007,19 (28):46-47.
    [67]邓露芳,卜登攀,周凌云,等.饲用微生物缓解瘤胃酸中毒机理的研究进展[J].中国奶牛2008,3:16-19.
    [68] Spears J W, Weiss P W. Role of antioxidants and trace elements in health and immunity of transition dairy cows[J].Vet J, 2008,176 (1):70-76.
    [69]Villalobos F J A, Romero R C, Tarrago C M R, et al, Supplementation with chromium picolinate reduces the incidence of placenta retention in dairy cows [J].Can J Anim Sci,1997,77:329-330.
    [70]Scaletti R W, Trammel D S, Smith B A, et al, Role of dietary copper in enhancing resistance to Escherichia coli mastitis[J].J Dairy Sci,2003,86: 1240- 1249.
    [71]查龙应,许梓荣,王敏奇.纳米技术在饲料行业中应用的研究进展[J].饲料工业,2006,5(27):54-57.
    [72]霍妍明,谷子林,王志恒,等.纳米技术及其在动物生产中的应用[J].饲料博览,2008,2:57-59.
    [73]陈红玲,刘广振.预防奶牛难产的几项基本措施[J].中国奶牛,2006,3:61-62.
    [74]李建生,张永恒,康延峰,等.奶牛难产的发病原因与预防措施[J].河南畜牧兽医,2006,7(27):37.
    [75]李世宏,杨国林,杨锐乐,等.奶牛子宫内膜炎研究进展[J]中国奶牛,2007,1: 34-38.
    [76]Kleen J L, Hooijer G A, Rehage J, et al, Subacute ruminal acidosis (SARA): a review.Journal of Veterinary Medicine A.Physiology Pathology and Clinical Medicine 2003,50:406-414.
    [77]Stone W C, Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. Journal of Dairy Science,2004:87(E.Suppl.), E13–E26.
    [78]Nocek, J E, Bovine acidosis:implications on laminitis. Journal of Dairy Science,1997,80:1005-1028.
    [79]Alzahal O, Rustomo B,Odongo N E,et al, Technical note: a system for continuous recording of ruminal pH in cattle. Journal of Animal Science,2007, 85: 213-217.
    [80]Garrett E F,Nordlund K V, Goodger, W J,et al.A cross-sectional field study investigating the effect of periparturient dietary management on ruminal pH in early lactation dairy cows.Journal of Dairy Science,1997,80 (Suppl.1),169. (Abstract).
    [81]Martin S A.Potential formanipulating gastrointestinal microflora: Alternatives to antibiotics and ionophores. in Proc [M].29th Annu.Georgia Nutr. Con.f for the Feed Ind., Atlanta, GA. Univ. of Georgia, Athens, GA, 1992, 28.
    [82] Kleen, J L, Hooijer,G A, Rehage J, et al.Rumenocentesis (rumen puncture): a viable instrument in herd health diagnosis.Deutsche Tierarztliche Wochenschrift, 2004,111,458-462.
    [83]Stone W C,Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. Journal of Dairy Science (Suppl.),2004,E13-E26.
    [84]Duffield T, Plaizier J C, Comparison of techniques for measurement of rumen pH in lactating cows. Journal of Dairy Science2004,87:59-66.
    [85]Plaizier J C, Martin A,Duffield T, et al. Monitoring acidosis in the transition cow. Journal of Dairy Science.1999, 82 (Suppl. 1), 110.10
    [86]Shi Y, Weimer P J, Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Applied Environmental Microbiology,2002.,58:2583-2591.
    [87]Keunen J E, Plaizier J C,Kyriazakis I,et al. Effects of a subacute ruminal acidosis model on the diet selection of dairy cows. Journal of Dairy Science,2002, 85, 3304-3313.
    [88]Gozho G. N, Plaizier J C, Krause D O, et al. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. Journal of Dairy Science, 2005,88:1399-1403.
    [89]Cooper R J, Klopfenstein T J, Stock R A,et al.1999. Effects of imposed feed intake variation on acidosis and performance of finishing steers. Journal of Animal Science,77, 1093-1099.
    [90]Beauchemin K.A., Yang W Z, Rode L.M., Effects of particle size of alfalfa based dairy cow diets on chewing activity, ruminal fermentation, and milk production. Journal of Dairy Science,2003,86,630-643.
    [91]Garrett E F,Perreira M N, Nordlund K V, et al.Diagnostic methods for the detection of subacute ruminal acidosis in dairy cows. J. Dairy Sci.1998,82, 1170-1178.
