用户名: 密码: 验证码:
交通视频中噪声图像分割技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕交通视频噪声图像分割在多功能路面检测车、智能车辆视觉导航中的应用,就图像去除噪声、路面裂缝检测、车道检测、边缘检测和运动目标检测等噪声图像分割问题开展研究,本文的贡献如下:
     1.为了消除噪声对图像分割的影响,提高图像的信噪比,提出了自适应神经模糊推理系统与中值滤波相结合的去除噪声算法。将噪声图像、中值滤波对噪声点的估计和维纳滤波对噪声点的估计作为自适应神经模糊系统的三个输入,系统的输出为对像素点的判断,是噪声点还是真实的图像点,如果是噪声点,就进行中值滤波,如果是真实的图像,保持不变,直接输出,最终得到两者的融合去噪图像。仿真实验表明,本章算法滤波的结果比中值滤波的结果具有更高的信噪比。
     2.针对路面视频光照不均、存在油污、破损和噪声等情况对路面裂缝分割带来的不利影响,提出了一种小波域内基于块的路面裂缝检测算法。路面图像经过去噪、增强等预处理后,通过haar小波变换,在最高层中对近似分量进行自适应阈值分割得到路面裂缝的初始区域。然后在其他各层中,从高层到低层依次只针对路面破损区域进一步分块分割处理,得到路面裂缝的准确检测。仿真实验表明,本文提出的算法可以很好的克服光照不均、存在油污、破损和噪声的影响,对不同的路面裂缝类型,都具有很好地路面裂缝分割效果。
     3.车道分割受到光照、路面阴影、破损、油污和噪声的干扰,容易出现错误分割,为了准确地提取出符合人眼特性的车道边界,本文提出了基于视觉模型的车道检测。利用人眼的视觉特性,按照韦伯定律,提出了分段选取阈值,在HSV颜色空间内融合区域车道分割结果和边缘车道分割结果,得到车道的边缘点,再使用Hough变换给出了车道的位置和方向信息,为视觉导航提供控制参数。仿真实验结果表明,本算法具有抗噪性强、光照对检测结果影响较小,对路面存在的阴影、油污和破损等情况处理较好、具有运行较稳定等特点。
     4.为了适应交通视频海量数据处理的需要,对图像分割自适应地选取阈值,提出了基于自适应神经模糊推理系统的边缘检测算法,该算法引入一个具有4个输入和1个输出的自适应神经模糊推理系统,选取了与边缘方向和梯度大小双重信息相关的4个目标函数作为系统的输入,目标函数值的大小与像素点是否为边缘点可能性的大小相关。采用计算机合成训练输入图像和训练目标图像,对自适应神经模糊推理系统进行训练,得到训练好的自适应神经模糊推理系统,再将定义好的4个目标函数作为自适应神经模糊推理系统的输入,得到系统的输出。对于自适应神经模糊推理系统的输出值,运用一个后处理程序,采用一个固定的阈值来判断该中心点是否为边缘点。仿真实验表明,该算法能够快速自适应地选取阈值,适合海量交通视频处理的需要,比较传统方法和当前文献中关于神经和模糊系统边缘检测的方法,边缘检测效果要好。
     5.为了从带有噪声的交通视频中准确完整地分割出运动目标,假定“背景总是以较大的频率出现”,提出了一种基于双阈值顺序聚类的背景重构算法,算法分为三步:第一步,基于双阈值顺序聚类的思想分类像素的灰度类;第二步,执行合并过程;第三步,选择背景图像。该算法不需要预先知道场景的先验知识,能够直接从含有前景目标的图像中构建出多模态的场景;通过使用两个阈值Θ1,和Θ2(Θ2>Θ1)对输入数据进行聚类,增强了聚类结果对阈值取值的鲁棒性,降低了算法对阈值选取的敏感度;由于一个数据的分配要延迟到有足够的信息,所以对数据参与算法的顺序不是很敏感;在运行双阈值顺序聚类之后执行合并过程,避免了出现多个距离很近的聚类。对多种视频进行仿真实验,且与其他背景重构方法进行比较,背景重构更理想,运动目标检测更完整,更好地克服了噪声的影响。
The research of this paper is focused on the application of noise image segementation to the multi-function road surface status inspection vehicle and the intelligent vehicle. Based on the engineering background, the methods of transportation imges denoising, the road crack detection, lane detection and motion detection is studied. The main contents and contributions of this dissertation are as follows.
     1. Image denoise technology.
     A new impulse noise detector based on an adaptive neuro-fuzzy inference system (ANFIS) is presented. The proposed operator is a hybrid filter obtained by appropriately combining a median filtering, a wiener filtering and the ANFIS. The noise is exactly estimated through the proposed operator. The internal parameters of the ANFIS are adaptively optimized by training. The training is easily accomplished by using simple artificial images that can be generated in a computer. The distinctive feature of the proposed operator is that it offers well line, edge, detail, and texture preservation performance while, at the same time, effectively removing noise from the input image. Simulation experiments show that the proposed operator may be used for efficient restoration of digital images corrupted by impulse noise without distorting the useful information in the image.
     2. Road crack detection technology.
     We proposed a pavement distress detection algorithm based on tiles in wavelet domain. After the preprocesses of de-noise, enhancing, etc., pavement image was decomposed by Haar wavelet and the approximation coefficient in the highest layer was segmented by adaptive threshold to get the initial pavement distress regions. Then in the other ordinal layers, from the higher layer to the lower layer, only the pavement distress regions were segmented tiles to gain the exact detection of pavement distress. Simulation show the algorithm proposed in this paper could detect pavement distress effectively for different types and could overcome the effect of the noisy.
