用户名: 密码: 验证码:
湿热地区水泥混凝土路面基层性能评价与路面结构协调设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于各种原因,我国早期修建的水泥混凝土路面使用状况不佳,使用寿命大大低于设计使用年限。目前我国关于水泥混凝土路面耐久性的研究主要集中在面层,而水泥混凝土路面长期使用性能主要与路基和基层有关,良好的路基和基层是保证水泥混凝土路面正常运营的前提。随着我国经济的快速发展,车速快、重载、超载车辆比例大等交通特点给路面的使用功能提出了更为严格的要求。因此,对于不同基层类型的水泥混凝土路面,选择合理的结构设计指标,进行路面结构组合设计,通过提高基层的长期性能来改善水泥混凝土路面的使用状况,延长其使用寿命,是水泥混凝土路面更快更好发展的关键所在。
     针对不同交通等级和不同类型基层的水泥混凝土路面,调查分析了湿热气候条件下水泥稳定碎石与二灰稳定碎石等半刚性基层、贫混凝土等刚性基层水泥混凝土路面的使用状况,分析了基层开裂、基层脱空、层间结合状况及基层刚度等使用状况对混凝土路面性能的影响。在此基础上,基于基层的长期使用性能,并针对湿热地区气候特点,初步推荐了水泥混凝土路面的合理基层类型。
     通过室内试验与力学分析,研究了基层与混凝土面板间的层间结合状况、基层开裂对混凝土面板的影响、基层材料的抗冲刷性能以及不同基层类型混凝土板的变形和应变规律。结果表明,基层与混凝土面板间的结合状态极为重要,水泥混凝土面板在基层界面滑动的摩擦系数是研究面板温度应力、面板滑动区与固定区长度、接缝、间距、板端推移量及路面纵向失稳的重要参数;在正常状态下乳化沥青隔离层的摩阻力在0.76~0.87之间,沥青功能层的摩阻力在0.71~1.10之间,土工布隔离层的摩阻力在1.08~2.06之间;粒料基层对混凝土面板的约束最小,混凝土板翘曲变形最大,沥青混凝土基层约束居中,贫混凝土基层对混凝土面板的约束最大,几乎没有翘曲变形产生。
     通过分析基层的长期性能评价指标对水泥混凝土路面的影响,采用灰色关联分析理论,建立了水泥混凝土路面基层长期性能评价指标的预测模型,研究了水泥混凝土路面基层长期性能的评价方法,该方法可以用于水泥混凝土路面基层长期性能的预测评价。
     分析了板底脱空对混凝土面板应力的影响规律,通过不同工况下计算得到的最大应力及脱空部位的最大弯沉值,回归得到考虑疲劳、不考虑温度应力时水泥混凝土路面最大容许脱空量。在不利加载位置情况下,分析了基层有(无)裂缝、基层裂缝宽度变化、基层裂缝位置变化对混凝土路面结构荷载应力与温度应力的影响。结果表明,裂缝的存在破坏了路面结构整体性和连续性,路面结构的荷载应力显著增大,设置功能层后,显著减小了面板的最大拉应力;而路面结构的温度应力则呈现出减小的趋势。充分考虑各类不同基层类型的力学与物理特性,并结合功能层对于路面使用状况的改善作用,推荐出湿热地区不同交通等级水泥混凝土路面基层的适用类型。基于基层长期性能的要求,提出同时考虑混凝土面层和基层疲劳的水泥混凝土路面结构设计方法。
For various reasons, the use situation of cement concrete pavement built in early years isnot good in China, service life is greatly lower than designed service life. At present, the studyof the durability for concrete pavement in China mainly focus on surface layer, while thelong-term performance of concrete pavement is related to subgrade and base, fine subgradeand base are the premise which ensure normal operation of concrete pavement. With the rapiddevelopment of China economy, the traffic characteristics of rapid speed,heavy load and thelarge proportion of overload vehicles proposed more strict requirements to cement concretepavement. Therefore, for cement concrete pavements with different types of bases, choosingreasonable structure design index, conducting the combination design of the pavementstructure, increasing the long-term performance to improve the use of concrete pavementcondition, and prolonging service life are critical to concrete pavement for its faster and betterdevelopment.
