用户名: 密码: 验证码:
无线网络路由算法和MAC性能改进技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线网络是一种移动通信技术与计算机网络技术相结合的产物,其克服了传统网络的不足,实现了可移动的数据交换,为局域网开辟了一个崭新的技术和应用领域。无线局域网(Wireless Local Area Network,WLAN)正以其高度的灵活性、移动性、低成本和较高的传输能力在无线网络的应用中发挥着越来越重要的作用。
     无线网络与有线网络不同,不仅存在着误码率高、易干扰和隐藏站点/暴露站点等问题,而且还有共享无线信道和可移动性等特性,因此无线网络在路由算法和MAC协议上与有线网络存在许多差异。此外,网络的规模和分布等特性对无线网络的影响与有线网络也有所不同。基于上述多种因素的考虑,节点定位技术、路由算法和MAC层协议的优劣对无线网络至关重要。
     本文对无线网络中的节点定位技术、路由算法及MAC协议相关技术进行了分析和研究。在现有协议的基础上,提出了改进无线网络路由算法和MAC协议性能的方法,并在模拟环境下对所提出的算法进行了实现和性能分析,为无线网络中的节点定位技术、路由算法及MAC协议的研究提供了新的思路和方法,一定程度上提高了无线网络路由算法及MAC协议的可靠性和可控性,拓展了无线网络在不同需求场合的应用。具体而言,论文主要研究内容和创新点如下:
     (1)基于OLSR协议实现Ad Hoc网络中节点的定位
     针对无线Ad Hoc网络中节点已知自己位置(三维坐标,通过在节点中装备GPS或其它的定位设备获取)的情况下,在OLSR无线网络路由协议的基础上,修改了路由计算算法,在节点的路由表中增加目的节点的位置信息。实现了节点对其周围或整个无线Ad Hoc网络中其它节点分布情况的定位,并对具备定位功能的OLSR路由协议与原协议进行性能上的对比和分析。研究内容给一些无线网络中基于位置信息的应用,如路由算法的优化和数据包传输策略的选择等,提供了条件并带来了便利。
     (2) Ad Hoc网络中节点定位技术的改进
     针对目的节点较远时路由控制信息的传输存在延时,并进而会影响节点定位的准确性,对原定位算法进行了分析,给出目的节点定位存在误差的主要原因。提出了一种依据路由表中目的节点的当前位置对其实际位置进行预测的算法。在此基础上,设计并实现了节点位置的预测算法,对节点路由表中的位置信息应用预测算法以使其与目的节点的实际位置尽量相近。对算法进行了模拟与分析,证明了算法能较好地减小因目的节点路由信息传输延时等因素而给定位准确性带来的影响。
     (3)基于节点定位技术改进OLSR协议的MPR选择算法
     介绍了OLSR路由协议中的MPR技术,指出协议在使用启发式算法寻找最小MPR时存在一定的缺陷。结合本文研究的节点定位技术,给出了一种基于节点位置的改进算法。该算法通过引入节点位置信息,减小了OLSR协议在MPR选择算法中的盲目性,弥补了其对网络资源利用不充分的缺陷,能够在一定程度上减少网络中路由数据包传输的数量,从而提高网络的传输能力。在网络模拟环境下对改进算法进行了实现,分析了实验结果,表明提出的改进算法是可行和适用的,选择基于位置的启发式策略是恰当和正确的。
     (4)基于节点定位及蚁群优化技术的启发式路由算法
     提出了一种新的路由算法,使用节点定位技术提供的定位数据作为启发式信息。同时,利用蚁群优化技术,通过分析每个节点所处位置的不同,并结合其一跳及两跳节点的定位信息,在算法的实现中使蚂蚁采用不同的概率转发路由信息到下一跳节点,取得了减少网络维护路由控制信息总量的目的。算法选择多条路径记录在本地路由表中,提高了算法的鲁棒性,并同时采取修复机制创建新路径以提高数据包传输的成功率。仿真结果表明该算法取得了较好的数据包传输成功率与较低的通信延迟。
     (5)无线网络中错误模型的分析及应用
     分析了无线网络中导致分组数据传输错误的原因,指出了分组数据的传输错误会导致传输失败、网络性能下降。对无线网络中的错误模型理论进行了分析和研究,探讨了在无线网络中应用802.11a及802.11b协议时各种传输错误的特征。并在网络模拟环境中对常见的错误模型进行了模拟实验,对实验结果进行了分析。
     (6)基于802.11e标准的统一信道竞争管理算法
     分析了现有802.11e协议对无线局域网QoS的支持及存在的不足,并在此基础上设计了以802.11e协议为基础平台的统一信道竞争管理算法。利用现有的二维马尔科夫链模型进一步对DCF原理进行分析,提供了判断当前网络状态测量参数的计算方法。设计并实现了动态调整各优先级队列占用信道概率的算法,从而最大程度地保证各个等级业务的公平性,预防饿死现象的发生,并以此提高带宽的利用率。在仿真实验中从吞吐量、延时和公平性等方面对该算法进行了分析。
The wireless network is a combining product which integrated mobile communication technology with computer network technology. It has overcome the insufficiency in the traditional network and realized the movable data exchange. Meanwhile, it has also opened up a new area of technology and application for the local area network. Because of the high flexibility, mobility, low cost and relatively high through-put capacity, the wireless local area network (WLAN) is going to play vital role in the wireless communication network applications.
