用户名: 密码: 验证码:
基于端口的分组交换技术及QoS路由研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网是当前最成功的计算机网络,其发展规模越来越大,承载业务应用种类也越来越多,IP网作为互联网体系结构的核心,在互联网发展过程中承担的任务也越来越重。在保证服务质量和考虑绿色节能的条件下,高速传输语音、图像、视频等多媒体数据成为对IP网基本要求,但是IP网的缺陷使得上述要求难以满足。例如,交换设备需要维护和查找大量的动态路由信息,限制了交换设备的快速交换转发能力,也导致交换设备结构复杂、能耗高;IP地址具有“身份”、“定位”和“转发”的多重功能,导致IP网的路由可扩展性差,也给实现显式路由等造成障碍;IP网的初始设计只提供尽力而为的传输服务,不能保证分组流的QoS需求。
     针对上述问题,未来互联网的研究已经得到广泛的关注。IP网在逻辑上可以分为两个功能面:控制面和数据面。本文重点研究数据面的快速交换转发技术和控制面的QoS路由协议:在数据面提出一种用于分组交换转发的地址编码,其实现分组转发的方式简单、快速、有效;在控制面提出适合新分组交换技术的QoS路由控制机制。本文的贡献和创新点包括以下几个方面:
     1.针对IP网络分组交换转发过程中查表操作复杂的问题,在网络层数据面提出一种基于节点端口(Port/Interface)的转发地址编码方法——向量地址(VA, Vector Address)及其交换转发分组的方式——向量交换(VS, Vector Switching,)。向量地址携带分组传送路径上所有节点的短小、变长的输出端口信息,使分组转发避免了路由表查询操作。VS面向连接,易于与显式路由等QoS控制协议模型配合;向量地址不受地址规划策略限制,且具有无限可扩展性;向量地址不可穷举,而且对于中间节点而言不可解读,能够隐藏分组源、目的控制面节点标识,具有安全性。
     2.基于VS,设计并实现了一种核心传输网络的改进架构——向量标签交换(VLS, Vector Label Switching)网络。本文提出了实现VLS网络的方案,控制面使用现有路由协议,完全由路由器通用CPU承担;在数据面,线卡不再需要转发表,省掉查表操作。针对数据面的理论分析及仿真实验评估结果表明VLS实现快速高效分组交换转发的同时,降低了数据面的实现复杂度和能耗。
     3.在控制面,针对域内QoS路由问题,提出一种基于向量标签交换网络的流量工程模型。该模型利用RSVP-TE(Resource ReSerVation Protocol-Traffic Engineering)协议在VLS网络中实现显式路由,是一种支持区分服务的流量工程模型(DS-TE, DiffServ-aware Traffic Engineering)。本文给出了实现该DS-TE的具体方案,包括VLS内支持DS-TE的路由器结构设计、RSVP-TE信令建立路径和分发端口号的过程、接纳控制算法、链路带宽约束模型和带宽抢占算法等等。仿真实验证明了DS-TE模型在VLS网络中能够充分利用整个网络资源,保证高服务级别流量的端到端延时、抖动和分组丢失率等QoS性能,同时提供了较高的网络流通量。VLS网络能够以较低的代价实现QoS传输服务。
     4.将VS应用于全光交换网络,提出一种新的光标签分组交换方式——光编码向量地址标签交换(OCVA-labeled Switching, Optical Code-based VA labeled Switching)。OCVA-labeled交换以光码标识节点端口,以VS方式转发分组。OCVA-labeled交换省略了中间交换节中的光编码器,降低了转发模块复杂度及硬件成本。另外,OCVA-labeled交换消除了网络扩展对大容量光码组的依赖,降低了码间干扰,提高了光标签识别率。性能分析结果表明,OCVA-labeled交换降低了分组头部处理延时,提高了光码标签识别率,降低了网络分组丢失率。
With the rapid development of network applications, Internet is becoming a global information infrastructure, which is working as a transport network to deliver multiple types of data including many new real-time multimedia applications. To cope with ever-increasing traffic demands, network should increase transmission bit rate and provide QoS guarantee for network traffic. Internet Protocol (IP) is the core of Internet architecture, its intrinsic shortcomings make Internet can not meet the service demands, that is (1) IP address overloads with semantics of identify, location and route identifier;(2) IP switches provide connectless delivery for packets. These designing principles have deep implications for network scalability, QoS guarantee, high-speed packet forwarding, power consumption, etc.