    [92]Oetzel G. R, Nordlund K V, Garett E F, Effect of ruminal pH and stage of lactation on ruminal lactate concentration in dairy cows. Journal of Dairy Science,1999. 82 (Suppl. 1), P35.
    [93]Stone W C,The effect of subclinical rumen acidosis on milkcomponents.In: Proceedings of the Cornell Nutrition Conference of Feed Manufacturers, Syracuse, N.Y. Cornell University, Ithaca, NY,USA, pp.1999,40-46.
    [94]Allen M S, Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journal of Dairy Science,2000, 83,1598-1624.
    [95]Plaizier J C,Keunen J E,WaltonJ-P, et al. Short communication: effect of subacute ruminal acidosis on in situ digestion of mixed hay in lactating dairy cows. Canadian Journal of Animal Science,2001,81,421-423.
    [96]Krajcarski-Hunt H, Plaizier J C, Walton J-P,et al. Short communication: effect of subacute ruminal acidosis on in situ fiber digestion in lactating dairy cows. Journal of Dairy Science,2002,85, 570-573.
    [97]Gozho G. N,Krause D O,Plaizier J C, Effects of gradual adaptation to concentrate and subsequent induction of subacute ruminal acidosis in steers onruminal lipopolysaccharide and acute phase proteins. Journal of Dairy Science,2006,89, 4404-4413.
    [98]Khafipoor E,Krause D O,Plaizier J C, Influence of grain induced sub-acute ruminal acidosis (SARA on lipopolysaccharide endotoxin (LPS) and acute phase proteins. Canadian Journal of Animal Science,2006,86, 577.
    [99]Khafipoor E,Krause D O,Plaizier J C.Induction of subacute ruminal acidosis (SARA) by replacing alfalfa hay with alfalfa pellets does not stimulate inflammatory response in lactating dairy cows. Journal of Animal Science 85 (Suppl.1)/Journal of Dairy Science 90 (Suppl.1)/Poultry Science,2007,(Suppl. 1), 654.
    [100]Gozho G. N, Plaizier J C , Krause D O,et al. Subacute ruminal acidosis induces ruminal lipopolysaccharide release and triggers an inflammatory response. Journal of Dairy Science,2005,88, 1399-1403.
    [101]Gozho G. N, Krause D O, Plaizier J C,Ruminal lipopolysaccharide concentration and inflammatory response during grain induced subacute ruminal acidosis in dairy cows. Journal of Dairy Science,2007,90, 856-866.
    [102]Weingarten H P, Cytokines and food intake: the relevance of the immune system to the student of ingestive behavior. Neuroscience Biobehavior Review,1996,20, 163-170.
    [103]Andersen P H. Bovine endotoxicosis: aspects of relevance to ruminal acidosis. Dr.Vet. Sci. Thesis, The Royal Veterinary and Agricultural University, Copenhagen, 2000.
    [104]Shi Y,Weimer P J, Response surface analysis of the effects of pH and dilution rate on Ruminococcus flavefaciens FD-1 in cellulose-fed continuous culture. Applied Environmental Microbiology,2002,58, 2583-2591.
    [105]Oetzel G. R, Clinical aspects of ruminal acidosis in dairy cattle. In: Proceedings of the 33rd Annual Convention of the American Association of Bovine Practitioners, Rapid City, USA, pp. 2000,46-53.
    [106]Dirksen G.,Liebich H G., Mayer W, Adaptive changes of the ruminal mucosa and their function and clinical significance. Bovine Rossow, N., Horvath, Z.,1988. In: Rossow, N., Horvath, Z.(Eds.),Innere Krankheiten der Haustiere,Band II, Funktionelle Storungen.Jena: Fischer, p. 246.Practitioner,1985, 20,116-120.
    [107]Markusfeld O, Aciduria in the postparturient dairy Cow. British Veterinary Journal,1987,143,119-127.
    [108]Olson J D.Relationship of nutrition to abomasal displacement and parturient paresis. The Bovine Practitioner,1991,26, 88-91.
    [109]Sarashina T, Ichijo S, Takahashi J,et al.Origin of abomasum gas in the cows with displaced abomasum. Japanese Journal of Veterinary Science,1990,52, 37-378.
    [110]Shaver R D, Nutritional risk factors in the etiology of left displaced abomasum in dairy cows: a review. Journal of Dairy Science,1997,80, 2449-2453.