     There are some differences between wireless and wired network. Wireless network not only has some flaws such as high error rate, interference and hidden terminal\exposure terminal problem, but also shows the characteristics of sharing medium and mobility and so on. Therefore, the protocol designed for the routing algorithm in wireless network is obviously different from the wired network. In addition, the impact of the network scale and other properties deliver obvious different results to wired network and wireless local area network. Considering the factors described above, it is vital important to improve the performance of the routing algorithm and the MAC protocol in wireless local area network.
     In this paper, the routing algorithm and the MAC protocol in wireless local area network are analyzed and studied. Several algorithms are proposed for the wireless local area network to improve the network performance based on the existing protocols. The proposed algorithms are implemented in the simulated environment and the performance is analyzed. New approaches and methods are provided for the research of the routing algorithms and MAC layer protocol in wireless LAN. The reliability and controllability for the routing algorithm and MAC layer protocol in WLAN are enhanced, and the applications in different occasions are expanded. The compendious novelty and description of the thesis are given as follows:
     (1) Realizes the node localization based on the OLSR protocol in the Ad Hoc network
     We propose that the wireless Ad Hoc network node knows its position (three-dimensional coordinates, through the node equipped with a GPS or other positioning devices), based on the OLSR routing protocol in wireless network, the routing computation algorithm is modified, and the target node's location information is added in the routing table for every node. We try to let the node achieve the positions of its surrounding nodes or the entire wireless Ad Hoc network nodes. Additionally, the OLSR routing protocol which has localization function is analyzed and compared with the original protocol. The content of the research can provide conditions and bring convenience to location-based wireless network applications such as routing algorithm's optimization, packet transmission strategy and so on.
     (2) Improving the node localization technology in Ad Hoc network
     If the destination node is far from the source node, the transmission of the routing control information for the destination node has some delay and will then affect the accuracy of the node localization. An algorithm is proposed to predict the actual location of the distination node based on its current position information in routing table. The original algorithm is analyzed, and the primary reason that the node localization has some deficiency is pointed out. The node localization forecast algorithm is designed and realized, and the forecast algorithm is used to improve the accuracy of the node localization as far as possible. The algorithm is simulated and analyzed, and it proved that the proposed algorithm can effectively reduce the impact of positioning accuracy caused by the node transmission delay and other factors.
     (3) Improving MPR selection algorithm in OLSR protocol based on node localization technology
     The MPR technology in the OLSR routing protocol is described, it is pointed out that there are some limitations when the default heuristic algorithm in this protocol is used to find the minimum MPR. In this paper, an improved algorithm based on node localization is proposed combined with node localization technology. Node localization information is used in this algorithm, the blindness is reduced in the MPR selection algorithm in the OLSR protocol, it can make full use of the network resources, the number of routing packets needed to deliver in the network is reduced to a certain extent, and therefore it can improve the network transmission capacity. The improved algorithm is implemented in network simulation environment, the results are analyzed, it shows that the proposed improved algorithm is feasible and applicable, and the location-based heuristic selection strategy is appropriate and correct.
     (4) A heuristic routing algorithm based on node localization and ACO technologies for Ad Hoc networks
     A new routing algorithm is proposed which is based on the ant colony optimization algorithm for mobile Ad Hoc networks (MANETs). It also uses the location information from node localization technology and OLSR routing protocol which has the localization function as heuristic information. By analysis, according to its 1-hop and 2-hop location information of the neighbor nodes, every node in different position should use different probability to let the ant forward the routing information to the next hop, so as to greatly reduce the overhead of the packets used for maintaining the route information. The algorithm selects one or two of the paths recorded in its local routing table for the robustness reason. In order to further promote the robustness of the routing algorithm, a mechanism by creating an alternative path to repair the wrong path is proposed. Simulation results show that our algorithm achieves good packet delivery ratio with low communication delay.
     (5) Analysis and Utilizing of the Error Models in Wireless Network
     The reasons which cause data packets transmission error is analyzed in the wireless network, it is highlighted that the data packets transmission error will cause transmission failure and the network performance drops. The common error models used in 802.11 standards are introduced and the correlated theories are analyzed and studied. The characteristics of a variety of transmission errors are discussed when the applications use 802.11a and 802.11b as its protocol. Several common error models are simulated using the simulation software, and the results are analyzed. This chapter has not only provided helps to understand and evaluate the characteristics and performance of wireless network, but also brought great convenience to researchers and scholars.