     We studied the network architecture which separates the control and forwarding plane. A connection-oriented low-complexity packet forwarding technology was proposed in forwarding plane, as well as the corresponding QoS routing protocol in control plane. The main research points and innovations in this dissertation are outlined as follow:
     1. A port/interface-based route encoding called Vector Address (VA) is proposed in forwarding plane. The encoding operation and its packet forwarding scheme (VS, Vector Switching) is presented. VA is a network path represented by a sequence of Port/interface Indexes (PI) which is an index number assigned to a fabric port/interface. Every PI offers its available bits, which is a short, variable-length, local value, to VA showing the packet how to reach an intermediate node's output interface, till reaching the destination. Under VS mechanism based on PI, table lookup is not needed to forward a packet through a node. A PI makes intermediate nodes can not recognize the whole path's VA or source/destination's identity, so as to VA is scalable and secure. VA is a connection-oriented route identifier, which can implement explicit routing well and improve network QoS performance.
     2. An efficient packet switching framework called Vector Label Switching (VLS) for core Internet based on VA is proposed. VLS separates control and forwarding planes. The control plane assigns PIs to interfaces/ports and establishes VA between pairs of edge routers. The forwarding plane forwards packets from ingress router of core network to egress router. We implement the forwarding plane by NetFPGA and Linux system respectively. The routing table is not needed to be store and lookup on line-card. The analysis results show that VS enhance the energy-effect of routers and improves their performance with high flexibility in deployment of VLS.
     3. A QoS-guaranteed network framework is proposed by employing DiffServ-aware Traffic Engineering (DS-TE) in VLS architecture. The framework uses RSVP-TE (Resource ReSerVation Protocol-Traffic Engineering) protocol to establish VA and reserve bandwidth in control plane. In forwarding plane, it introduces differential switching to VS. In bandwidth management, link use Russian Doll Model (RDM) to allocate resource for traffic transmitting; an admission control algorithm and a bandwidth preemption algorithm is presented cooperating with the link allocation. The simulation results show that the framework guarantees QoS of traffic with a good fairness and efficiency; it improves the throughput of VLS.
     4. An optical code (OC)-based label switching scheme called Optical Code-based Vector Address-labeled (OCVA-labeled) switching, which carries all routing information in the packet header like VS, is proposed optical packet switch (OPS) networks. In the scheme, a forwarding path in network is composed of all OCs of passed interfaces on the path. An OC is assigned locally by a router/switch to its own output interface as an index number. Under OCVA-labeled mechanism, packet header re-writing (code conversion) is not required, which can make intermediate nodes much simpler. It also reduces the size of OC set required in the whole optical network, mitigating affect from MAI. The simulation results show OCVA-labeled switching reduces the OC recognition error as well as packet blocking rate of the whole network.
引文
[1]中国互联网中心,第29次中国互联网络发展状况统计报告,[online] available at: http://www.cnnic.cn,Jan 2012.
    [2]J. Postel, Internet Protocol, IETF RFC 791, Sep.1981.
    [3]T.V.Lakshman and D.Stiliadis, High-Speed Policy-based Packet Forwarding Using Efficient Multidimensional Range Matching, ACM SIGCOMM'98, Sep.
    [4]S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, IETF RFC 1883, Dec. 1995.
    [5]龚正虎,陈志刚等,新一代互联网交换与路由技术,长沙,国防科技大学出版社,12.2009.
    [6]Slavisa Aleksic, Analysis of Power Consumption in Future High-Capacity Network Nodes, OPT. COMMUN. NETW.,2009, Vol.1 No.3, pp245-258.
    [7]Garry Epps, David Tsiang, Tom Boures, System Power Challenges, Cisco Routing Research Seminar, Aug.2006, [online] available at: http://www.cisco.com/web/about/ac50/ac207/ proceeding/PO WER_GEPPS_rev3.ppt.
    [8]Xipeng Xiao and Lionel M.Ni, Internet QoS:A Big Picture, IEEE Network, March/April 1999, pp8-18.
    [9]Shigang Chen, Klara Nahrstedt, An Overview of Quality-of-Service Routing for the Next Generation High-Speed Networks:Problems and Solutions, IEEE Network, Special Issue on Transmission and Distribution of Digital Video, Nov./Dec.1998.
    [10]S. Thomson and T. Narten, IPv6 Stateless Address Autoconfiguration, RFC 4862, Sep.2007.
    [11]A. Conta and S. Deering, Extended ICMP to Support Multi-Part Messages, RFC 4884, Apr. 2007.