     According to different traffic levels and different types of base, the use situation ofconcrete pavement with semi-rigid base and rigid base were investigated and analyzed inhot-moist regions. The influences of base cracking, cavity, interlayer combining status andbase stiffness on concrete pavement were analyzed. On the basis of the long-termperformance of base and climate characteristics in hot-moist regions, the reasonable base typeof concrete pavement was preliminarily recommended.
     Through laboratory experiments and mechanical analysis, the binding situation betweenthe base and concrete slab, the influence of base layer cracking on concrete pavement, theanti-brushing performance of base materials, as well as the deformation and strain of cementconcrete pavement with different kinds of base layer were studied. The results showed that thebinding status between the base and concrete slab is extremely important. The sliding frictioncoefficient of cement concrete slab at base interface is an important parameter for researchingtemperature stress, the length of slided and fixed area, joint, spacing, plate-end lapse andlongitudinal instability. Under normal conditions, the friction resistance of emulsified asphaltisolation layer is between0.76and0.87, while asphalt mixture functional layer of which isbetween0.71and1.10, and geotexitle isolation layer is between1.08and2.06. The constraintof the aggregate base to concrete is minimum, and concrete slab buckling deformation ismaximum, and the constraint of asphalt concrete base to concrete is medium, while leanconcrete’s constraint to concrete is maximum, almost no buckling deformation formed.
     Through analyzing the effect of long-term performance evaluation index of base course on cement concrete pavement, using grey relation analysis theory, this study establishedprediction model of evaluation index for long-term performance of base. the evaluationmethod of cement concrete pavement, which can be used for forecast evaluation of long-termperformance of base.
     By analyzing the effects of cavity on the concrete pavement stress, according to thecalculated value of the maximum stress and the maximum deflection of concrete pavement,the maximum amount of allowed cavity of concrete pavement under the consideration offatigue but without temperature stress was derived. On the condition of adverse loadingposition, the effects of crack(or not)of base, the width and the location of base crack on loadstress and temperature stress of cement concrete pavement were analyzed. The results showthat the presence of cracks damaged the integrity and continuity of the pavement structure, theload stress of pavement structure significantly increased. The functional layer cansignificantly reduce the maximum tensile stress of the slab, and the temperature stress of thepavement structure showing a decreasing trend. Taking full account of the mechanical andphysical properties of different types of base layer, and combining with the improvement ofthe functional layer, the appropriate types of base under different traffic level for hot-moistregions were recommended. Based on the requirements of the long-term performance of thebase, this paper proposed a structure design method for cement concrete pavementconsidering fatigue of both concrete surface layer and base layer.
引文
[1]王秉纲,郑木莲.水泥混凝土路面设计与施工[M].北京:人民交通出版社,2003.
    [2]张擎.考虑冲刷脱空的水泥混凝土路面设计研究[D].西安:长安大学,2009.
    [3]盛燕萍.基于抗冲刷性能的水泥混凝土路面半刚性基层材料组成设计研究[D].西安:长安大学,2010.
    [4]王博.半刚性基层材料抗冲刷性能研究[D].西安:长安大学,2010.
    [5]陈拴发,胡长顺.公路结构物水泥混凝土耐久性研究动态[J].公路,2005,(3):122-127.
    [6]杨斌,陈拴发,胡长顺.重载及脱空耦合状态下混凝土路面疲劳寿命分析[J].中南公路工程,2005,30(3):175-177.
    [7] NCHRP Project1-37. Develoment of the2002Guide for the Design of New andRehabilitated Pavement Structures [R]. TRB,1997.