     (6) United of channel contention management based on IEEE 802.11e Networks
     The shortcomings in the current 802.11e protocol for WLAN to which support the QoS are analyzed. We proposed a united channel contention algorithm based on the platform of IEEE 802.11e protocol. In order to realize the computational methods that can be used to get the measurement parameters of the network state, the principle of the DCF mechanism is further analyzed using the existing two-dimensional markov chain model. An algorithm is designed and implemented to dynamically adjust the probabilities of using the wireless channel for different priority queues. It can improve the resource sharing among the active queues and the efficient using of the bandwidth, preventing the occurrence of the phenomenon of starvation and optimizing the fairness among the different virtual queues in 802.11e. Finally, the throughput, delay and fairness and other aspects of the algorithm are analyzed in the simulation.
引文
[1]IEEE Std 802.15.3-2003:Wireless Medium Access Control (MAC and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPAN), USA, IEEE, Nov.2003.
    [2]N. Ramos, D. Panigrahi, S. Dey. Quality of Service Provisioning in 802.11e Networks:Challenges, Approaches and Future Directions. IEEE Network,2005,19(4):14-20.
    [3]IEEE Std 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks-Part 16:Air Interface for Fixed Broadband Wireless Access Systems, On October,2004.
    [4]闵应骅.计算机网络路由研究综述.计算机学报,2003,6(6):641-649.
    [5]R. BELLMAN. Dynamic Programming. Princeton, New Jersey, Princeton University Press,1957.
    [6]L.R. Ford und D.R. Fulkerson. Flows in Networks. Princeton, New Jersey, Princeton University Press, 1962..
    [7]J. MCQUILLAN,, I. RICHER, E. ROSEN.. The new routing algorithm for the ARPANET. IEEE Trans on Commun,1980, COM-28(5):711-719.
    [8]R.T. de Sousa, A.H.Adnane, C. Bidan, L. Me. On the Vulnerabilities and Protections of the OLSR ad hoc Routing Protocol from the point of view of Trust. Latin America Transactions,2009,7(5): 594-602.
    [9]S. Corson, J. Macher. Mobile Ad Hoc Networking (MANET):Routing Protocol Performace Issue and Evaluation Consideration. RFC 2501. January 1999.
    [10]T. Clausen, P. Jacquet. Optimized link state routing protocol (OLSR). Request for Comments 3626, IETF,2003
    [11]张衡阳,李莹莹,刘云辉.基于地理位置的无线传感器网络路由协议研究进展.计算机应用研究,2008,25(1):18-21,28.
    [12]H..R. Sadjadpour,J.J. Zheng Wang Garcia-Luna-Aceves. The capacity of wireless ad hoc networks with multi-packet reception. Communications,2010,58(2):600-610.
    [13]王庆辉,拱长青.一种MANET网络的位置辅助路由协议.小型微型计算机系统,2005,26(11):1890-1893.
    [14]李道全,刘海燕,曹齐光,王怀彩.基于地理位置的路由算法—GPSR-AD.计算机应用,2009,29(12):3215-3217.
    [15]江有福,吴伟志.一种基于地理位置的启发式Ad Hoc路由协议.计算机工程,2008,34(1):137-139.
    [16]韩连胜,罗卫兵,李南翔.基于地理路由协议GPSR的研究和改进.计算机工程与应用,2007,43(36):160-162.
    [17]黄浩,饶妮妮,廖瑞华,王炜华杨小军,王睿.利用指定群首设计自组网分层路由协议.电子科技大学学报,2009,38(4):513-516.
    [18]于宏毅.无线移动自组织网.北京:人民邮电出版社,2005,222-244.
    [19]MIT LCS's Parallel and Distributed Operating Systems Group. The grid ad hoc networking project[EB/OL].2003, http://pdos.1cs.mit.edu/grid.
    [20]钱权,桂林开,陈孟.移动Ad Hoc网络网格路由协议研究进展.计算机工程与设计,2009,30(11):2666-2669.
    [21]W. H. LIAO, Y. C. TSENG, J. P. SHEU. Grid:a fully location-aware routing protocols for mobile Ad hoe networks//Proc of IEEE HICSS.2000.
    [22]S.Sharma. P-OLSR:Position-based optimized link state routing for mobile ad hoc networks. LCN 2009,237-240.
    [23]T. Takenaka, H. Mineno, Y. Tokunaga, N. Miyauchi, T. Mizuno. Performance analysis of optimized link state routing-based localization. Journal of Information Processing Society of Japan (JIP),2007, 48 (9):3286-3299.
    [24]H. Mineno, K. Soga, T. Takenaka, Y. Terashima, T. Mizuno. Integrated protocol for optimized link state routing and localization:OLSR-L, Simulat. Modell. Pract. Theory,2010, doi:10.1016/j.simpat.2010.09.008.
    [25]董宁,石明卫.802.11b物理层CCK扩频技术探讨.西安邮电学院学报,2007,12(3):35-38,59.
    [26]李冬芬.IEEE 802.11b标准浅析.辽宁工程技术大学学报(自然科学版),2004,z1:108-109.
