用户名: 密码: 验证码:
接入网IPv6隧道过渡体系结构与协议研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着IPv4网络地址空间的耗尽,IPv6取代IPv4已成为互联网发展的大势所趋。由于IPv6与IPv4的协议不兼容性,IPv6网络与IPv4网络无法直接通信,实现从IPv4向IPv6的平滑过渡成为十分重要与紧迫的课题。接入网络直接面向海量终端用户与上层应用,耗费大量地址,是IPv6过渡的核心难点。隧道技术具有保持端到端透明性、可扩展性高等优势,是实现IPv6过渡的重要方法。本文分析了接入网络IPv4-IPv6过渡与共存的问题,提出接入网隧道过渡体系结构,在协议机制、地址资源分配、路由与部署规划等各个方面给出了接入网过渡解决方案。本文的研究内容和贡献包括:
     1.综述IPv6过渡领域的研究现状与主流过渡技术机制。论文阐明了IPv6过渡的基本问题以及翻译和隧道技术的原理,分析了IETF提出的主流过渡机制,总结其中可用的机制及应用场景,指出了过渡技术研究的难点与趋势。
     2.提出接入网隧道IPv6过渡体系结构。针对端到端异构互联问题进行形式化描述,基于隧道构建双栈网络连接和端到端路径,设计终端同地址簇通信模型,提出避免跨地址簇互通,保持端到端透明性与高可扩展性的接入网隧道过渡体系结构。确立接入网单栈网络配合星型隧道的基本过渡形式,指出本文后续分析的接入网隧道机制、地址资源分配和异构路由三要素。
     3.设计接入网4over6隧道机制及其配套协议。分析接入网络中已有IPv4-over-IPv6隧道机制的缺陷,设计跨IPv6网络分配IPv4地址以及基于端口集共享地址的地址下发协议,进而提出接入网公有4over6与轻量级4over6隧道机制,实现了保持端到端特性、保持46编址独立与轻量级状态维护。
     4.提出基于端口集的高效地址资源分配算法。针对接入网异构地址资源共享与分配问题,建立端口集资源分配模型,提出端口集分配算法,通过可变端口集单元的规整化组织、分配与回收,实现地址空间的高效与充分利用。提出基于端口集时间智能的分配算法,进一步提高地址利用率。
     5.设计低传输代价的接入网隧道集中点置放与路由规划策略。针对星型汇聚特征下的接入网隧道规划问题,为集中点置放与路由建立优化模型,提出组合使用去变量耦合、拓扑变换星型特征消除和最小干扰路由的方案,求解集中点位置以及流量转发路径,实现低传输代价的隧道机制部署规划。
With the exhaustion of IPv4address space, IPv6is widely believed to replace IPv4for Internet development. Due to the incompatibility between IPv4and IPv6protocols,IPv4and IPv6networks cannot communicate directly. Therefore the transition from IPv4to IPv6has become a task of great significance and urgency. The access networks face thehuge numbers of network users and upper layer applications directly, as well as consumemassive addresses, which makes the transition of access networks the essential difcultyfor IPv6transition. The dissertation investigates the problem of IPv4-IPv6coexistence&transition in access networks comprehensively, and develops solutions in mechanism&protocols, address resource utilization method and placement&routing plan for accessnetwork transition. The contributions of this dissertation include the following aspects:
     1.Survey the research works in the field, especially the mainstream transition mech-anisms. The dissertation states the basic problem of IPv6transition and the principleof translation&tunneling techniques, analyzes the mainstream transition mechanismsraised so far in IETF, summarizes the feasible mechanisms among them based on theirapplication scenarios, and concludes the difculties and the trend of the study in the field.
     2.Propose the IPv6tunneling transition architecture for access networks. The disser-tation formalizes the basic transition problem of heterogeneous end-to-end connectivity,proposes the methods of building dual-stack network layer connectivity and end-to-endpath using tunneling technique, designs a homogeneous end-to-end communication mod-el. The IPv6tunneling transition architecture avoids cross-protocol inter-connection, andachieves the advantages on end-to-end transparency and scalability. Based on that, thebasic form of access network transition is determined as single-stack network plus hub&spoke tunnel. The follow-up roadmap of this dissertation is determined as well, tostudy the elements of tunneling mechanism, address resource allocation and heteroge-neous routing for access network transition.