    [8] Tyler, Yee Thienseng. The Performance of Continuously Reinforced Concrete Pavementon the Ayer Keroh-Expressway[C]. Proceeding of6th Conference of Road EngineeringAssociation of Asia and Australia.1990.3.
    [9] Chen Shuan-fa, ZHENG Mu-lian, WANG Bing-gang. The corrosion fatigue propertiesof high performance concrete[J]. Wuhan University of Technology(Materials ScienceEdition),2005,(2).
    [10] JUN ZHANG, VICTORC LI. Influence of supporting base characteristics on shrinkageinduced-stress in concrete Pavements[J] Journal of Transportation Engineering,2007.
    [11]中华人民共和国行业标准.公路水泥混凝土路面设计规范(JTG D40-2002)[S].北京:人民交通出版社,2003.
    [12]中华人民共和国行业标准.公路水泥混凝土路面施工技术规范(JTG F30-2003)[S].北京:人民交通出版社,2003.
    [13] FHWA. Long-life Concrete Pavements in Europe and Canada [R]. FHWA-PL-07-019,2007.
    [14]郝大力.路面性能的评价与分析研究[D].西安:长安大学,2000.
    [15]武和平.高等级公路路面结构设计方法[M].北京:人民交通出版社,2000.
    [16] MJ. Darter. Joint Repair Methods for Portland cement concrete pavements [R].NationalCooperative Highway Research Program Report281,1985.
    [17] Chow Chia Pei,Meeullough. Development of a Distress Index And RehabilitationCriteria for Continuously Reinforced Concrete Pavements Using Discriminant Analysis.Transportation Research, Record1987,1981.
    [18] Scott M.Tarr, Paul A. Okaoto. Bond Interaction Between Concrete Pavement and LeanConcrete Base. TRR,1668.
    [19] Shuichi Kameyama. Back calculation of pavement layer moduli using GeneticAlgorithms[C]. Proceedings of3rd International Conference on Bearing Capacity ofRoads and airfields, Vol.2,pp1374-1385,1990.
    [20] Rasmussen, R.O.,Rozycki, D.K.. Characterization and Modeling of Axial Slab-SupportRestraint. Transportation Research Record1778, TRB, National Research Council,Washington, D.C.,pp.26-32.
    [21] Leonards,G.A., Harr,M.E. Analysis of concrete slabs on ground. Journal of SoilMechanics,ASCE,1959,85(SM3):35~38.
    [22] Harr,M.E and Leonards,G.A.Warping stresses and deflections in concretepavements.Proceedings,HRB,1959,38:286~320.
    [23] Parkard,R.G. Structural design of concrete pavement with lean concrete lower course.2ndinternational conference on concrete pavement design and rehabilitation,PurdueUniversity,1982,119-131.
    [24] Tour of European concrete highways France,Austria,Germany,Netherlands,BelgiumAASHTO-ACPA-FHWA-PCA-SHRP-TRB, Report on the1992U.S
    [25] Sousa J B, Pais J C, Stubstad R N. Comparison oflaboratory test performance betweenasphalt-rubberhot mix and dense graded asphalt concrete[R].4thInternational RILEMConference on ReflectiveCracking in Pavements Research in Practice.Ottawa,Ontario,Canada,2000.
    [26] Hughes J.J., Somers E. Geogrid Mesh for ReflectiveCrack Control in BituminousConcrete Overlays[R].Pennsylvania Dept of Transportation, Harrisburg.Bureau ofConstruction and Materials. Report: PA-2000-013-86-001,2000.
    [27] FHWA Report.Concrete pavements in Belgium,1992.8.
    [28] FHWA Report.Concrete pavements in Germany,1992.8
    [29] Government Accession No. LIFE CYCLE COST ANALYSIS OF PORTLANDCEMENT CONCRETE PAVEMENTS FHWA/TX-00/0-1739-1.