    [27]蒋建军.基于IEEE 802.11b标准的无线局域网安全研究.上海电机学院学报,2006,9(2):30-33.
    [28]艾渤,郝东来,葛建华.基于IEEE 802.11 (a)标准的信道估计与均衡技术.重庆邮电学院学报(自然科学版),2003,15(1):72-76.
    [29]周斌.无线局域网技术管窥.现代电信科技,2002,11:9-12.
    [30]IEEE Std 802.11a, Supplement to IEEE Standard for Information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements Part 11:Wireless LAN Medium Access Control (MAC) and Phy,1999.
    [31]马不明,袁东风,杨秀梅,吴大雷.基于IEEE 802.11a标准的LDPC编码的OFDM无线通信系统,2005,27(1):163-166.
    [32]张黎,罗艺荣.基于IEEE802.11b的无线局域网网关的研究.计算机科学,2007,34(2):62-63,143.
    [33]朱永忠,武国斌.IEEE 802.11g标准分析.电子质量,2004,2:J028-J029,J026.
    [34]江汉红,王征,李庆,梁学俊.基于IEEE802.11g标准的WLAN性能分析与测试.武汉理工大学学报,2005,27(4):86-89.
    [35]韩旭东,张春业,曹建海.IEEE802.11g研究综述.世界电信,2004,(1):24-29.
    [36]钟章队.无线局域网.北京:科学出版社,2004.
    [37]刘垚峰,王相林. WLAN安全方案及802.11i标准研究.计算机工程与设计,2006,27(13):2327-2330.
    [38]ANSI/IEEE Std 802.11i/D4.1.Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications:Medium Access Control (MAC) Security Enhancements,2003.
    [39]陈航,陈占计,陈中双.IEEE 802.11i标准与WLAN安全性分析.电子工程师,2005,31(10):66-68.
    [40]王变变,贺鹰.无线局域网络新标准802.11n及其应用.电脑开发与应用,2007,20(7):69-72.
    [41]周鑫.802.11n标准年内定音手持设备将成主战场.电子设计技术,2007,14(3):132-132,134.
    [42]G.R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, B. Walke, IEEE 802.11s:The WLAN Mesh Standard. Wireless Communications,2010,17(1):104-111.
    [43]A. Esmailpour, N. Nasser, T. Taleb. Topological-based architectures for wireless mesh networks. Wireless Communications,2011,18(1):74-81.
    [44]王澄,羹玲,橱宇航IEEE 802.11e基于竞争的信道访问机制性能分析.计算机工程,2006,32(6):124-126.
    [45]IEEE 802.11 WG, IEEE Std 802.11e/D2.0a (Draft Supplement to IEEE Std 802.11,1999 Edition). November 2001.
    [46]C. Cicconetti, L. Lenzini, E. Mingozzi, G. Stea. A software architecture for simulating IEEE 802.11e HCCA. In proc. of IPS MoMe 2005,2005,97-104.
    [47]W.Y.Lin, J.S.Wu. Modified EDCF to improve the performance of IEEE 802.11e WLAN. Computer Communications,2007,30:841-848.
    [48]王利伟,李建东,盛敏.IEEE802.11无线局域网EDCF接入研究与仿真.电子科技,2005,2:57-59,64.
    [49]王柯,杨士中,徐昌彪.基于IEEE802.11 DCF的QoS机制综述.计算机工程与应用,2007,43(18):126-131.
    [50]L. Romdhani, Q. Ni, T. Turletti. AEDCF: Enhanced service Differentiation for IEEE 802.11 wireless ad-Hoc networks. In proc. of WCNC2003, March 2003,2:1373-1378.
    [51]马树皓,张春业IEEE 802.11e中动态自适应信道接入机制的设计.电气电子教学学报,2006,28(1):63-66,103.
    [52]J.L. Sobrinho, A.S. Krishaakurnar.Quality-of-Service in Ad Hoc carrier sense multiple access networks. IEEE J Selected Areas in Comm,1999,17(8):1353-1368.
    [53]N.H. Vaidya, P. Bahl, S. Gupta. Distributed fair scheduling in a wireless LAN. In proc. of the 6th Annual International Conference on Mobile Computing and Networking. August 2000,167-178.
    [54]S.T. Sheu, T.F. Sheu. DBASE:a distributed bandwidth allocation/sharing/extension protocol for multimedia over IEEE 802.11 Ad Hoc Wireless LAN. In proc. of IEEE INFOCOM,2001,3: 1558-1567.
    [55]A. Leonovich, F. Huei-Wen. A time slots coordination mechanism forIEEE 802.11 WLANs. Communications Letters,2010,14(4):360-362.
    [56]刘翔.IEEE 802.11e无线网络协议标准中增强分布式协调功能(EDCF)性能分析.湖南理工学院学报(自然科学版),2006,19(3):31-35.