    [12]R. Hinden and S. Deering, IPv6 Addressing of IPv4/IPv6 Translators, RFC 6052, Oct.2010.
    [13]Global Environment for Network Innovations Project, [online] available at: http://www.geni. net/, Jun.2006.
    [14]D.Clark, R.Braden, et al., FARA:Reorganizing the Addressing Architecture, FDNA Workshop, ACM SIGCOMM 2003, Karlsruhe, Aug.2003.
    [15]3 networks, [online] available at: http://www.i3net.us/.
    [16]3Tnet Project, [online] available at: http://www.3tnet.com.cn/, Mar.2006.
    [17]Telecommunication Standardization Sector of ITU, Fundamental characteristics and requirements of future packet based networks, ITU-T Recommendation Y.2601, Dec.2006
    [18]Telecommunication Standardization Sector of ITU, High-level architecture of future packet-based networks, ITU-T Recommendation Y.2611, Dec.2006
    [19]中国教育和科研计算机网,[online] available at: http://www.edu.cn/cernet10/.
    [20]P.Marques, et al, Advertisement of the best external route in BGP, IETF Draft, available at: http://tools.ietf.org/html/draft-ietf-idr-best-external-05, Jul.2012.
    [21]J.Moy, OSPF Version 2, IETF RFC 2328,1998.
    [22]G.Malkin, RIP Version 2, IETF RFC 2453,1998.
    [23]Willibald Doeringer, Gunter Karjoth, and Mehdi Nassehi, Routing on Longest-Matching Prefixes, IEEE/ACM TRANSACTIONS ON NETWORKING,1996, Vol.4, No.1, pp86-97.
    [24]J.Dunn, C.Martin, Terminoloy for ATM Benchmarking, IETF RFC2761,2000.
    [25]ATM-Forum, Private Network-Network Interface Specification Version 1.0, ATMForummaf-pnni-0055.000,1996.
    [26]A.Wu, Advanced Loacal Area Networks, Lectures & Slides, River College,2001.
    [27]R.Cole, D.Shur, and C.Villamizar, IP over ATM:A Framework Document, IETF RFC 1932, 1996.
    [28]D.Grossman, J.Heinanen, Multiprotocol Encapsulation over ATM Adaptation Layer 5, IETF RFC 2684,1999.
    [29]P.Newman, W.L.Edwards, R.Hinden, E.Hoffman, F.Ching Liaw, T.Lyon, and GMinshall, Transmission of Flow Labelled IPv4 on ATM Data Lins Ipsilon Verson 1.0, IETF RFC 1954, 1996.
    [30]Y.Rekhter, B.Davie, D.Katz, E.Rosen, and GSwallow, Cisco Systems' Tag Switching Architecture Overview, IETF RFC 2105,1997.
    [31]A.Viswanathan, N.Feldman, R.Boivie, and R.Woundy, ARIS:Aggregate Route-Based IP Switching, draft-viswanathan-aris-overview-00. txt,1997.
    [32]Y.Katsube, K.Nagami, S.Matsuzawa, H.Esaki, Internetworking based on cell switch router-architecture and protocol overview, proceedings of IEEE,1997, Vol.85, No.12, pp.1998-2006.
    [33]Rosen, et al., Multiprotocol label switching Architecture, IETF RFC 3031, Jan.2001.
    [34]I. Cidon and I. S. Gopal, PARIS:An Approach to Integrated High-Speed Private Networks, Int'l. J.Digital and Analog Cabled Sys.,1988, Vol.1, No.2, pp.77-86.
    [35]I. Cidon, I. S. Gopal, P. M. Gopal, R. Guerin, J. Janniello,and M. Kaplan, The plaNET/ORBIT High Speed Network, Journal on High Speed Networking 2,1993, No.3, pp171-208.
    [36]G.A.Marin, C.P.Immanuel, P.F.Chimento, I.S.Gopal, Overview of the NBBS architecture, IBM SYSTEMS JOURNAL,1995, Vol.34 No.4, pp564-589.
    [37]B. Wen and K. Sivalingam, Routing wavelength and time-slot assignment in time division multiplexed wavelength-routed optical WDM networks, in Proc. IEEE Infocom, New York, Jun. 2002, pp.1442-1450.
    [38]N. Cihani, S. Dixit, and T.-S. Wang, On IP-over-WDM integration, IEEE Cummun. Mag.,2000, pp.1244.