     3.Develop the4over6tunneling access mechanisms and their supporting protocols.The dissertation analyzes the flaws in the existing IPv4-over-IPv6access mechanisms,designs the protocols to allocate IPv4addresses in IPv6network and to enable port-set-style address sharing, and then develops the Public4over6and Lightweight4over6tun-neling access mechanisms. The mechanisms have the merits of end-to-end transparency, IPv4-IPv6address independency and lightweight state maintenance.
     4.Propose an efcient algorithm to allocate address resources in port-set granular-ity. To solve the heterogeneous address resource allocation and sharing problem in ac-cess network, the dissertation builds a resource allocation model for port-set-granularityresources, and develops an algorithm which organizes, allocates and recycles the trans-formable port-set units neatly. The algorithm achieves sufcient utilization of the addressspace in efcient execution time. An enhanced algorithm which further explores the timeinformation of the units is proposed to improve the address utilization rate.
     5.Develop a low-cost strategy for concentrator placement and route planning of tun-neling access mechanisms. To plan the tunneling mechanisms in access network in con-sideration of the hub concentrating feature, the dissertation builds an optimization mod-el for concentrator placement and route planning, and proposes a solution which com-bines the methods of variable decomposition, topology transformation and minimum-interference routing, to find the positions for the concentrators and the forwarding pathsfor the tunneling flows. The solution produces a deployment plan for the tunneling accessmechanisms with a low transmission cost.
引文
[1] Southern California I S I. Internet Protocol, DARPA Internet Program, Protocol Specification,1981. IETF RFC791.
    [2] Internet World Stats. Technical report,2012. http://www.internetworldstats.com.
    [3] IETF Locator/ID Separation Protocol Working Group. http-s://datatracker.ietf.org/wg/lisp/charter/.
    [4] IRTF Information-Centric Networking Research Group. http://irtf.org/icnrg.
    [5] Named Data Networking. http://named-data.net/.
    [6] Content Centric Networking Project. http://www.ccnx.org/.
    [7] OPEN NETWORKING FOUNDATION. Software-Defined Networking: The New Norm forNetworks. https://www.opennetworking.org/images/stories/downloads/white-papers/wp-sdn-newnorm.pdf.
    [8] Huston G. IPv4Address Report. Technical report, December,2012.http://www.potaroo.net/tools/ipv4/.
    [9] Hinden R, Deering S. IP Version6Addressing Architecture,2006. IETF RFC4291.
    [10] Thomson S, Narten T, Jinmei T. IPv6Stateless Address Autoconfiguration,2007. IETF RFC4862.
    [11] Perkins C, Johnson D, Arkko J. Mobility Support in IPv6,2011. IETF RFC6275.
    [12] Silva Hagen. IPv6Essentials.2nd Edition ed., O’Reilly Media,2006.
    [13] Deering S, Hinden R. Internet Protocol, Version6(IPv6) Specification,1995. IETF RFC1883.
    [14] Deering S, Hinden R. Internet Protocol, Version6(IPv6) Specification,1998. IETF RFC2460.
    [15]6Bone. http://www.gogo6.com/page/6bone.
    [16] Internet2. http://www.internet2.edu/.
    [17] GEANT. http://www.geant.net.
    [18] APAN, Asia Pacific Advanced Network. http://www.apan.net/.
    [19] IPv6Adoption Monitor. Technical report, University of Pennsylvania, Comcast and TsinghuaUniversity,2010. http://mnlab-ipv6.seas.upenn.edu/monitor.
    [20] Carpenter B, Moore K. Connection of IPv6Domains via IPv4Clouds,2001. IETF RFC3056.
    [21] Carpenter B, Jung C. Transmission of IPv6over IPv4Domains without Explicit Tunnels,1999.IETF RFC2529.
    [22] Tsirtsis G, Srisuresh P. Network Address Translation-Protocol Translation (NAT-PT),2000.IETF RFC2766.
    [23] Nordmark E. Stateless IP/ICMP Translation Algorithm(SIIT),2000. IETF RFC2765.
    [24] Tsuchiya K, Higuchi H, Atarashi Y. Dual Stack Hosts using the”Bump-In-the-Stack” Tech-nique (BIS),2000. IETF RFC2767.
    [25] Tatipamula M, Grossetete P, Esaki H. IPv6integration and coexistence strategies for next-generation networks. Communications Magazine, IEEE,2004,42(1):88–96.
    [26] Waddington D, Chang F. Realizing the transition to IPv6. Communications Magazine, IEEE,2002,40(6):138–147.
    [27] Durand A. Deploying IPv6. Internet Computing, IEEE,2001,5(1):79–81.