    [57]周晓波,卢汉成,李津生,洪佩琳.一种基于浮动优先级的IEEE 802.11e MAC层机制.小型微型计算机系统,2007,28(1):36-39.
    [58]H.J. Lee, J.T. Lim..Congestion control for streaming service in IEEE 802.11 multihop networks. Communications,2010,4(12):1415-1422.
    [59]K. Kashibuchi, A. Jamalipour, N. Kato. Channel Occupancy Time Based TCP Rate Control for Improving Fairness in IEEE 802.11 DCF. Vehicular Technology,2010,59(6):2974-2985.
    [60]王刚,周银东,梅顺良. IEEE 802.11e EDCA网络模型分析.清华大学学报(自然科学版),2005,45(10):1389-1392,1396.
    [61]阮加勇,黄本雄,张帆,汪雁. IEEE 802.11e EDCF性能评估.华中科技大学学报(自然科学版),2004,32(6):7-9.
    [62]王说,杨军,夏宇闻.无线局域网QoS(IEEE802.11e)协议浅析.电子与电脑,2004,9:128-133.
    [63]G. BIANCHI. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communieations,2000,18(3):535-547.
    [64]IEEE 802.11 WG, IEEE Std 802. 11e, Amendment to STANDARD [for] Information Technology-Telecommunications and Information Exchange Between Systems-LAN/MAN Specific Requirements-Part11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications:Medium Access Control (MAC) Quality of Service (QoS) Enhancements, October 2005.
    [65]W.Yan. Policy Based QoS Management Architecture in IEEE 802.11e Networks. In proc. of WiCom 2007, Sept.2007,1971-1975.
    [66]A. Ganz, A. Phonphoem, Z. Ganz. Robust superpoll with chaining protocol for IEEE 802.11 wireless LANs in support of multimedia applications. Wireless Networks, Jan 2001,7(1):65-73.
    [67]S.C. Lo, G. Lee, W.T. Chen. An efficient multipolling mechanism for IEEE 802.11 wireless LANs. IEEE Trans. Comput., June 2003,52(6):764-778.
    [68]J. Moy. OSPF version 2. RFC 1583, March 1994.
    [69]C. Zhu and M. S. Corson. QoS routing for mobile ad Hoc networks. In Proc. of the Twenty First International Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2002), New York, USA,2002,2:958-967.
    [70]C. R. Lin, J. S. Liu. QoS routing in ad Hoc wireless networks, IEEE J. Selected Areas in Communications,1999,17(8):1426-1438.
    [71]S. Chen, K. Nahrstedt. Distributed quality of service routing in ad-Hoc networks. IEEE J. Selected Areas in Communications,1999,7(8):1488-1505.
    [72]R. Sivakumar, P. Sinha, V. Bharghavan. CEDAR: A core-extraction distributed ad Hoc routing algorithm. IEEE J. Selected Areas in Communications, Special Issue on Ad Hoc Networks,1999, 17(8):1454-1465.
    [73]S. H. Shah, and K. Nahrstedt. Predictive location-based QoS routing in mobile ad Hoc networks. In Proceedings of IEEE International Conference on Communications (ICC 2002), New York,2002,2: 1022-1027.
    [74]S. Misra, G. L.Xue, S. Bhardwaj. Secure and Robust Localization in a Wireless Ad Hoc Environment. Vehicular Technology,2009,58(3):1480-1489.
    [75]F. Mourad. H. Snoussi. F. Abdallah, C. Richard. Anchor-Based Localization via Interval Analysis for Mobile Ad-Hoc Sensor Networks. Signal Processing,2009,57(8):3226-3239.
    [76]T. Xu, Y. Cai. Location safety protection in ad hoc networks. Original Research Article, Ad Hoc Networks,2009,7(8):1551-1562.
    [77]X.W. Wang, O. Bischoff, R. Laur, S. Paul. Localization in Wireless Ad-hoc Sensor Networks using Multilateration with RSSI for Logistic Applications, Procedia Chemistry,2009,1(1):461-464.
    [78]D. Vassis, G. Kormentzas. Performance analysis of IEEE 802.11 ad Hoc networks in the presence of hidden terminals. Computer Networks,2007,51(9):2345-2352.
    [79]L.Q.Zhang, Y.J.Cheng, X.B.Zhou. Rate avalanche: Effects on the performance of multi-rate 802.11 wireless networks. Simulation Modelling Practice and Theory,2009,17(3):487-503.
    [80]K.P.Shih, W.H.Liao, H.C. Chen, C.M. Chou. On avoiding RTS collisions for IEEE 802.11-based wireless ad Hoc networks. Computer Communications,2009,32(1):69-77.
    [81]K. Zhang. H. Wang, D. Zhang. D.J. Yun. Collision Free MAC Protocol for Multi-Hop Wireless Networks. Journal of Software,2009,20(7):1895-1908.
    [82]H. Zhai, Y. Fang. Physical carrier sensing and spatial reuse in multi-rate and multihop wireless ad Hoc networks. In proc. Of IEEE Infocom,2006,1-12.