    [39]M. Bocci, et al., A Framework for MPLS in Transport Networks, IETF RFC 5921, Jul.2010.
    [40]D. Hsu, A novel photonic label switching based on optical code division multiplexing, ICT 2003,10th International Conference on Telecommunications, Feb.2003, pp.634-640.
    [41]K. Kitayama and N. Wada, Photonic IP routing, IEEE Photonics Technol. Lett.,1999, Vol.11, No.12, pp.1689-1691.
    [42]F. Gont, et al, On the Implementation of the TCP Urgent Mechanism, IETF RFC6093, Jan. 2011.
    [43]V.Jacobson, Congestion Avoidance and Control, Computer Communication Review,1998, Vol.18, No.4, pp314-329.
    [44]Cisco, Cisco Frame Relay Tutorial, [online] available at: http://www.docwiki.cisco.com/wiki/ Frame_Relay
    [45]C.Brown, A.Malis, Multiprotocol Interconnect over Frame Relay, IETF RFC2427,1998.
    [46]R. Braden, D. Clark, and S. Shenker, Integrated Services in the Internet Architecture:An Overview, RFC 1633,1994.
    [47]F. Le Faucheur, et al, Resource Reservation Protocol (RSVP) Extensions for Path-Triggered RSVP Receiver Proxy, IETF RFC 5946, Oct.2010.
    [48]S. Schenker, C. Partridge, and R. Guerin, Specification of Guaranteed Quality of Service, IETF RFC 2212,1997.
    [49]J. Wroclawski, Specification of the Controlled-Load Network Element Service, IETF RFC 2211, 1997.
    [50]Blake, S., et al., An Architecture for Differentiated Services, IETF RFC 2475,1998.
    [51]B. Briscoe, Tunnelling of Explicit Congestion Notification, IETF RFC6040, Nov.2010.
    [52]K.Nichols, S.Blake, F.baker and D.Black, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers, IETF RFC2474,1998.
    [53]D.Grossman, New Terminology and Clarifications for Diffserv, IETF RFC3260,2002.
    [54]A. Parekh and R. Gallager, A generalized processor sharing approach to flow control in integrated services networks:the single node case, IEEE/ACM Transactions on Networking, 1993, Vol.1, Issue 2, pp.344-357.
    [55]GChang, C.Lee, Cycle time distribution and control for the Deficit Round Robin packet scheduler, Conference on Computing, Networking and Communications,2012, pp434-440.
    [56]A.Elmasry, et al, A priority queue with the time-finger property, Journal of Discrete Algorithms, Oct.2012, pp 206-212.
    [57]Jacobson, et al., An Expedited Forwarding PHB, RFC2598,1999.
    [58]Heinanen, et al., Assured Forwarding PHB Group, RFC2597,1999.
    [59]D.Awduche, A.Chiu, A.Elwalid, I.Widjaja, and X.Xiao, Overview and Principles of Internet Traffic Engineering, IETF RFC3272,2002.
    [60]R/Aggarwal, et al, Advertising a Router's Local Address in OSPF Traffic Engineering (TE) Extensions, IETF RFC 5786, Mar.2010.
    [61]T.Li, et al, IS-IS Extensions for Traffic Engineering, IETF RFC 5305, Oct.2008.
    [62]R.A.Guerin, A.Orda, QoS Routing in Networks with Inaccurate Information: Theory and Algorithms, IEEE/ACM Transaction on Networking,1999, Vol.7, Issue 3, pp350-364.
    [63]D.Kumar, Routing Path Determination Using QoS Metrics and Priority Based Evolutionary Optimization, Conference on High Performance Computing and Communications, Sep.2011, pp615-621.
    [64]Zheng Wang, Internet QoS:Architecture and Mcheanisms for Quality of Services, San Francisco:Morgan Kaufmann,2001.
    [65]L. Berger, et al, Resource Reservation Protocol (RSVP) Message Formats for Label Switched Path (LSP) Attributes Objects, IETF RFC 6510, Feb.2012.
    [66]R.Aggarwal, et al., MPLS Upstream Label Assignment for LDP, IETF RFC 6389, Nov.2011.
    [67]Ilion Yi-Liang Hsiao and Chein-Wei Jen, Anew Hardware Design and FPGA Implementation for Internet Routing Towards IP over WDM and Terabit Routers, IEEE International Symposium on Circuits and Systems, Geneva, Switzerlan,2000.