    [30] SUH YOUNGC, LEE SEUNGW,KANG,MINS. Evaluation of subbase friction fortypical Korean concretepavement [A]. The80th TRB Annual Meeting [C].WashingtonDC:TRB,2001.1-25.
    [31] ABDREW J,WIMSATT,FRANK MCCULLOUGN.Subbase friction effects on concretepavements. The3rd International Conference on Concrete Pavement and Design[C].Indiana:Purdue University,1983.3-22.
    [32]胡力群.半刚性基层材料结构类型与组成设计研究[D].西安:长安大学,2004.
    [33]刘伟.贫混凝土基层混凝土路面结构设计研究[D].西安:长安大学,2003.
    [34]高晓飞.水泥混凝土路面基层特性研究[D].西安:长安大学,2000.
    [35]杜小婷.半刚性基层的路用性能研究[D].西安:西安建筑科技大学,2006.
    [36]芦娜.基于虚拟仪器的无机结合料稳定类基层弯拉应变测试系统[D].西安:长安大学,2007.
    [37]张聚昆.半刚性基层沥青路面开裂机理及防裂措施研究[D].天津:河北工业大学,2008.
    [38]孙家伟.贫混凝土基层混凝土路面研究[D].西安:长安大学,2001.
    [39]杨发.碾压混凝土在高等级公路水泥路面基层中的路用性能研究[D].重庆:重庆交通大学,2009.
    [40]何敏.级配碎石基层沥青路面结构受力特性研究[D].西安:长安大学,2009.
    [41]胡斌.沥青路面柔性基层(沥青稳定碎石)应用研究[D].西安:长安大学,2005.
    [42]康悦.沥青稳定碎石柔性基层路用性能评价指标[D].西安:长安大学,2007.
    [43]沙爱民.半刚性路面材料结构与性能[M].北京:人民交通出版社,1998.
    [44]沙庆林.高等级公路半刚性基层沥青路面[M].北京:人民交通出版社,1998.
    [45] Shiraz D.,Tayabji,Chung L. Wu,Mike Plei. Performance of continuously reinforcedconcrete pavement in LTPP program[C].7th International Conference on ConcretePavements-Orlando, Florida, USA. September9-13,2001
    [46] Fleckenstein,L.J., Allen,D.L. Construction and performance evaluation of ageocomposite pavement edge drain including comparison with a4-inch pipe drain[R].Research Report UKTRP-87-17, Kentucky Transp. Res. Program. College of Engrg.,Univ. of Kentucky, Lexington, Ky.1987.
    [47]聂午龙.水泥混凝土路面基层材料抗冲刷性能研究[D].西安:长安大学,2009.
    [48]朱云升,郭忠印,陈崇驹等.半刚性基层材料干缩和温缩特性试验研究[J].公路,2006,(2):15-18.
    [49] Taslima Khanum. Concrete Pavements Design in Kansas Following theMechanical-Empirical Pavement Design Guide.
    [50] Portland cement concrete overlays. Publication No.FHWA-IF-02-045.
    [51] W.U. Din. Finite-Element Dynamic Analysis of Distressed Asphalt Pavements[C].ASCE Transportation Congress Proceedings,Vol.1,725-737,1995.
    [52] Mellinger,F.M.Structural design of concrete overlays.Journal of ACI,1963,60(2)
    [53] H.M.Westergaard,Analytical tools for judging results of structural tests of concretepavement,public roads,Vol.14(10),185-188,1933.
    [54] L.W.Teller and E.C.Sutherland,The structural design of concrete pavements,Part5.Anexperimental study of Westergaard analysis of stressconditions in concrete pavementslabof uniform thickness.Public Roads,Vol.23(8),167-212,1943.
    [55] Rasmussen,R.O., Rozycki, D.K.. Characterization and Modeling of Axial Slab-SupportRestraint. Transportation Research Record1778, TRB, National Research Council,Washington, D.C.,2001.26-32.
