用户名: 密码: 验证码:
基于分布式估计的气体泄漏源检测与定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络(WSN)通常由大量小体积、低成本且环境适应性强的传感器节点组成,其集传感器技术、信息处理技术和网络通信技术于一体,可实现信息的采集、融合和传输。生化气体泄漏源检测与定位是WSN在环境监测领域的一个典型应用,其目的是寻找有效且精确的定位方法,及时地对污染源做出预警与定位。研究成果可广泛应用于有毒有害气体泄漏源查找与定位、危险环境监控、火源探测与预警等场合。
     本文对基于WSN的化学源分布式检测与定位方法进行了研究,重点开展了如下工作:
     第一、提出了传感网络生化气体泄漏源检测与定位理论框架,包括气体扩散模型构建和传感网络分布式信息处理两个方面。
     第二、提出了一种序贯分布式最小均方误差(D-MMSE)估计算法实现气体泄漏源检测与定位。推导了D-MMSE估计量及其均方误差表达式;构建了包含节点间信息增益和通信链路能耗两方面参数的信息融合目标函数,并对其求极值以完成路由节点选择;所选节点在其测量值和前一个节点估计结果基础上与邻居节点信息交互,实现了气体泄漏源位置参数估计量及均方误差的更新与传递。为降低通信链路能耗,按照估计量均方误差对邻居节点集的选择半径进行动态调整。通过计算机仿真验证了所提D-MMSE算法的性能。
     第三、提出了一种基于WSN的分布式序贯卡尔曼滤波方法用于实现生化气体泄漏源检测与定位。鉴于环境中气体扩散模型的高度非线性、非高斯特征,其核心算法由序贯扩展卡尔曼滤波算法(S-EKF)和序贯无迹卡尔曼滤波(S-UKF)算法组成。并通过仿真实验对这两种算法的性能进行了论证分析。
     第四、提出了一种基于协作多输入多输出(MIMO)分簇传感网络的生化气体泄漏源分布式参数估计方法。首先在簇内采用并行粒子滤波算法实现气体泄漏源状态参数的分布式估计,并得到估计量及其估计方差,然后根据估计量的方差以及方差的迹进行下一个簇集调度,最后在能量约束条件下运用凸优化算法实现了簇与簇之间的协作MIMO信息传输。
Wireless sensor network (WSN) is usually composed of many small low-costsensor nodes with high adaptability to environments, which integrates sensortechnology, information processing and network communication technology to fulfillthe information collection, fusion and transmission. The detection and localization ofgas-leakage sources based on WSN is a typical application in the field ofenvironmental monitoring, which is aimed at finding an effective and accuratepositioning method to locate the source of pollution and give timely warning. Theresearch results can be widely applied to searching and positioning of toxic andhazardous gas leak sources, dangerous environmental monitoring, detection and earlywarning of fire sources and other occasions.
     This dissertation mainly focuses on the gas-leakage source detection andlocalization using distributed sensor networks. The main contributions can beconcluded as follows:
     Firstly, the theoretical framework for WSN based biochemical gas-leakagesource detection and localization is proposed. The proposed framework includes twoaspects, one is gas diffusion modeling, and the other is distributed informationprocessing.
     Secondly, a gas-leakage source detection and localization algorithm based ondistributed minimum mean squared error (D-MMSE) sequential estimation isproposed. In the proposed algorithm, the expression of the D-MMSE estimator and itscorresponding mean square error is derived; An information fusion objective function(IFOF) which combines the information utility measure and the communication costbetween sensor nodes is constructed, and the sensor node scheduling scheme isdesigned by optimizing the IFOF; For each selected sensor node, the estimator and thecorresponding mean square error are updated with its own observation and the noisecorrupted decision from the previous node, and the updated results are transmitted tothe next selected node by collaborating information within its neighborhood; Todecrease the energy consumption, the neighborhood radius is adjusted dynamicallybased on the mean square error. The performance of the proposed D-MMSE algorithmis verified through computer simulations.