    [68]Tzi-cker Chiueh, Prashant Pradhan, High-Performance IP Routing Table Lookup Using CPU Caching, Bharat Doshi.Proc of IEEE Infocom'99(New York USA).Piscataway:IEEE Xplore Press,1999. pp1421-1428.
    [69]Nen-Fu Huang, Shi-Ming Zhao, Jen-Yi Pan, and Chi-An Su, A Fast IP Routing Lookup Scheme for Gigabit Switching Routers, IEEE INFOCOM 99 Conference on Computer Communications Proceedings,1999,pp1429-1436.
    [70]Yen-Jen Chang, A High-Performance and Energy-Efficient TCAM Design for IP-Address Lookup, IEEE Transactions on Circuits and Systems II:Express Brieffs,2009, Vol.56, No.6, pp479-483.
    [71]A.L.Barabasi, R.Albert, Emergence of Scaling in Random Networks, Science, Vol.286, No.5439,1999,pp.509-512.
    [72]R.Cohen, S.Havlin, Scale-Free Networks are Ultra small, Physical Review Letters, Vol.90, No.5, 2003. pp.058701-058704.
    [73]S. N. Dorogovtsev, J. F. F. Mendes, A.N. Samukhin, Structure of Growing Networks with Preferential Linking, Physical Review Letters, Vol.85, No.21,2000, pp.4633-4636.
    [74]Kostas Pagiamtzis, Ali Sheikholeslami, Content-Addressable Memory (CAM) Circuits and Architectures:A Tutorial and Survey, IEEE Journal of Solid-State Circuits,2006, Vol.41, No,3, pp712-727.
    [75]Yeim-Kuan Chang, Yen-Cheng Liu, and Fang-Chen Kuo, A Pipelined IP Forwarding Engine with Fast Update, Advanced Information Networking and Applicatiowww.1w20.comns,2009. AINA'09. International Conference on,2009, pp263-269.
    [76]D.Pao, C.Liu, A.Wu, et al., Efficient hardware architecture for fast IP address lookup, IEE Proc.-Comput.Digit. Tech.,2003, Vol.150, No.l, pp43-52.
    [77]Mohammad J. Akhbarizadeh, Mehrdad Nourani, et al., A TCAM-Based Parallel Architecture for High-Speed Packet Forwarding, IEEE Transactions on Computers,2007, Vol.56, No.l, pp58-72.
    [78]D. Knuth, Fundamental Algorithms Vol.3:Sorting and Searching, Addison-Wesley, Massachusetts,1973.
    [79]D. R. Morrison, PATRICIA - Practical algorithm to retrieve information coded in alfanumeric, IEEE/ACM Transactions on Networking,1968, Vol.17, No.1, pp1093-1102.
    [80]V. Srinivasan and G. Varghese, Faster IP lookups using controlled prefix expansion, in Proc. ACM SIGMATICS, Madison,Wisconsin,1998, pp1-10.
    [81]S. Nilsson and G. Karlsson, IP-Address lookup using LC-tries, IEEE Journal on Selected Areas in Communications,1999, Vol.17, pp1083-1092.
    [82]W. Eatherton, G. Varghese, and Z. Dittia, Tree Bitmap:hardware/software IP lookups with incremental updates, ACM SIGCOMM Computer Communications Review,2004, Vol.34, No. 2, pp97-122.
    [83]M.Waldvogel, G.Varghese, J. Turner, and B.Plattner, Scalable high-speed IP routing lookups, in Proc. ACM SIGCOMM, Cannes, France,1997, pp25-36.
    [84]B.Lampson, V.Srinivasan, and G.Varghese, IP lookups using multiway and multicolumn search, in Proc. IEEE INFOCOM98 San Francisco, California,1999, Vol.3, pp1248-1256.
    [85]Keith Sklower, A Tree-based Routing Table for Berkeley Unix, Technical report, University of California, Berkeley,1993.
    [86]Pankaj Gupta, Steven Lin, and Nick McKeown, Routing Lookup in Hardware at Memory Access Speeds, in Proc. IEEE INFOCOM'98, San Francisco, California,1998, Vol.3, pp1240-1247.
    [87]Merit Networks, Inc. [online] available at: http://www.merit.edu
    [88]H. Liu, Routing table compaction in ternary CAM, IEEE Micro,2002, Vol.22, No.1, pp58-64.
    [89]F. Zane, G. Narlikar, and A. Basu, Cool CAMs:power-efficient TCAMs for forwarding engines, in Proc. IEEE INFOCOM'03, San Francisco, California,2003, pp42-52.