    [111]Rebhun W C, Abdominal diseases. In: Rebhun, W.C. (Ed.),Diseases of Dairy Cattle. Williams and Wilkins, Baltimore, p.1995,530.
    [112]Aslan V, Thamsborg S M, Jorgensen R J,et al. Induced acute ruminal acidosis in goats treated with yeast (Saccharomyces cerevisiae) and bicarbonate.Acta Veterinaria Scandinavica,1995. 36,65-77.
    [113]Ivany J M, Rings D M, Anderson D E. Reticulorum inal disturbances in the bovine. The Bovine Pract,2002,36, 56-64.
    [114]Cook N B, Nordlund K V, Oetzel G. R, Environmental influences on claw horn lesions associated with laminitis and subacute ruminal acidosis in dairy cows. Journal of Dairy Science,2004,87 (Suppl.),E36-E46.
    [115]Nordlund K V, Garret E F. Rumenocentesis: A technique for collecting rumen fluid for the diagnosis of subacute rumen acidosis in dairy herds. The Bovine Practitioner,1994,28,109-112.
    [116]Garret E, Subacute rumen acidosis-clinical signs and diagnosis in dairy herds. Large Animal Veterinarian,1996.,11, 6-10.
    [117]Andersen P H, Portal infusion of low dosage endotoxin: a model simulating translocation of ruminal endotoxin in cattle. Acta Veterinaria Scandinavica,1994. 35, 111-114.
    [118]Boosman R, Bovine laminitis, histopathlogic and arteriographic aspects, and its relation to endotoxaemia. Ph.D. Thesis, Utrecht, p. 1990,169.
    [119]Andersen P H,Jarlov N, Investigation of the possible role of endotoxin, TXA2, PGI2 and PGE2 in experimentally induced rumen acidosis in cattle. Acta Veterinaria Scandinavica,1990,31,27-38.
    [120]Cheng K.-J,McAllister T A, Popp J D,et al. A review of bloat in feedlot cattle. Journal of Animal Science,1998,76, 299-308.
    [121]Nordlund K V,Garrett E F,Oetzel G. R, Herd-based rumenocentesis:a clinical approach to the diagnosis of subacute rumen acidosis. Compendium on Continuing Education for the Practicing Veterinarian– Food Animal,1995,17, S48-S56.
    [122]Garry F B.Indigestion in ruminants. In: Smith, B.P. (Ed.), Large Animal Internal Medicine, third ed. Mosby, St. Louis and Baltimore,pp. 2002,722-747.
    [123]Krehbiel C R,Britton R A, Harmon D L, et al. The effect of ruminal acidosis on volatile fatty acid absorption and plasma activities of pancreatic enzymes in lambs. Journal of Animal Science,1995,73, 3111-3121.
    [124]Enemark J M D, Jorgensen R J,Kristensen, N B, An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds. Veterinary Research Communication,2004,28, 687-709.
    [125] Enemark J M D,Peters G.,Jorgensen R J, Continuous monitoringof rumen pH a case study with cattle. Journal of Veterinary Medicine A,2003,50, 62-66.
    [126] Dewhurst R J,Evans R T, Mottram T T, et al.Assessment of rumen processes by selected-ion-flow-tube mass spectrometric analysis of rumen gases. Journal of Dairy Science,2001,84,1438-1444.
    [127] Mottram T T, Ditcham W J F, Bolam H, et al. Dimethyl sulphide and methane in the breath of cows: methods of capture and quantification. Project report CR/1031/00/0225. Silsoe Research Institute, Bedfordshire, UK, 2000,20pp.
    [128]Bramley E, Lean I J, Costa N D, et al. Acidodi in dairy cows. Journal of Animal Science,2005,83 (Suppl. 1), 251 (abstract).
    [129]Morgante M,Stelletta C,Berzaghi P, et al. Subacute rumen acidosis in lactating cows: an investigation in intensive Italian dairy herds. Journal of Animal Physiology and Animal Nutrition,2007,91, 226-234.
    [130]Mertens D R,Creating a system for meeting the fiber requirements of dairycows. Journal of Dairy Science,1997,80,1463-1482
    [131]De Brabander D L,De Boever J L,Vanacker J M,et al.Evaluation and effects of physical structure in dairy cattle nutrition. In:Proceedings of the 22nd World Buiatrics Congress, Hannover,Germany, pp. 2002, 182-197.