    [28] Mackay M, Edwards C. A Managed IPv6Transitioning Architecture for Large Network De-ployments. Internet Computing, IEEE,2009,13(4):42–51.
    [29] Amoss J J, Minoli D. Handbook of IPv4to IPv6Transition: Methodologies for Institutionaland Corporate Networks. Auerbach Publications,2007.
    [30] Saltzer J H, Reed D P, Clark D D. End-to-end arguments in system design. ACM Transactionson Computer Systems (TOCS),1984,2(4):277–288.
    [31] Wu J, Cui Y, Metz C, et al. Softwire Mesh Framework,2009. IETF RFC5565.
    [32] Narten T, Nordmark E, Simpson W, et al. Neighbor Discovery for IP version6(IPv6),2007.IETF RFC4861.
    [33] Sen S, Jiny Y, Guerin R A, et al. Modeling the Dynamics of Network Technology Adoptionand the Role of Converters. IEEE/ACM Transactions on Networking,2010,18:1793–1805.
    [34] IETF Behave WG charter. http://datatracker.ietf.org/wg/behave/charter/.
    [35] IETF Softwire WG charter. http://datatracker.ietf.org/wg/softwire/charter/.
    [36] Li X, Dawkins S, Ward D, et al. Softwire Problem Statement,2007. IETF RFC4925.
    [37] Baker F, Li X, Bao C, et al. Framework for IPv4/IPv6Translation,2011. IETF RFC6144.
    [38] Li X, Bao C, Chen M, et al. The CERNET IVI Translation Design and Deployment for theIPv4/IPv6Coexistence and Transition,2011. IETF RFC6219.
    [39] Bao C, Huitema C, Bagnulo M, et al. IPv6Addressing of IPv4/IPv6Translators,2010. IETFRFC6052.
    [40] Bagnulo M, Sullivan A, Matthews P, et al. DNS64: DNS Extensions for Network AddressTranslation from IPv6Clients to IPv4Servers,2011. IETF RFC6147.
    [41] Aoun C, Davies E. Reasons to Move the Network Address Translator-Protocol Translator(NAT-PT) to Historic Status,2007. IETF RFC4966.
    [42] Bagnulo M, Matthews P, Beijnum I. Stateful NAT64: Network Address and Protocol Transla-tion from IPv6Clients to IPv4Servers,2011. IETF RFC6146.
    [43] Lee S, Shin M K, Kim Y J, et al. Dual Stack Hosts Using”Bump-in-the-API”(BIA),2002.IETF RFC3338.
    [44] Perkins C. IP Encapsulation within IP,1996. IETF RFC2003.
    [45] Hanks S, Li T, Farinacci D, et al. Generic Routing Encapsulation (GRE),1994. IETF RFC1701.
    [46] Farinacci D, Li T, Hanks S, et al. Generic Routing Encapsulation (GRE),2000. IETF RFC2784.
    [47] Lau J, Townsley M, Goyret I. Layer Two Tunneling Protocol-Version3(L2TPv3),2005.IETF RFC3931.
    [48] Rosen E, Viswanathan A, Callon R. Multiprotocol Label Switching Architecture,2001. IETFRFC3031.
    [49] Rosen E, Tappan D, Fedorkow G, et al. MPLS Label Stack Encoding,2001. IETF RFC3032.
    [50] Kent S, Atkinson R. Security Architecture for the Internet Protocol,1998. IETF RFC2401.
    [51] Wu J, Cui Y, Li X, et al. The Transition to IPv6, Part I:4over6for the China Education andResearch Network. IEEE Internet Computing,2006,10:80–85.
    [52] Cui Y, Wu J, Li X, et al. The Transition to IPv6, Part II: The Softwire Mesh FrameworkSolution. IEEE Internet Computing,2006,10:76–80.
    [53] Clercq J D, Ooms D, Prevost S, et al. Connecting IPv6Islands over IPv4MPLS Using IPv6Provider Edge Routers (6PE),2007. IETF RFC4798.
    [54] Templin F, Gleeson T, Thaler D. Intra-Site Automatic Tunnel Addressing Protocol (ISATAP),2008. IETF RFC5214.
    [55] Townsley M, Troan O. IPv6Rapid Deployment on IPv4Infrastructures (6rd),2010. IETF RFC5969.
    [56] Storer B, Pignataro C, Santos M D, et al. Softwire Hub and Spoke Deployment Framework,2009. IETF RFC5571.
    [57] Despres R. IPv6Rapid Deployment on IPv4Infrastructures (6rd),2010. IETF RFC5569.