     Thirdly, a sequential Kalman filtering theory is used for the biochemicalgas-leakage source detection and localization in the distributed sensor networks. Given the highly non-linear and non-Gaussian physical model of gas distribution inthe environment, the sequential extended Kalman filter (S-EKF) and sequentialunscented Kalman filter (S-UKF) are selected to localize the chemical source basedon the concentration detected using wireless sensor nodes. Simulation results validateboth algorithms.
     Fourthly, a distributed parameter estimation method for biochemical gas-leakagesources based on the cooperation of multiple inputs and multiple outputs (MIMO)cluster sensing networks is proposed. At first, the distributed state parameters of thegas-leakage source are estimated by the parallel particle filtering algorithm in thecluster, and the parameters’ estimators and variances are calculated. Then, the sensornodes scheduling in different clusters are implemented with the variances andcorresponding traces. At last, the information transmission with the collaborationMIMO method between two clusters is realized using convex optimization algorithmwith the energy constraint conditions.
引文
[1] Potti G J, Kaiser W J. Wireless integrated network sensors. Communications of the ACM,2000,43(5):51~58
    [2] Tilak S. Abu-Ghazaleh N B, Heinzelman W. A taxonomy of wireless micro-sensor network models. ACMMobile Computing and Communications Review,2002,6(2):28~36
    [3] Qi H R, Iyengar S S, Chakrabarty K. Distributed sensor networks-a review of recent research. Journal ofFranklin Institute,2001,338(6):655~668
    [4] Akyildiz I F, Su W, Sankarasubramaniam Y, Cayirci E. A survey on sensor networks. Computer Networks,2002,38(4):393~422
    [5]任丰原,黄海宁,林闯.无线传感器网络.软件学报,2003,14(7):1282~1291
    [6] Chong C V, Kumar S P. Sensor networks: evolution, opportunities, and challenges. Proceedings of the IEEE,2003,91(8):1247~1256
    [7] Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Computer Networks,2008,52(12):2292~2330
    [8] Arslan M, Ann G R. Optimization approaches in wireless sensor networks. Chapter of Sustainable WirelessSensor Networks,2010,313~318
    [9] Li D, Wong K, Hu Y H, et al. Detection, Classification and Tracking of Targets. IEEE Signal ProcessingMagazine,2002,19(2):17~29
    [10] Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring. Proceedingsof the1st ACM International Workshop on Wireless Sensor Networks and Applications,2002,88~97
    [11] Lu B, Wu L, Habetler T G, et al. On the application of wireless sensor networks in condition monitoring andenergy usage evaluation for electric machines. The Proceedings of the31st Annual Conference of the IEEEIndustrial Electronics Society,2005,2674~2679
    [12] Chan L, Celler B G, Lovell N H. Development of a smart health monitoring and evaluation system. In IEEETencon2006,2006,1~4
    [13] Michalis P, Christos G. Plume source position estimation using sensor networks. Proceedings of the13thMediterranean conference on control and automation, Limassol Cyprus2005:731~736
    [14] Mao G Q, Fidan B, Brian D O. Wireless sensor network localization techniques. Computer Networks,2007,51(1):2529~2553