    [132]Oba M, Allen M S.Effects of corn grain conservation method on feeding behaviour and productivity of lactating cows at two dietary starch concentration. Journal of Dairy Science,2003,86,174-183.
    [133]Lachmann G.,Siebert H,Die Bestimmung desSaure-Basen-Status in den Erythrocytten und im Lebergewebe beim Rind. Monatshefte der Veterinar-Medizin,1980,35, 384-388.
    [134]Brown M S, Krehbiel C R,Galyean M L,et al.Evaluation of models of acute and subacute acidosis on dry matter intake,ruminal fermentation, blood chemistry, and endocrine profiles of beef steers.Journal of Animal Science,2000,78, 3155-3168.
    [135]Roby K A, Chalupa W, Orsini J A,et al Acid-base and electrolyte balance in dairy heifers fed forage and concentrate rations: effects of sodium bicarbonate. American Journal of Veterinary Research,1987,48,1012-1016.
    [136]Furll M.Diagnostik and Therapie chronischer Storungen des Saure-Basen- Haushaltes (SBH) bei Rindern. Der Praktische Tierarzt,1994,75, 49-54.
    [137]Sauvant D, Giger-Reverdin S,Schmidely P, Rumen acidosis: modeling ruminant response to yeast culture. In: Lyons, T.P., Jacques,K.A. (Eds.), Nutritional Biotechnology in the Feed and Food Industry. Nottingham University Press, Nottingham,pp. 2004,221-229.
    [138]朱森阳,汪国,贾志海.反刍动物过瘤胃淀粉研究进展[J]中国饲料,2005,13:2-4
    [139]Owens F N, Secrist D S, Hill W J. Acidosisin cattle-a review. J. Anim. Sci. 1998,76,275-286.
    [140]肖训军.毛茛科植物提取物对饲喂高碳水化合物饲粮发出动物瘤胃发酵的影响[D].北京:中国农业大学硕士论文,2000.
    [141]张霞.沙葱提取物对绵羊瘤胃发酵和微生物区系的影响[D]内蒙古农业大学,2007.
    [142]]张元庆,肖训军,孟庆翔.毛茛科植物提取物添加量对瘤胃微生物体外动态发酵的影响[J]中国畜牧杂志,2007,43(5):27-31.
    [143]Lila Z A, Mohammed N, Yasui T, et al.Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro[J].J Anim Sci,2004,82,1847-1854.
    [144]Williams P E, Tait C A, Innes G M, et al.Effects of the inclusion of yeast culture(Saccharomyces cerevisiaeplus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen ofsteers [J].JAnim Sc,i 1991, 69(7),3016-3026.
    [145]Chaucheryras F, Fonty G, Bertin G, et al.In vitroutilization by a ruminal acetogenic bacterium cultivated alone or in associationwith an Archeamethanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae[J].ApplEnviron Micro, 1995, 61,3466-3467.
    [146]Rossi F, Luccia A D, Vincenti D,et al.Effects of peptidic fractions from Saccharomyces cerevisiae culture on growth and metabolism of the ruminal bacteria Megasphaera elsdenii[J]. Anim Res, 2004,53,177-186.
    [147]Bach A, Iglesias C, Devant M.Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation[J].Anim Feed Sci,Technol, 2007,136,156-163.
    [148] Nocek J E, Kautz W P, Leedle J A,Zet al. Ruminal supplementation of direct fed microbials on diurnal pH variation and in situ digestion in dairy cattle. J. Dairy Sci,2002,85,429-433.
    [149]Counotte G H,Lankhorst A,Prins RA. Role of DL-lactic acid as an intermediate in rumen metabolism of dairy cows. J Anim Sci.1983,56(5),1222-1235.
    [150]Limin K J, Aideen o. Hession. Preventingin vitrolactate accumulation in ruminal fermentationsby inoculationwithMegasphaera elsdenii[J].JAnim Sc,i 1995;73(1), 250-256.
    [151]Limin K J.Direct-fed microbials for lactating dairy cows proceedings[M]. 12thAnnual Florida Ruminant Nutrition Symposium, 2001, 22-28.
    [152]Callaway T R, Martin S A, Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn[J]Anim. Sci,1996,74,1982-1989.
    [153]Martin S A,Streeter M N.Effect of malate on in vitro mixed ruminal microorganism fermentation[J]Anim Sci.1995,73(7):2141-2145(1):147- 160.