    [56] Vel,P.G, and Carsberg,E.C. Investigational concrete pavement in Minnesota:18-yearreport.HRB bulletin274,1960.
    [57] Totsky O.N. Behavior of multi-layered plates and beams on winklerfoundation.1981,6:54~58.
    [58] Khazanovich,L., Ioannides,A.M. Structural analysis of unbonded concrete overlaysunder wheel and environmental loads.TRR,1995,1449:174~181.
    [59]唐伯明,蒙华,刘志军.欧美水泥混凝土路面设计使用现状综述[J].公路.2003,(10):37-39.
    [60]查旭东,王燕,韩春华编译.欧洲水泥混凝土路面综述[J].国外公路,1999,19(3):16-22.
    [61] Baalbaki M,Barkar S L. Comparison study on mechanical properties and Microstructureof High performance Concrete with Natural Aggregate and Synthetic Aggregate.Proceedings of international conference on high strength concrete, Lilehammer,Noway,1993(2).
    [62] Aswani Sasaanka Pulipaka. Quantifying the Relative Effects of Design and Site Factorson the performance of Rigid Pavement Using SPS-2LTPP Data,Master ofScience,Michigan State University,2005.
    [63] Shad M.Sargand,Roger Green,Huntae Kim. Evaluation of Base Material under PCCpavement,TRB2003Annual Meeting.
    [64] Jeffery Roesler, Amanda Bordelon, Cristian Gaedicke,et al. Fracture Behavior andProperties of Functionally Graded Fiber-Reinforced Concrete[C]. CP973, Multiscaleand Functionally Graded Materials2006.
    [65] K.W. Kim. Evaluation of Effectiveness of Reinforcing Inter-layer against ReflectionCracking[C].4th International Conference on Road and Airfield Pavement Technology.2002.
    [66] H.M.Westergaard,Stresses in concrete pavement computed by theoretical analysis,PublicRoads,Vol.7(2)25-35,1926.
    [67] Dempsey, B. J. Laboratory and field studies of channeling and pumping[J].1982.Transportation Research Record,849.
    [68] Federal Highway Administration. Evaluation on Rigid Pavement on Rigid OverlayDesign Procedures.Washington DC: Federal Highway Administration,1983.
    [69] AASHTO. AASHTO guide for design of pavement structures[S]. Washington, DC:American Association of State Highways and Transportation Officials,1993.
    [70] AASHTO Guide for Design of Pavement Structure [S]. American Association of StateHighway and Transportation Officials,1995.
    [71] Portland Cement Association. Thickness Design for Concrete Pavements[R]. Report,1984.
    [72] AASHTO. A Policy on Geometric Design of Highways and Streets[S]. Washington, D.C.USA,1994.
    [73] Wu Shie-shin, Hearne Jr,T.M. Performance of concrete pavement with econocrete base.Proceedings,4thInternational Conference on Concrete on Concrete pavement Design andRehabilitation, Purdue University,1989:683-696.
    [74] Zhiwei He. Development of Performance Models for Ontario’s NewMechanistic-Empirical Pavement Design Method[C]. Proceeding of TransportAssociation of Canada Annual Conference,pp61-75,1998.
    [75] New York Department of Transportation. Highway Design Manual[S]. August2001.
    [76] California Department of Transportation. Interim PCC Pavement RehabilitationGuidelines[S]. June22,2004.
    [77]傅智,李红.我国水泥混凝土路面30年建设成就与展望[J].公路交通科技,2008,25(12):21-27.
    [78]邓学钧,陈荣生.刚性路面设计(第二版)[M].北京:人民交通出版社,2005.
    [79]邓学钧.路基路面工程[M].北京:人民交通出版社,2005.
    [80]潘艳珠,王端宜,谭宝龙.水泥混凝土路面板底脱空的原因及防治措施[J].广州大学学报,2006,5(1):71-73.
    [81]张文学.水泥混凝土路面病害的防治与修补研究[D].武汉:武汉理工大学,2002.