    [15] Amitangshu P. Localization aAlgorithms in wireless sensor networks: current approaches and futurechallenges. Network Protocols and Algorithms,2010,2(1):45~74
    [16] Oispuu M, Nickel U. Direct detection and position determination of multiple sources with intermittentemission. Signal Processing,2010,90(5):3056~3064
    [17] Mitra S, Duttagupta S P, Tuckley K, et al. Wireless sensor network based localization and threat estimationof hazardous landfill gas source. IEEE International Conference on Industrial Technology,2012,349~355
    [18] Mitra S, Duttagupta S P, Tuckley D K, et al.3D ad-hoc sensor networks based localization and riskassessment of buried landfill gas source. International Journal of Circuits, System and Signal Processing,2012,6(1):75~86
    [19] Ishida H, Nakamoto T, Moriizumi T. Gas/odor plume tracing robot. Sensors Update,1999,6(1):397~418
    [20] Hayes A T, Martinoli A, Goodman R M. Distributed odor source localization. IEEE Sensors Journal,2002,2(3):260~271
    [21] Pang S, Farrell J A. Chemical plume source localization. IEEE Transactions on Systems, Man andCybernetics, Part B (Cybernetics),2006,36(5):1068~1080
    [22]孟庆浩,李飞.主动嗅觉研究现状.机器人,2006,28(1):89~96
    [23] Lochmatter T, Raemy X, Martinoli A. Odor source localization with mobile robots. Bulletin of the SwissSociety for Automatic Control,2007,46:11~14
    [24]李俊彩,孟庆浩,梁琼.基于进化梯度搜索的机器人主动嗅觉仿真研究.机器人,2007,(3):234~238
    [25]孟庆浩,李飞,张明路等.湍流烟羽环境下多机器人主动嗅觉实现方法研究.自动化学报,2008,34(10):1281~1290
    [26]李飞,孟庆浩,李吉功等.基于P-PSO算法的室内有障碍通风环境下的多机器人气味源搜索.自动化学报,2009,(12):1573~1579
    [27] Li F, Qing-Hao M, Shuang B, et al. Probability-PSO algorithm for multi-robot based odor source localizationin ventilated indoor. Intelligent Robotics and Applications, Lecture Notes in Computer Science Springer,2008,5314:1206~1215
    [28]孟庆浩,李飞,张明路等.湍流烟羽环境下多机器人主动嗅觉实现方法研究.自动化学报,2008,34(10):1281~1290
    [29]李飞.湍动气流主控环境下多机器人气味源定位.天津大学博士学位论文,2009
    [30]李吉功.室外时变气流环境下机器人搜寻与确认气味源方法.天津大学博士学位论文,2010
    [31] Li J G, Meng Q H, Wang Y, et al. Odor source localization using a mobile robot in outdoor airflowenvironments with a particle filter algorithm. Autonomous Robots,2011,30(3):281-292
    [32]匡兴红,邵惠鹤.无线传感器网络在气体源预估定位中的应用.华东理工大学学报(自然科学版),2006,32(7):780~783
    [33]匡兴红.无线传感器网络中定位跟踪技术的研究.上海交通大学博士学位论文,2008
    [34] Pavlin G, de Oude P, Mignet F. Gas detection and source localization: a Bayesian approach. Proceedings ofthe14th International Conference on Information Fusion,2011,1~8
    [35]张兆顺等.湍流理论与模拟.北京:清华大学出版社,2005
    [36] Kowadlo G, Russell R A. Robot odor localization: a taxonomy and survey. International Journal of RoboticsResearch,2008,27(8):869~894
    [37]丁信伟,王淑兰.可燃及毒性气体泄露扩散研究综述.化学工业与工程:1999,4(2):118~122
    [38] Pesquil F. Atmospheric diffusion. New York: Wiley,1974
    [39] Britter R E, McQuaid J. HSE Contract Research Report.1988:129-134
    [40] Kulesz J, Development of a common data highway for comprehensive incident management,Tech. Rep,2003
    [41] Ushiku H, Ishida H. Estimation of gas-source location using gas sensors and ultrasonic anemometer.Proceedings of IEEE Sensors,2006:420~423.