    [154]Russell J B,Baldwin R L.Comparisonof maintenance energy expeditures and growth yields among several rumen bacteria grown in continuous culture. Appl Environ Microbiol,1979, 39, 604-610
    [155]Russell J B,Dombrowsky D B,Effect of pH on the efficiency of growth by pure cultures ofrumen bacteria in continuous culture.Appl Environ Microbiol,1980, 37, 537-543.
    [156] Martin S A,Dean G. F, Use of genetically engineered bacteria may aid in prevention of acidosis in cattle. Feedstuffs,1989, 2,17-18.
    [157]Shu Q, Gill H S, Bird S H, et al. Immunological cross-reactivity between the vaccine and other isolates of Streptococcus bovis and Lactobacillus[J].FEMS Immun and Med Microbiol,1999,26,153-158.
    [158]Shu Q, Bird S H, Gill H S. Immunization with a Streptococcus bovis Vaccine Administered by Different Routes Against Lactic Acidosis in Sheep [J].TheVet J, 2000, 159,262-269.
    [159]冯仰廉.反刍动物营养学[M]北京:科学出版社,2004,10-11.
    [160]帅丽芳,段铭,张光圣.微生态制剂对反刍动物消化系统的调控作用[J]中国饲料,2002(9),16-17.
    [161]张扬,余雄,蔺宏凯,等.瘤胃微生态制剂对泌乳奶牛产奶量的影响[J]草食家畜,2005(2):52-54.
    [162]崔晓霞,刘国文,逄晓阳,等.奶牛直接饲喂微生物的研究进展[J]动物医学进展,2004,25(1):46-49.
    [163]Paul D.Cotter,Colin Hill.Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH[J] microbiology and molecular biology reviews, 2003, p.445-446.
    [164]Nagaraja T G, Miller G W.Rumen microbial changes in ionophore antibiotic- treated steers with experimentally induced acidosis. Australian Journal of Animal Science 1989;2,465-468.
    [165]Goad D W, Goad C L, Nagaraja T G..Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers.JAnim Sci 1998, 76,234–241.
    [166]萨姆布鲁克,D.W.拉塞尔.分子克隆实验指南(第三版)[M]北京:科学出版社, 2002.
    [167]凌代文.乳酸细菌分类鉴定及实验方法[M].北京:中国轻工业出社,1999,85- 86.
    [168]王梦芝,徐爱秋,李世霞,等.瘤胃微生物类群的多样性及综合发酵的研究进展[J].饲料工业,2008,29(15):37-40.
    [169]Jensen R G, Smith K L, Merilan C P.The characteristics of some rumen lactobacilli. Journal of Bacteriol 1956;72(2):253-258.
    [170]王传彬,王永坤,朱国强,等.对动物源乳杆菌筛选及生物特性参数测定[J].江苏农学院学报,1997,18(1):1-5.
    [171]周煜.16S rRNA序列分析法在医学微生物鉴定中的应用[J].生物技术通讯, 1999,10(4):297-305.
    [172]董银苹,于红霞,李凤琴.乳酸杆菌分离鉴定技术研究进展[J].卫生研究,2008,4(37):508-510.
    [173]韩烨,周志江,王培培.16S rRNA鉴定乳酸片球菌分离株[J].吉林农业大学学报,2008 ,30 (3) :360-363.
    [174]张刚.乳酸细菌-基础、技术和应用[M].北京:化学工业出版社,2006:175-177.
    [175]Krause D O ,Russell J B. How many rum inal becteria are there? [J].Dairy Sci, 1996, 79 (8),1467-1475.
    [176]Roos S,Karner F,Axelsson L,et al.Lactobacillus mucosae sp. Nov., a new species with in vitro mucus-binding activity isolated from pig intestine[J].Int J Syst Evol Microbiol, 2000, 50,251-258.
    [177]施巧琴,吴松刚.工业微生物育种学(第二版)[M]北京:科学出版社,2003:292- 296.
    [178]Lee-wickner L J,Chassy B M,Production and regeneration of Lactobacillus casei protoplasts[J].Appl Environ Microbiol,1984,48(5),994-1000.
    [179]Boizet B,Flickinger J L,Chassy B M. Transfection of Lactobacillus bulgaricus protoplasts by Bacteriophage DNA [J].Appl Environ Microbiol, 1988,54(12), 3014-3018. [[180]谭文辉,李燕萍,许杨.微生物原生质体制备及再生的影响因素[J].现代食品科技,2006,22(3):263-265.