    [82]苏泉.水泥混凝土路面断板发生机理及预防[D].天津:河北工业大学,2002.
    [83]吴国雄,易志坚等.水泥混凝土路面开裂过程研究[J].公路,2001,(10):141-143.
    [84]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1991.
    [85]张洪波,周志刚,陈祥尹,华杰.水泥混凝土面层与贫混凝土基层界面特性研究[J].长沙交通学院学报,2005,(4):72-76.
    [86]仰建岗.贫混凝土基层沥青路面结构分析与设计研究[D].西安:长安大学,2003.
    [87]广西交通科学所.高等级公路水泥混凝土路面贫混凝土基层及排水系统的应用研究[R].南宁,2000.
    [88]窦光武,沙爱民.落锤式弯沉仪(FWD)时程曲线特征参数分析[J].公路交通科技(应用技术版),2010,(3):74-76.
    [89]苏卫国.旧水泥混凝土路面FWD实测数据的分析[J].公路交通科技,2004,21(1):12-15.
    [90]张敏江,关贺,梁鸿领.刚性基层材料抗冲刷性能的研究[J].沈阳建筑大学学报,2006,22(3):371-374.
    [91]滕旭秋,陈忠达,任伟.二灰碎石混合料抗冲刷能试验研究[J].公路交通科技,2005,22(10):27-30.
    [92]胡力群,沙爱民.沥青路面水泥稳定类基层材料抗冲刷性能试验及机理研究[J].中国公路学报,2003,16(1):15-18.
    [93]陈拴发,郑木莲,杨斌,王秉纲.破裂水泥混凝土路面板沥青加铺层温度应力影响因素分析[J].交通运输工程学报,2005,5(3):25-30.
    [94]胡苗.水泥混凝土路面沥青混合料功能层研究[D].西安:长安大学,2009.
    [95]赵炜诚,许志鸿,黄文.混凝土面层与贫混凝土基层的层间作用对荷载应力和弯沉的影响[J].中国公路学报,2003,16(4):9-15.
    [96]沙爱民.半刚性基层的材料特性[J].中国公路学报.2008,21(1):10-15.
    [97]丁小东.沥青路面基层冲刷作用模拟试验机数据采集系统的开发与研制[D].西安:长安大学,2005.
    [98]邓聚龙.灰预测与灰决策[M].武汉:华中科技大学出版社,2002.
    [99]韩梅.灰色理论在独塔斜拉桥施工控制中的应用[D].武汉:武汉理工大学,2011.
    [100]Wang Wenping. Study on Grey Linear Programming[J]. The Journal of Grey System,1997,Vol.9(1).21.24.
    [101]TU Jun, LI Yan-ming, LIU Cheng-liang. A Vehicle Traveling Time Prediction MethodBased on Grey Theory and Linear Regression Analysis[J]. Journal of Shanghai JiaotongUniversity.2009,(4):15-21.
    [102]余四新.设层间功能层的水泥混凝土路面基层应力分析与结构设计[D].西安:长安大学,2009.
    [103]Armaghani, J. M., Larsen, T.J., and Smith, L.L. Temperature response of concretepavements[J].Transportation Research Record,1987.
    [104]谭至明,姚祖康.非线性温度场下的水泥混凝土路面温度应力[J].中国公路学报,1993,5(4):5-9.
    [105]段红波.水泥混凝土路面温度应力面向对象的有限元分析[D].大连:大连理工大学,2000.
    [106]韩子东.道路结构温度场研究[D].西安:长安大学,2001.
    [107]张红波.贫混凝土透水基层水泥混凝土路面温度应力分析[D].长沙:长沙理工大学,2005.
    [108]孙萌.设层间功能层的水泥混凝土路面面层应力分析[D].西安:长安大学,2010.
    [109]马银华.设置隔离层的水泥混凝土路面新结构试验研究及计算分析[D].重庆:重庆交通学院,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700