    [42] Ochiai H, Mitran P, Poor H V, et al. Collaborative beamforming for distributed wireless ad hoc sensornetworks. IEEE Trans. Signal Process,2005,53(11):4110~4124
    [43] Zhang Y B, Dai H Y. Selecting optimal transmission strategies for cooperative sensor networks. Proceedingsof Conference on Information and Systems,2005,335~441
    [44] Xiao J J, Luo Z Q, Giannakis G B. Distributed compression-estimation using wireless sensor networks.IEEE Signal Processing Magazine,2006:27~41
    [45] Dohler M, Li Y, Vucetic B. A, et al. Performance analysis of distributed space-time block encoded sensornetworks. IEEE Transactions on Vehicular Technology,2006,55(7):1776~1789
    [46] Zhao F, Shin J, Reich and J. Information-driven dynamic sensor collaboration. IEEE Signal ProcessingMagagazine,2002,19(2):61~72
    [47] Chu M, Haussecker H, Zhao F. Scalable information-driven sensor querying and routing for ad hocheterogeneous sensor networks. International Journal of High Performance Computing Applications,2002,16(3):90~10
    [48] Li N, Huang D D, Li O, et al. Research on the performance of MISO cooperative routing strategy based onchannel characteristics. The6th International Conference on Wireless Communications Networkingand Mobile Computing,2010,1~5
    [49] Younis O, Krunz M, Ramasubramanian S. Node clustring in wireless sensor networks: recent developmentsand deployment challenges. IEEE Network,2006,20(3):20-25
    [50] Kumarawadu P, Dechene D J, Luccini M, et al. Algorithms for node clustering in wireless sensor networks: asurvey. Proceeding of the4th International IEEE Conference on Information and Automation forSustainability,2008,295~300
    [51] Zhou Z, Zhou S L, Cui S G, et al. Energy-efficient cooperative communication in a clustered wireless sensornetwork. IEEE Transactions on Vehicular Technology,2008,57(6):3618~3628
    [52] Nehorai A, Porat B, Paldi E. Detection and localization of vapor-emitting sources. IEEE Transactions onSignal Processing,1995,43(1):234~253
    [53] Porat B, Nehorai A. Localizing vapor-emitting sources by moving sensors. IEEE Transactions on SignalProcessing,1996,44(4):1018~1021
    [54] Jeremic J, Nehorai A. Landmine detection and localization using chemical sensor array processing. IEEETransactions on Signal Processing,2000,48(5):386~395
    [55] Crank J. The Mathematics of Diffusion. Oxford, UK: Oxford University Press,1956
    [56] Michaelis P, Christos G. Plume source position estimation using sensor networks. Proceedings of the13thMediterranean Conference on Control and Automation,2005,731~735
    [57] Michaelis P, Christos G. Event detection using sensor networks. Proceedings of the45th IEEE Conference onDecision&Control,2006,6784~6789
    [58] Vijayakumaran S, Levinbook Y, Wong T F. Maximum likelihood localization of a diffusive point sourceusing binary observations. IEEE Transactions on Signal Processing,2007,55(2):665~676
    [59] Michaelis P, Christos G. Fault tolerant maximum likelihood event localization in sensor networks usingbinary data. IEEE Signal Processing Letters,2009,16(5):406~409
    [60] Matthes J, Groll L, Keller H B. Source localization by spatially distributed electronic noses for advection anddiffusion. IEEE Transactions on Signal Processing,2005,53(5):1711~1719
    [61] Keats A, Yee E, Lien F S. Bayesian inference for source determination with applications to a complex urbanenvironment. Atmospheric environment,2007,41(3):465~479
    [62] Pudykiewicz J A. Application of adjoint tracer transport equations for evaluating source parameters.Atmospheric Environment,1998,32(9):3039~3050
    [63] Sohn M D, Reynolds P, Singh N. Rapidly locating and characterizing pollutant releases in buildings. Journalof the Air and Waste Management Association,2002,52(12):1422~1432.
    [64] Sohn M D, Sextro R G, Gadgil A J, et al. Responding to sudden pollutant release in office buildings:1.Framework and analysis tools. Indoor Air,2003,13(3):267~276.