    [83]S. Phaiboon, P. Phokharatkul, S. Somkuarnpanit. New upper and lower bounds line of sight path loss model for mobile propagation in buildings. International Journal of Electronics and Communications, March 2008,62(3):207-215.
    [84]V.K. Garg. Chapter 3:Radio Propagation and Propagation Path-Loss Models. Wireless Communications & Networking,2007,47-84.
    [85]周镭,李伟华,陈华胜. Ad Hoc与Internet互连多媒体通信应用层网关设计与实现.计算机应用研究,2009,27(1):308-310.
    [86]何明,肖登海,裘杭萍,曾琼.一种移动Ad Hoc网的可靠性评估方法.计算机应用研究,2009,26(11):4282-4285.
    [87]崔莉,鞠海玲,苗勇等.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174.
    [88]Yang Zheng, Liu Yunhao, Li Xiangyang. Beyond trilateration:On the localizability of wireless ad hoc networks[C]//Proc of the 28th IEEE Int Conf on Computer Communications. Piscataway, NJ: IEEE,2009:2392-2400.
    [89]Zhang P, Martonosi M. LOCALE:Collaborative localization estimation for sparse mobile sensor networks [C]//Proc of IEEE Int Conf on Information Processing in Sensor Networks. Piscataway, NJ: IEEE,2008:195-206.
    [90]Doherty L, Pister K S J, Ghaoui L E. Convex position estimation in wireless sensor networks[c]//Proc of the IEEE INFOCOM 2001. Piscataway, NJ:IEEE, IEEE Computer and Communications Societies, 2001:1655-1663.
    [91]Chang J H, Tassiulas L. Energy conserving routing in wireless ad-hoc networking[c]//Proc of the IEEE INFOCOM 2000. Piscataway, NJ: IEEE, IEEE Computer and Communications Societies,2000:22-31.
    [92]Qayyum A, Viennot L, Laouiti A. Multipoint relaying: An efficient technique for flooding in mobile wireless networks. In: Proc. Of the 35th Hawaii Int'1 Conf. on System Sciences (HICSS.2002).2002. http://ieeexplore.ieee.org/ie15/7798/21442/00994521.pdf? arnumber=994521.
    [93]沈呈,陆一飞,夏勤等.无线Mesh网中一种基于MPR当选频度的OLSR扩展路由协议[J].计算机科学,2009,36(12):93-97.
    [94]张洪,黄闽英.基于高速移动节点网络的OLSR路由协议改进[J].成都大学学报(自然科学版),2008,27(1):38-41.
    [95]S. Sharma. P-OLSR: Position-based optimized link state routing for mobile ad Hoc networks. In proc. of LCN,2009,237-240.
    [96]M. Doirgo, V. Maniezzo, A. Colorni. The ant system: optimization by a colony of co operating agents. IEEE Transactionson Systems, Man, and Cybernetics, Part B,1996,26 (1):29-41.
    [97]劳眷,韦文代,伍超奎.蚁群算法求解旅行商问题若干改进策略的研究.广西大学学报:自然科学版,2008,33(S1):113-116.
    [98]向阳,李腊元,孙强,陈年生Ad Hoc网络基于蚁群的按需路由算法研究.武汉理工大学学报(交通科学与工程版),2007,31(2):251-254.
    [99]郝建东,毛力,张端.基于自适应蚁群优化的Ad Hoc网络路由算法.计算机工程与设计,2009,30(21):4832-4834.
    [100]G.D. Caro, F. Ducatelle. AntHocNet: An adaptive nature-inspired algorithm for routing in mobile ad Hoc networks. EuropeanTransactions on Telecommunications (Special Issue on Self-Organization in Mobile Networking),2005,16(2):443-455.
    [101]K. Daisuke, I. Tomoko. An ant colony optimization routing based on robustness for ad Hoc networks with GPSs. Ad Hoc Networks,2010,8(1):63-76.
    [102]A. Quintero, D. Li, H. Castro. A location routing protocol based on smart antennas for ad Hoc networks. Journal of Network and Computer Applications,2007,30(2):614-636.
    [103]V.C. Giruka, M. Singhal. Two scalable location service protocols for wireless ad Hoc networks. Pervasive and Mobile Computing,2006,2(3):262-285.
    [104]C. Venkata, M.S. Giruka. A self-healing On-demand Geographic Path Routing Protocol for mobile ad-Hoc networks. Ad Hoc Networks,2007,5(7):1113-1128.
    [105]Ge. Ying, L. Lamont. Villasenor L. Hierarchical OLSR-a scalable proactive routing protocol for heterogeneous ad Hoc networks, In proc. of WIMOB,2005,3:17-23.
    [106]J.W. Yeo, A. Agrawala. Packet error model for the IEEE 802.11 MAC protocol. In proc. of PIMRC 2003., Sept.2003,2:1722-1726.