    [90]Weirong Jiang and Viktor K. Prasanna, Parallel IP Lookup using Multiple SRAM-based Pipelines, Parallel and Distributed Processing,2008. IPDPS 2008. IEEE International Symposium on,2008, ppl-14.
    [91]J.Harrison, et al, IPv6 Traffic Engineering in IS-IS, IETF RFC 6119, Feb.2011.
    [92]Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer, and Brian N. Bershad, Characterizing processor architectures for programmable network interfaces, in Proc. of 2000 International Conference on Supercomputing, Santa Fe, NM, May 2000, pp54-65.
    [93]Patrick Crowley and Jean-Loup Baer, A modelling framework for network processor systems, in Proc. of First Network Processor Workshop (NP-1) in conjunction with Eighth International Symposium on High Performance Computer Architecture (HPCA-8), Cambridge, MA, Feb. 2002,pp86-96.
    [94]Lothar Thiele, Samarjit Chakraborty, Matthias Gries, and Simon K"unzli, Design space exploration of network processor architectures, in Proc. of First Network Processor Workshop (NP-1) in conjunction with Eighth International Symposium on High Performance Computer Architecture (HPCA-8), Cambridge, MA, Feb.2002, pp30-41.
    [95]Ning Weng and Tilman Wolf, Profiling and mapping of parallel workloads on network processors, in Proc. of The 20th Annual ACM Symposium on Applied Computing (SAC), Santa Fe, NM, Mar.2005, pp 890-896.
    [96]Ning Weng and Tilman Wolf, Pipelining vs. multiprocessors - choosing the right network processor system topology, in Proc. of Advanced Networking and Communications Hardware Workshop (ANCHOR 2004) in conjunction with The 31st Annual International Symposium on Computer Architecture (ISCA 2004), Munich, Germany, June 2004.
    [97]T.Wolf, M.A.Franklin, Performance models for network processor design, IEEE Transactions on Parallel and Distributed Systems,2006, Vol.17, Issue:6, pp548-561.
    [98]Premkishore Shivakumar and Norman P. Jouppi, CACTI 3.0:An integrated cache timing, power and area model, Tech. Rep. WRL Research Report 2001/2, Western Research Laboratory, Palo Alto, CA, Aug.2001.
    [99]Doug Burger and Todd M. Austin, The SimpleScalar tool set, version 2.0, Tech. Rep.1342, Department of Computer Science, University of Wisconsin in Madison, June 1997.
    [100]T.Wolf and M.A. Franklin, CommBench - a telecommunications benchmark for network processors, in Proc. of IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Austin, TX,2000, pp.154-162.
    [101]Intel, Intel IXP4XX network processors, [online] available at: http://developer.intel.com/design/network/products/npfamily/ixp4xx.htm,2007.
    [102]M.Dabbagh, An approach to measuring kernel energy in software applications, Conference on Energy Aware Computing,2011, ppl-6.
    [103]NetFPGA Tutorial, [online] available at: http://www.netfpga.org,2012.
    [104]J. Naous, G. Gibb, S. Bolouki, and N. McKeown, NetFPGA:reusable router architecture for experiment research, In PRESTO'08:Proceedings of the ACM workshop on Programmable routers for extensible services of tomorrow,2008, pp1-7.
    [105]Q.Ma, P.Steenkite, Quality-of-Service Routing for Traffic with Performance Guarantees, In Proceedings of the 5th IFIP International Workshop on Quality of Service,1997, Vol.1, pp115-126.
    [106]F.A.Kuipers, P.V.Mieghem, T.Korkmaz, and M.Krunz, An Overview of Constraint-Based Path Selection Algorithms for QoS Routing, IEEE Communications Magazine,2002, Vol.40, No.12, pp50-55.
    [107]R.K.Jain, Dah-Ming W. Chiu, William R. Hawe, A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Computer Systems, DEC Technical Report TR-301, Digital Equipment Corporation,1984.
    [108]S. Hassan, and M.Kara, Performance Evaluation of End-to-End TCP-friendly Video Transfer in the Internet. The9th IEEE International Conference on Networks,2001, pp56-61.
    [109]E.Crawley, R.Nair, B.Rajagopalan, et al., A Framework for QoS-based Routing in the Internet, IETF RFC 2386,1998.
    [110]R.Le Faucheur, Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering, IETF RFC 4124,2005.