    [181]董如何,肖必华,方永水.正交试验设计的理论分析方法及应用[J].安徽建筑工业学院学报(自然科学版),2004,12(6):103-106.
    [182]魏明宝,张甲耀,王海,等.应用正交实验研究铜绿假单胞菌原生质体制备与再生[J].信阳师范学院学报(自然科学版),2005,18 (2):169-171,175.
    [183]甘志波.微生物原生质体融合:问题与对策[J].微生物学杂志,1996,16(1): 46-50.
    [184]余健秀,李建华,庞义.芽抱杆菌原生质体融合技术[J].微生物通报,2000,6: 45- 47.
    [185]宋大新,范长胜,徐德强,等.微生物学试验技术教程[M].上海:复旦大学出版社,1993.
    [186]曹澎泽.兽医微生物学及免疫学技术[M].北京农业大学出版社,1993.
    [187]Kao K N,Michayluk M R. Fusion of plant protoplast-techniques. In: Bajaj V P S eds.,Biotechnology in Agriculture and Frestry Vo1.8:Plant protoplast and Genetic Engineering I. Berlin:Springet-Vezlag, 1989, 277-288.
    [188]杨世辉,方呈祥,张珞珍.一种光学显微镜下观察原生质体的染色方法[J]微生物学通报,2000,27(1):55-57.
    [189]朱宝成,王俊刚,成亚利,等.果胶酶生产菌原生质体再生及诱变育种[J]微生物学通报,1994,21(1):15-17.
    [190]Ferenczy, L. Fungal protoplast fusion. In R. F. Beers Jr, & E. G. Bassett (Eds.), Cell fusion: Gene transfer and transformation. New York: Raveb Oressam.1984.
    [191]Hopwood D A, Merrick M J. Genetics of antibiotic production. Bacteriol Rev. 1977,41(3),595–635.
    [192]朱平,何慧霞,朱慧欣,等.麦角菌与雀稗麦角菌种间灭活原生质体融合[J].中国医药工业杂志,1999,30(8):342-344.
    [193]彭卫宪,陆大京.用灭活原生质体融合进行高温香菇育种[J]真菌学报,1987, 6(3):184-192.
    [194]Henick-Kling T.Control of malolactic fermentation in wine:energetics,flavour modification and methods of starter culture preparation.Journal of applied Bacteriology Symposium Supplement, 1995,79:29s-37s
    [195]Regurant C,Bordons A,Arola L,et al.Infuence of phenolic compounds on thephysicology of Oenococcus oeni from wine.J Appl.Microbiol.2000,88,1065- 1071.
    [196]Masayuki I,Mitsuo M,Hiromi I. Protoplast Fusion of Lactobacillus fermentum. Appl. Environ.Microbiol.,1986,52(2),392-393.
    [197]何国庆.食品发酵与酿造工艺学.北京:中国农业出版社,2001.
    [198]高年发,王淑豪,李小刚,等.酿酒酵母与粟酒裂殖酵母属间原生质体融合选育降解苹果酸强的葡萄酒酵母[J].生物工程学报,2000,16(6):718-722.
    [199]王沁.黑曲霉和假丝酵母属间原生质体融合的研究[J].厦门大学学报,1996, 35(2):252-255.
    [200]甘志波,赵学慧.灭活黑曲霉与中期啤酒酵母原生质体融合的研究[J].华中农业大学学报,1993,12(5):502-509.
    [201]葛岚,程树培.跨界原生质体融合产物细胞遗传物质整合过程中DNA含量变化[J].南京大学学报(自然科学),1997,33(3):381-384.
    [202]吕兵,项建琳.应用原生质体融合技术改善双歧杆菌的耐氧性[J].食品科学,2005,26(4):83-86.
    [203]曾荣,张树庭.用CHEF凝胶电泳探测了远源担子菌间原生质体融合后的染色体变异[J].微生物学报,1996, 36(3):213-219.
    [204]Tung, R. S., Kung L.J.In vitro effects of a thiopeptide and monensin on ruminal fermentation of soluble carbohydrates[J]Dairy Sci,1993,76,1083.
    [205]龙黎明,毛胜勇,苏勇.一株瘤胃源乳酸利用菌的分离鉴定及其体外代谢特性[J]微生物学报,2008(48):1571-1577.
    [206]Kung L J, Hession A O.Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii [J].J Anim Sci,1995, 73,250 -256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700