    [65] Chow T K, Kosovic B, Chan S. Source inversion for contaminant plume dispersion in urban environmentsusing building resolving simulations. Journal of Applied Meteorology and Climatology,2005,47(6):1553~1572
    [66] Kosovic B, Sugiyama G, Chow T K, et al. Stochastic source inversion methodology and optimal sensornetwork design. Proceedings of the Ninth Annual George Mason University Conference on AtmosphericTransport and Dispersion Modeling,2005
    [67] Rapley R, Robins P, Thomas P A. Source term estimation and probabilistic sensor modelling. Proceedings ofthe Ninth Annual George Mason University Conference on Atmospheric Transport and Dispersion Modeling,2005
    [68] Keats W A, Lien F S, Yee E. Source determination in built-up environments through Bayesian inferencewith validation using the MUST Array and Joint Urban2003tracer experiments. Proceedings of the14thAnnual Conference of Computational Fluid Dynamics,2006
    [69] Yee E. A Bayesian approach for reconstruction of the characteristics of a localized pollutant source from asmall number of concentration measurements obtained by spatially distributed Electronic Noses.Russian-Canadian Workshop on Modeling of Atmospheric Dispersion of Weapon Agents,2006
    [70] Yee E, Lien F S, Keats, W A, et al. Validation of Bayesian inference for emission source distributionreconstruction using the Joint Urban2003and European Tracer experiments. FourthInternational Symposium on Computational Wind Engineering,2006
    [71] Senocak I, Hengartner N W, Short M B, et al. Stochastic event reconstruction of atmospheric contaminantdispersion using Bayesian inference. Atmospheric Environment,2008,42(33):7718~7727
    [72] Gunatilaka A, Ristic B, Gailis R. On localization of a radiological point source. Proceedings of the theInformation, Decision and Control Conference,2007,236~241
    [73] Morelande M, Ristic B, Gunatilaka A. Detection and parameter estimation of multiple radioactive sources.Proceedings of the10th International Conference on Information Fusion,2007,1~7
    [74] Gunatilaka A, Ristic B, Skvortsov A. Parameter estimation of a continuous chemical plume source.Proceedings of the11th International Conference on Information Fusion,2008,1~8
    [75] Xiao L, Boyd S, Lall S. A scheme for robust distributed sensor fusion based on average consensus.Proceedings of the4th International Symposium on Information Processing in Sensor Networks,2005:63~70
    [76] Liu J, Reich J, Zhao F. Collaborative in-network processing for target tracking. EURASIP Journal onAdvances in Signal Processing,2003,4:378~391
    [77] Zhao T, Nehorai A. Localization of diffusive sources using distributed sequential Bayesian methods inwireless sensor networks. Proceeding of the IEEE International Conference on Acoustics, Speech and SignalProcessing,2006,985~988
    [78] Zhao T, Nehorai A. Distributed sequential Bayesian estimation of a diffusive source in wireless sensornetworks. IEEE Trans. Signal Process.,2007,55(4):1511~1524
    [79] Ortner M, Nehorai A, Jerémic A. Biochemical transport modeling and Bayesian source estimation in realisticenvironments. IEEE Transactions on Signal Processing,2007,55(6):2520~2532
    [80] Ortner M, Nehorai A. A sequential detector for biochemical release in realistic environments. IEEETransactions on Signal Processing,2007,55(8):4173~4182
    [81] Jaward M H, Bull D, Canagarajah N. Sequential Monte Carlo methods for contour tracking of contaminantclouds. Journal of Signal Processing,2010,90(1):249~260
    [82] Zhao T, Nehorai A. Information-driven distributed maximum likelihood estimation based on Gauss-NewtonMethod in Wireless Sensor Networks. IEEE Transactions on Signal Processing,2007,55(9):4669~4682
    [83] Ristic B, Morelande M R, Gunatilaka A. Information driven search for point sources of gamma radiation.Signal Processing,2010,90(4):1225~1239
    [84] Keats A, Yee E, Lien F S. Information driven receptor placement for contaminant source determination.Environmental Modelling and Software,2010,25:1000~1013
    [85] Ristic B, Gunatilaka A. Information driven localisation of a radiological point source. Information Fusion,2008,9(2):317~326
    [86] Zoumboulakis M, Roussos G. Estimation of pollutant-emitting point-sources using resource-constrainedsensor networks. GeoSensor Networks,2009,5659:21~30
    [87] Lopes C G, Sayed A H. Incremental adaptive strategies over distributed networks. IEEE Transactions onSignal Processing,2007,55(8):4064~4077.
    [88] Schizas I D, Ribeiro A, Giannakis G B. Consensus in ad hoc WSNs with noisy links-Part I: Distributedestimation of deterministic signals. IEEE Transactions on Signal Processing,2008,56(1):350~364.