    [111]Y. Lee et al., Traffic Engineering in Next-Generation Optical Networks, IEEE Commun. Surveys & Tutorials,2004, Vol.6, No.3, pp16-33.
    [112]F. L. Faucheur and W. Lai, Requirements for support of differentiated services-aware MPLS traffic engineering, IETF, RFC 3564,2003.
    [113]S.Sivabalan, et al, Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol, IETF RFC 5455, Mar.2009.
    [114]A. Bobbio, A. Puliafito, and M. Tekel, A modeling framework to implement preemption policies in non-Markovian SPNs, IEEE Trans. Software Eng.,2000, Vol.26, pp36-54.
    [115]S.Altmeyer, et al, Cache Related Preemption Delay Aware Response Time Analysis for Fixed Priority Preemptive Systems, IEEE 32nd Real-Time Systems Symposium,2011, pp261-271.
    [116]S.Altmeyer, et al, Improved cache related preemption delay aware response time analysis for fixed priority preemptive systems, Real-Time Systems, Vol.48, No.5, pp499-526,2012.
    [117]P. Trimintzios et al., Quality of Service Provisioning through Traffic Engineering with Applicability to IP Based Production Networks, Comp. Commun.,2003, Vol.26, No.8, pp845-60.
    [118]V. Tabatabaee et al., Differentiated Traffic Engineering for QoS Provisioning, Proc. IEEE INFOCOM,2005, pp2349-59.
    [119]A. Elwalid et al., MATE:MPLS Adaptive Traffic Engineering, Proc. IEEE INFOCOM, 2001,pp1300-09.
    [120]K. Kar et al., Minimum Interference Routing of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering Applications, IEEE JSAC,2000, Vol.18, No.12, pp2566-7259.
    [121]K. Kodialam et al, Minimum Interference Routing of Applications to MPLS Traffic Engineering, Proc. IEEE INFOCOM,2000, pp884-893.
    [122]P. Aukia et al., RATES:A Server for MPLS Traffic Engineering, IEEE Network,2000, Vol. 14, No.2, pp34-41.
    [123]J. C. de Oliveira et al., SPeCRA:A Stochastic Performance Comparison Routing Algorithm for LSP setup in MPLS Networks, Proc. IEEE GLOBECOM,2002, pp2190-2194.
    [124]J. C. de Oliveira et al., New Preemption Policies for DiffServ Aware Traffic Engineering to Minimize Rerouting in MPLS Networks, IEEE/ACM Trans. Networking,2004, Vol.12, No.4, pp733-745.
    [125]C. Scoglio et al., TEAM: A Traffic Engineering Automated Manager for DiffServ Based MPLS Networks, IEEE Commun.Mag.,2004, Vol.42, No.10, pp134-145.
    [126]Z. Wang, J. Crowcroft, QoS routing for supporting multimedia applications, IEEE Journal on Selected Areas in Communication,1996, Vol.14, No.7, pp 1228-1234.
    [127]R. Guerin, A. Orda, D. Williams, QoS routing mechanisms and OSPF extensions, Internet Draft,1996.
    [128]R. Guerin, A. Orda, and D. Williams, QoS Routing Mechanisms and OSPF Extensions, Proc. GLOBECOM'97,1997, pp1903-1908.
    [129]Q. Ma and P. Steenkiste, Supporting Dynamic Inter-Class Resource Sharing: A Multi-Class QoS Routing Algorithm, Proc.IEEE INFOCOM'99,1999, pp649-660.
    [130]W.C. Lee, M.G. Hluchyj, and P.A. Humblet, Routing Subject to Quality-of-Service Constraints in Integrated Communication Networks, IEEE Network,1995, Vol.9, No.4, pp 14-16.
    [131]F.Le Faucheur et al., Maximum Allocation Bandwidth Constraints Model for DiffServ-Aware MPLS Traffic Engineering, IETF RFC 4125,2005.
    [132]F.Le Faucheur et al., Russian Dolls Bandwidth Constraints Model for DiffServ-Aware MPLS Traffic Engineering, IETF RFC 4127,2005.
    [133]J.Ash, Max Allocation with Reservation Bandwidth Constraints Model for DiffServ-Aware MPLS Traffic Engineering & Performance Comparisons, IETF RFC 4126,2005.
    [134]W.S. Lai, Traffic Engineering for MPLS, Proc. Internet Performance and Control of Network Systems III Conf.,2002, Vol.4865, pp.256-267.