    [107]况晓辉,赵刚,郭勇.网络模拟器NS2中仿真功能的问题分析及改进.系统仿真学报,2009,21(2):427-436.
    [108]A. Goldsmith. Wireless Communications. Cambridge University Press,2005.
    [109]J. G. Proakis. Digital Communications. McGraw-Hill, New York, USA,2001.
    [110]T. Bingmann. Accuracy Enhancements of the 802.11 Model and EDCA QoS Extensions in ns-3. Diploma Thesis at the Institute of Telematics,2009.
    [111]T. H. Guangyu Pei. Validation of ns-3 802.11b PHY model. Boeing Reseach and Technology of TBC, http://www.nsnam.org/pei/8021 lb.pdf, May 2009.
    [112]D. T. M. Pursley. Error probabilities for spread-spectrum packet radio with convolutional codes and Viterbi decoding. IEEE Transactions on Communications, Jan.1987,35(1):1-12.
    [113]IEEE. IEEE 802.11:Wireless LAN Medium Access Control and Physical Layer Specifications, Aug. 1999.
    [114]F. Cali, M. Conti., E. Gregori. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans Nel,2000,8(6):785-799.
    [115]L. Bononi, M. Conti, L. Donatiello. Design and Performance Evaluation of a Distributed Contention Control (DCC) Mechanism for IEEE 802.11 Wireless Local Area Networks. Journal of Parallel and Distributed Computing,2000,60:407-430.
    [116]U. Baroudi, M. Aijaz Mohiuddin. Performance analysis of Internet applications over an adaptive IEEE 802.11 MAC architecture. Journal of the Franklin Institute 2006,343:352-360.
    [117]J. Maro, R. Siva. Real-time traffic support for ad hoc wireless network. Proceedings of IEEE intErnational conference,2002:335-340.
    [118]H.T. Wu, Y. Peng, K.P Long, S.D. Cheng, J. Ma. Performance of reliable transport protocol over IEEE 802.11 wireless LAN analysis and enhancement. In proc. of IEEE INFOCOM,2002,2: 599-607.
    [119]P. Yong, H.T. Wu, S.D. Cheng. K.P. LongA new self-adapt DCF algorithm. In proc. of IEEE GLOBECOM,2002,1:87-91.
    [120]Y. Kwon, Y. Fang, H. Latchman. A Novel MAC Protocol with Fast Collision Resolution for Wireless LANs. In proc. of IEEE INFOCOM,2003,2:853-862.
    [121]G. Rafael, C. Llorenc. Quality of service through bandwidth reservation on multirate ad Hoc wireless networks. Ad Hoc Networks,2009,7:388-400.
    [122]F. Cali, M. Conti, E. Gregori. IEEE 802.11 wireless LAN:capacity analysis and protocol enhancement. In proc. of IEEE INFOCOM, Apr 1998,1:142-149.
    [123]G. Bianchi, L. Fratta, M. Oliveri. Performance evaluation and enhancement of the CSMA/CA MAC protocol for 802.11 wireless LANs. In proc. of PIMRC, Oct 1996,2:392-396.
    [124]J. Weinmiller, M. Schlager, A. Festag, A. Wolisz. Performance study of access control in wireless LANs-IEEE 802.11 DFWMAC and ETSI RES 10 HIPERLAN. Mobile Networks and Applications, 1997,2(1):55-67.
    [125]J. Weinmiller, H. Woesner, A. Wolisz. Analyzing and improving the IEEE 802.11 MAC protocol for wireless LANs. In proc. of MASCOT, Feb 1996,200-206.
    [126]J.L. Sobrinho, A.S. Krishnakumar. Real-time traffic over the IEEE 802.11 medium access control layer. Bell Labs Tech J,1996,1(2):172-187.
    [127]W.E. Leland, M.S. Taqqu, W. Willinge, D.V. Wilson. On the self-similar nature of ethernet traffic. IEEE/ACM Transactions on Networking,1994,1(2):1-15.
    [128]L.Kleinrock and F.A. Tobagi. Packet Switching in Radio Channels:Part I-Carrier Sense Multiple-Access Modes and their Throughput-Delay Characteristics. IEEE Transactions on Communications,1975,23(12):1400-1416.
    [129]G. Bianchi. IEEE 802.11-saturation throughput analysis. IEEE Commumications Letters,1998,12(2): 318-320.
    [130]D.J. Qiao, K.G. Shin. UMAV: a simple enhancement to the IEEE 802.11 DCF. In proc. of HICSS2003, Jan 2003.
    [131]T. Shigeyasu, T. Hirakawa, H. Matsuno, N. Morinaga. Two simple modifications for improving IEEE 802.11 DCF throughput performance. In proc. of WCNC, March 2004,3:1457-1462.
    [132]V. Loscri, F. De Rango, S. Marano. Performance evaluation of on-demand multipath distance vector routing protocol over two MAC layers in mobile Ad Hoc networks. In proc. of ISWCS2004, Sept. 2004,413-417.