    [89] Rabbat M G, Nowak R D. Distributed optimization in sensor networks. Proceedings of the3rd internationalsymposium on Information processing in sensor networks,2004,20~27
    [90] Rabbat M G, Nowak R D. Decentralized source localization and tracking. IEEE International Conference onAcoustics, Speech, and Signal Processing,2004,921~924
    [91]吴正平,关治洪,吴先用.基于一致性理论的多机器人系统队形控制.控制与决策,2007,22(11):1241~1244
    [92] Ren W. Formation keeping and attitude alignment for multiple spacecraft through local interactions. Journalof Guidance,Control, and Dynamics,2007,30(2):633~638.
    [93] Ren W. Trajectory tracking control for miniature fixed-wing unmanned air vehicles. International Journal ofSystems Science,2007,38(4):361~368.
    [94] Spanos D P, Olfati-Saber R, Murray R M. Dynamic consensus for mobile networks. Proceedings of the16thIFAC World Congress,2005.1~6
    [95] Spanos D P, Olfati-Saber R, Murray R M. Approximate distributed Kalman filtering in sensor networks withquantiable performance. Proceedings of the4th International Symposium on Information Processing inSensor Networks,2005,133~139
    [96] Olfati-Saber R. Distributed Kalman filter with embedded consensus filters. Proceedings of the44th IEEEConference on Decision and Control and European Control Conference,2005,8179~8184
    [97] Olfati-Saber R, Fax J, Murray R. Consensus and cooperation in networked Multi-Agent systems. Proceedingof the IEEE,2007,95(1):215~233
    [98] Olfati-Saber R. Distributed Kalman filtering for sensor networks. Proceedings of the46th IEEE Conferenceon Decision and Control,2007,5492~5498
    [99] Xiao L, Boyd S. Fast linear iterations for distributed averaging. Systems and Control Letters,2004,53(1):65~78
    [100] Kokiopoulou E, Frossard P, Gkorou D. Optimal polynomial filtering for accelerating distributed consensus.Proceedings of the IEEE International Sympious on Information Theory,2008,657~661
    [101] Talebi M S, Kefayati M, Khalaj B H, et al. Adaptive consensus averaging for information fusion over sensornetworks. Proceedings of the IEEE International Conference on Mobile Ad Hoc and Sensor Systems,2006,562~565
    [102] Aysal T C, Oreshkin B N, Coates M J. Accelerated distributed average consensus via localized node stateprediction. IEEE Transactions on Signal Processing,2009,57(4):1563~1576
    [103] Thomson L C, Hirst B, Gibson G,etal. An improved algorithm for locating a gas source using inversemethods. Atmospheric Environment,2007,41(6):1128~1134
    [104] Haupt S E, Young G S, Allen C T. A genetic algorithm method to assimilate sensor data for a toxiccontaminant release. Journal of Computers,2007,2(6):85~93
    [105] Matthes J, Groll L, Keller H B. Source localization based on point-wise concentration measurements.Sensors and Actuators A115,2004:32~37
    [106]Kumar S, Zhao F, and Shepherd D. Collaborative signal and information processing in microsensor networks.IEEE Signal Processing Magazine,2002,19(2):13~14
    [107] Hairong Q, Ying Y X, Xiao L W. Mobile-Agent based collaborative signaland information processing insensor networks. Proceedings of the IEEE,2003,91(8):1172~1183
    [108] Kay S M. Fundamentals of statistical signal processing: estimation theory. Englewood Cliffs, NJ:Prentice-Hall,1993
    [109] Zhao F, Liu J, Guibas L, et al. Collaborative signal and Information processing: an information directedapproach, Proceedings of the IEEE,2003,91:1199-1209
    [110] Toh Y, Xiao W, Xie L. A wireless sensor network target tracking system with distributed competition basedsensor scheduling. The3rd International Conference on Intelligent Sensors, Sensor Networks andInformation,2007:257~262
    [111] Toh Y, Xiao W, Xie L. Wireless sensor network for distributed target tracking:practices via real test-beddevelopment. Journal of Shandong University(Engineering science),2009,2:50~56