    [135]Tong Shan, Oliver W.W.Yang, Bandwidth Management for Supporting Differentiated-Service- Aware Traffic Engineering, IEEE Transactions on Parallel and Distributed System,2007, Vol.18, No.9,pp1320-1331.
    [136]F. Blanchy, L. Melon, and G. Leduc, A Preemption-Aware On-line Routing Algorithm for MPLS Networks, Telecommun. Sys.,2003, Vol.24, No.2-4, pp.187-206.
    [137]L.Yang, et al., Forwarding and Control Element Separation (ForCES) Framework, IETF RFC 3746,2004.
    [138]Cisco Carrier Routing System Many Services, One Network, Limitless Possibilities, [online] available at: http://www.cisco.com.
    [139]T-series Routing Platforms, System and Packet Forwarding Architecture, [online] available at:http://www.juniper.net.
    [140]DARPA, Advanced technology working together to build 100Tbps router capacity, [online] available at: http://findarticles.com/p/articles/mi_m0NVN/is_31_24/ai_n6152312.
    [141]ITU-T G.8080, The Architecture for Automatic Switching Optical Network (ASON),2002, ppl-125.
    [142]J.P.Jue, et al., Optical packet and burst switched networks:a review, IET Communications, 2009, Vol.3, Iss.3, pp334-352.
    [143]S.Huang, et al., Variable-Bandwidth Optical Paths:Comparison Between Optical Code-Labeled Path and OCDM Path, Journal of Lightwave Technology,2006, Vol.24, No.10, pp3563-3573.
    [144]Nen-Fu Huang, Guan-Hsiung Liaw, and Chuan-Pwu Wang, A novel alloptical transport network with time-shared wavelength channels, IEEE Journal on Selected Areas in Communications,2000, Vol.18, No.10, pp1863-1875.
    [145]Suresh Subramaniam, Eric J. Harder, and Hyeong-Ah Choi, Scheduling multi-rate sessions in time division multiplexed wavelength-routing networks, IEEE Journal on Selected Areas in Communications,2000, Vol.18, No.10.
    [146]R. Srinivasan and A. K. Somani, A generalized framework for analyzing time-space switched optical networks, IEEE Journal on Selected Areas in Communications,2002, Vol.20, Iss.l,pp202-215.
    [147]Spohn and McDysan, ATM:Theory and Applications. New York: McGraw-Hill,1994.
    [148]Y.G.Wen, Y.Zhang, and L.K.Chen, On Architecture and Limitation of Optical Nultiprotocol Label Switching (MPLS) Networks Using Optical- Orthogonal- Code (OOC)/ Wavelength Lable, Optical Fiber Technology,2002, Vol.8, pp43-70.
    [149]H. Wessing, H. Christiansen, T. Fjelde, and L. Dittmann, Novel scheme for packet forwarding without header modifications in optical networks, J. Lightwave Technol.,2002, Vol.20, No.8, pp1277-1283.
    [150]W. Yang, C.Wu, and H.Su, Optical Code Division Multiplexing for Packet Labeling in Optical Switching Networks, IEICE TRANS.COMMUN.,2007, Vol.E90-B, No.10, pp2772-2779.
    [151]Fan R.K.Chung, et al., Optical Orthogonal Codes:Design, Analysis, and Applications, IEEE Transactions on Information Theory,1989, Vol.35, No.3, pp595-604.
    [152]R. Cooper and S. Katz, Analysis of alternate routing networks with account taken of nonrandomness of overflow traffic, Bell Telephone Lab. Memo., Tech. Rep.,1964.
    [153]J.Baliga, et al., Analysis of Bufferless OBS/OPS Networks with Multiple Deflections, IEEE Communications Letters,2009, Vol.13, No.12, pp1-3.
    [154]S.Yoo, Optical-label switching,MPLS, MPLambdaS and GMPLS, Optical Networks Magazine,2003, Vol.4, pp17-31.
    [155]Open Signal Working Group, [online] available at: http://www.comet.columbia.edu/ opensign
    [156]FAIN Project, [online] available at: http://www.istfain.org.
    [157]Z.Wang, et al., Quality of Service Routing for Supporting Multimedia Applications, IEEE JSAC,1996, Vol.14 No.7, pp1228-1234.
    [158]R.Guerin, et al., QoS Routing Mechanisms and OSPF Extensions, Proc.IEEE Globcom 1997,pp1903-1908.
    [159]United State NSF Future Internet Architecture project, [online] available at: http://www.nets-fia.net/, Dec 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700