    [133]A.L. Toledo, T. Vercauteren, X.D. Wang. Adaptive Optimization of IEEE 802.11 DCF Based on Bayesian Estimation of the Number of Competing Terminals. Mobile Computing, Sept.2006,5(9): 1283-1296.
    [134]A. Khalaj, N. Yazdani. Service differentiation and fairness in IEEE 802.11 DCF. In proc. of ICON2005, Nov.2005,5:526-530.
    [135]C. G. Wang, B. Li, L.M. Li. A new collision resolution mechanism to enhance the performance of IEEE 802.11 DCF. IEEE Transactions on Vehicu Lar Technology,2004,53(4):1235-1246.
    [136]A. Muir, J.J. Garcia-Luna-Aceve. Supporting real-time multimedia trafficin a wireless LAN. In proc. of SPIE Multimedia Computing and Net working,1997,41-54.
    [137]I. Aad, C. Castelluccia. Introducing service diferentiation into IEEE 802.11. In proc. of ISCC2000, July 2000,438-443.
    [138]I. Aad, C. Castelluccia. Differentiation mechanisms for IEEE 802.11. In proc. of INFOCOM2001, 2001,1:209-218.
    [139]D.J. Deng, R.S. Chang. A priority scheme for IEEE 802.11 DCF access method. IE ICET Ransacktionson Communications,1999, E82-B(1):35-44.
    [140]M. Barry, A.T. Campbell, A. Veres. Distributed control algorithms for service diferentiation. In proc. of IEEE INFOCOM,2001,1:582-590.
    [141]A. Veres, A.T. Campbell, M. Barry. Supporting service diferentiationin wireless packet networks using distributed control. IEEE J Selected Areas in Comm: special issue on mobility and resource management in next-generation wireless systems,2001,19(10):2094-2104.
    [142]IEEE 802.11 WG, IEEE Std 802.11e/D2.0a, (Draft Supplement to IEEE Std 802.11,1999 Edition), November 2001.
    [143]H.S. Wang, N. Moayeri. Finite state markov channel:a useful model for radio communication channels. IEEE Transactions on Vehicular Technology, February 1995,44(1):163-171.
    [144]A. Lindgren, A. Almquist, O. Schelen. Quality of Service Schemes for IEEE 802.11 Wireless LANs-An Evaluation. Mobile Networks and Applications, June 2003,8(3):223-235.
    [145]N.H. Vaidya, P. Bahl, S. Gupta. Distributed fair scheduling in a wireless LAN. IEEE Transactions on mobile computing,2005,4(6):616-629.
    [146]G. Anastasi, L.Lenzini. QoS provided by IEEE 802.11 wireless LAN to advanced data applications:a simulation analysis. Wireless Networks,2000,6(2):99-108.
    [147]V. Kanodia, A. Sabharwal, B. Sadeghi, E. Knightly. Ordered packet scheduling in wireless Ad Hoc networks:mechanisms and performance analysis. In proc. of ACM MOBIHOC, July 2002,58-70.
    [148]T. S. Rappaport, A. Annamalai, R.M. Buehrer, W.H.Tranter. Wireless Communications:past events and a future perspective, IEEE Communications Magazine,50th Anniversary Commemorative Issue, 2002,148-161.
    [149]J. Postel. Transmission Control Protocol (TCP), IETF RFC793, January 1981.
    [150]C. Chou, S. N. Shankar, K. Shin. Achieving per-stream QoS with distributed airtime allocation and admission control in IEEE 802.11e wireless LANs. In Proc. of INFOCOM, Mar.2005,1584-1595.
    [151]Y. Xiao, H. Li. Voice and Video Transmissions with Global Data Parameter Control for the IEEE 802.11e Enhance Distributed Channel Access. IEEE Trans. Parallel Distrib. Sys.,2004,15(11): 1041-1053.
    [152]Y. Xiao, H. Li, "Evaluation of Distributed Admission Control for the IEEE 802.11e EDCA. IEEE Commun. Mag., Sept.2004,42(9):S20-S24.
    [153]A. Banchs, X. Perez-Costa, D. Qiao. Providing Throughput Guarantees in IEEE 802.l1e Wireless LANs. In proc. of ITC.2003, Aug.2003,1001-1010.
    [154]D. Pong, T. Moors. Call Admission Control for IEEE 802.11 Contention Access Mechanism. In proc. Of IEEE GLOBECOM'03,2003,1:174-178.
    [155]R.B. Zhu, Y.H. Yang. Model-based admission control for IEEE 802.11e enhanced distributed channel access. AEU-Int. J. Electron. Commun.2007,61(6):388-397.
    [156]NS-2. NS-2 Network Simulator [Online]. Available: http://www.isi.edu/nsnam/ns/.
    [157]陈昊.蚁群优化算法的原理及其应用.湖北大学学报,2006,28(4):350-352.
    [158]张信明,曾依灵等.用遗传算法寻找OLSR协议的最小MPR集Journal of Software,2006, 17(4):932-938

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700