    [112]杨小军,邢科义,施坤林.传感器网络下机动目标动态协同跟踪算法.自动化学报,2007,33(10):1029~1035
    [113] Lin J, Xiao W, Lewis F, Xie L. Energy-effcient distributed adaptive multisensor scheduling for targettracking in WSN. IEEE Transactions on Instrument and measurement,2009,58(6):1886~1896
    [114] Cui S, Goldsmith A J, Bahai A. Energy-efficiency of MIMO and cooperative MIMO techniques in sensornetworks. IEEE Journal on selected areas of communications,2004,22(6):1089~1098
    [115] Keats A, Yee E, Lien F S. Bayesian inference for source determination with applications to a complex urbanenvironment. Atmospheric Environment,2007,41(3):465~479
    [116]王雪,王晟,马俊杰.分布式无线传感网络的协作目标跟踪策略.电子学报,2007,35(5):942~945
    [117] Rossi L, Krishnamachari B, Kuo C-C J. Distributed parameter estimation for monitoring diffusionphenomena using physical models. Proceedings of the1st Annual IEEE Communications SocietyConference on Sensor and Ad Hoc Communications and Networks,2004:460~469
    [118] Niu R, Varshney P K. Performance analysis of distributed detection in a random sensor field. IEEETransactions on Signal Processing,2008,56(1):339~349
    [119] Cover T M, Thomas J A. Elements of information theory. New York: John Willey and Sons,2006
    [120] Guo D, Shamai S, Verdú S. Mutual information and minimum mean-square error in Gaussian channels. IEEETransactions on Information Theory,2005,51(4):1261~1282
    [121] Kaplan L. Global node selection for localization in a distributed sensor network. IEEE Transactions onAerospace and Electronic Systems,2006,42(1):113~135
    [122] Brooks R R, Griffin C, Friedlander D S. Self-organized distributed sensor network entity tracking.International Journal of High Performance Computing Applications,2002,16(3):207~220
    [123] Brooks R R, Ramanathan P, Sayeed A M. Distributed target classification and tracking in sensor network.Proceedings of the IEEE,2003,91(8):1163~1171
    [124] Babu S U, Kumar C S, Kumar R V R. Sensor networks for tracking a moving object using Kalman filtering.IEEE International Conference on Industrial Technology,2006:1077~1082
    [125] Roumeliotis S I, Bekey G A. An extended Kalman filter for frequent local and infrequent global sensor datafusion. Sensor Fusion and Decentralized Control in Autonomous Robotic Systems,1997:11~22
    [126] Hlinka O, Hlawatsch F. Time-space-sequential algorithms for distributed Bayesian state estimation in serialsensor networks. Proceedings of the IEEE International Conference on Acoustics, Speech and SignalProcessing,2009:2057~2060
    [127] Hlinka O, Djuric P M, Hlawatsch F. Time-space-sequential distributed particle filtering with low-ratecommunications. Proceedings of the43th Asilomar Conference on Signals, Systems and Computers, PacificGrove,2009:196~200
    [128] Zhou P X. Pei B. A semi-centralized approach for optimized virtual MIMO wireless sensor networks.Communications and Networking Second International Conference,2007:877~881
    [129] Jayaweera S K. A virtual MIMO-based cooperative communications architecture for energy-constrainedwireless sensor networks. IEEE Transactions on Wireless Communication,2006,15(5):984~989
    [130] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo methods for Bayesian filtering. Statistics andComputing,2000,10:197~208
    [131] Liu J S, Chen R. Sequential Monte Carlo methods for dynamic system. Journal of the American StatisticalAssociation.1998,93(443):1032~1044
    [132] Bernstein D S. Matrix mathematics: theory, facts, and formulas with application to linear systems theory.Princeton Unviversity Press,2005
    [133] Boyd S, Vanderberghe and L. Convex optimization, Cambridge, UK: Cambridge University Press,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700