    [58] Huitema C. Teredo: Tunneling IPv6over UDP through Network Address Translations (NATs),2006. IETF RFC4380.
    [59] Durand A, Droms R, Woodyatt J, et al. Dual-Stack Lite Broadband Deployments FollowingIPv4Exhaustion,2011. IETF RFC6333.
    [60] Troan O, Dec W, Li X, et al. Mapping of Address and Port with Encapsulation (MAP),2013.IETF draft.
    [61] Jiang S, Despres R, Penno R, et al. IPv4Residual Deployment via IPv6-a unified StatelessSolution (4rd),2012. IETF draft.
    [62] Li X, Bao C, Troan O, et al. Mapping of Address and Port using Translation (MAP-T),2013.IETF draft.
    [63] Mawatari M, Kawashima M, Byrne C.464XLAT: Combination of Stateful and Stateless Trans-lation,2012. IETF draft.
    [64] Wing D, Cheshire S, Boucadair M, et al. Port Control Protocol (PCP),2013. IETF draft.
    [65] Lemon T, Deng H, Huang L. Relay Agent Encapsulation for DHCPv4,2011. IETF draft.
    [66] Hankins D, Mrugalski T. Dynamic Host Configuration Protocol for IPv6(DHCPv6) Optionfor Dual-Stack Lite,2011. IETF RFC6334.
    [67] Larsen M, Gont F. Recommendations for Transport-Protocol Randomization,2011. IETF RFC6056.
    [68] Bajko G, Boucadair M, Levis P. Port Restricted IP Address Assignment,2012. IETF draft.
    [69] Swamy N, Halwasia G, Jhingran P. Client Identifier Option in DHCP Server Replies,2012.IETF working group draft.
    [70] Droms R. Dynamic Host Configuration Protocol,1997. IETF RFC2131.
    [71] Sun Q, Boucadair M, Sivakumar S, et al. Port Control Protocol (PCP) Extension for Port SetAllocation,2013. IETF draft.
    [72] Srisuresh P, Egevang K. Traditional IP Network Address Translator (Tranditional NAT),2001.IETF RFC3022.
    [73] Srisuresh P, SSivakumar. NAT Behavioral Requirements for ICMP),2009. IETF RFC5508.
    [74] R Bush. The Address plus Port (A+P) Approach to the IPv4Address Shortage,2011. IETFRFC6346.
    [75] Cui Y, Wu P, Wu J, et al. DHCPv4over IPv6Transport,2013. IETF working group draft.
    [76] Cui Y, Wu J, Wu P, et al. Public IPv4over IPv6Access Network,2013. IETF working groupdraft.
    [77] Cui Y, Wu P, Sun Q, et al. Lightweight4over6: An Extension to the DS-Lite Architecture,2013. IETF working group draft.
    [78] Wu P, Lee Y, Sun Q, et al. Dynamic Host Configuration Protocol (DHCP) Options for Port SetAssignment,2012. IETF draft.
    [79] ISC DHCP software. http://www.isc.org/software/dhcp.
    [80] S Perreault, et al. Common requirements for Carrier Grade NATs (CGNs),2012. IETF workinggroup draft.
    [81] Knowlton K C. A Fast storage allocator. Communications of the ACM,1965,8(10):623–625.
    [82] Knowlton K. A programmer’s description of L6. Communications of the ACM,1966,9(8):616–625.
    [83] Khadilkar M, Feamster N, Sanders M, et al. Usage-based DHCP lease time optimization.Proceedings of Proceedings of the7th ACM SIGCOMM conference on Internet measurement.ACM,2007.71–76.
    [84] Boolean satisfiability problem. http://en.wikipedia.org/wiki/Booleansatis f iabilityproblem.
    [85] R Cohen and G Nakibly. On the Computational Complexity and Efectiveness of N-hub Short-est Path Routing. IEEE/ACM Transactions on Networking,2008,16(3):691–704.
    [86] Cohen R, Nakibly G. A Trafc Engineering Approach for Placement and Selection of NetworkServices. IEEE/ACM Transactions on Networking,2009,17(2):487–500.
    [87] Iliadis I, Bauer D. A New Class of Online Minimum-Interference Routing Algorithms. Pro-ceedings of Second International IFIP-TC6Networking Conference, volume2345,2002.959–971.
    [88] YEN J Y. Finding the K Shortest Loopless Paths in A Network. Management Science,1971,17(11):712–716.
    [89] BRITE. Boston University Representative Internet Topology Generator.http://www.cs.bu.edu/brite/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700