     3. lane detection technology.
     In the lane detection, we propose a method based on visual moden. The thresholds of segementation are calculated according to Weber's law and bionics principle. The lane detection fuses the way of lane edges detection and the method of color-based segmentation. The method reduces the shadow and noise points influnce on lane detection and is convencient in the applications in the vision navigation of the autonomous highway vehicle. The simulation results reveals that our method gets a better result in different road conditions.
     4. edge detection technology.
     Neuro-fuzzy (NF) systems are very suitable tools to deal with uncertainty encountered in the process of extracting useful information from images. We present a novel adaptive neuro-fuzzy inference system (ANFIS) for edge detection in digital images. The internal parameters of the proposed ANFIS edge detector are optimized by training using very simple artificial images. The edges are directly determined by ANFIS network. The proposed ANFIS edge detector is tested on popular images having different image properties and also compared with popular edge detectors from the literature. Experimental results show that the proposed ANFIS edge detector exhibits much better performance than the competing operators and may efficiently be used for the detection of edges in digital images.
     5. background reconstruction technology.
     A new background subtraction algorithm based on two thresholds sequential clustering is proposed in this paper. First, pixel intensity in period of time is classified based on two thresholds sequential clustering. Second, combination process is run to classified classes. Finally, the backgrounds of scene are selected, so the background model can represent the scene well. The simulation results show that the proposed algorithm is robust to the thresholds, those near classes are avoided at all, and the effect of input order of data has been reduced greatly. And the background model can represent the scene well.
引文
[1]张雷,肖梅.我国智能运输系统的发展及对策研究[J].江苏交通,2003,10:12-14.
    [2]刘东.ITS中的车辆检测技术[J].公安大学学报(自然科学版),2000,20:36-39.
    [3]X. Li, Z. Liu and K. Leung. Detection of vehicles from traffic scenes using fuzzy integrals[J]. Pattern Recognition,2002,35:967-980.
    [4]孙亚,彭国雄,皮晓亮.基于环形线圈检测器采集信息的数据挖掘方法研究[J].交通与计算机,2005,23(1):46-49.
    [5]Hung Chi Chung, Roberto Girardello, Tony Soellerc, Masanobu Shinozuka. Automated management of pavement inspection system. http://shino8.eng.uci.edu/AMPIS.htm,2009.
    [6]Roadware Group Inc., http://www.roadware.com/datasheets.htm, 2009.
    [7]ARRB Transport Reseach, http://www.arrb.com.au,2009.
    [8]GIE System, http://www.gietech.com/syst-tech/laservision,2009.
    [9]Hansin Expressway Public Corporation, http://www.hepc.go.jp/english/pdf/IIV.pdf, Hanshin Kohsoku's vehicle,2009.
    [10]Dynatest Group Inc., http://www. Dynatest.com,2009.
    [11]Waylink System Corporation., http://www.waylink.com,2009.
    [12]R. Demir, I. Masaki, E. F. Crawley, R. Demir, I. Masaki, E. F. Crawley. System Design for Intelligent Railway Systems[C]. The 1997 IEEE Conference on Intelligent Transportation Systems, Boston, MA, USA,1997,218-223.
    [13]J. Veltan, A. Kummert, D. Maiwald. Image processing algorithm for video based real-time railroad track inspection[C].1999 IEEE 42nd Midwest Symposium on Circuits and Sistems, Las Cruces, NM, USA,1999, 530-533.
    [14]Z. Kim, T. E. Cohn. Pseudo-Realtime Activity Detection for Railroad Grade crossing Safety[C]. The 2003 IEEE International Conference on Intelligent Transportation Systems, Shanghai, China,2003, 1355-1561.
    [15]S. Mockel, F. Scherer, P. F. Schuster. Multi-sensor obstacle detection on railway tracks[C]. IEEE Intelligent Transportation Symposium, Columbus, Ohio, USA,2003,42-46.
    [16]P. Nangtin, P. Kumhom, K. Chomnongthai. Video-based obstacle tracking for automatic train navigation[C].2005 International Symposium on Intelligent Signal Processing and Communication Systems, Hong Kong,2005,21-24.
    [17]李晗.同步检测线方法及其在轨道交通中的应用[D].杭州:浙江大学.博士学位论文,2005.
    [18]杨淑莹.图像模式识别:VC++技术实现[M].北京:北京交通大学出版社,2005.
    [19]刘济林,宋加涛,丁莉雅,马洪庆,李培弘.高性能的车牌识别系统(英文)[J].自动化学报,2003,29(3):457-465.
    [20]T. Sikora. The MPEG-4 video standard verification model [J]. IEEE Transactions on Circuits and Systems for Video Technology,1997, 7(1):19-31.
    [21]B. Kim, R. Park. A fast automation VOP generation using boundary block segmentation[J]. real-time imaging,2004,10(2):117-125.
    [22]S. Valente, J. Dugelay. A visual analysis/synthesis feedback loop for accurate face tracking[J]. Signal Processing:Image Communication,2001,16(6):585-608.
    [23]M. Thomas, K. N. Ngan. Automatic segmentation of moving objects for video object plane generation [J]. IEEE Transactions on Circuits and Systems for Video Technology,1998,8(5):525-538.
    [24]D. Wang. Unsupervised video segmentation based on watersheds and temporal tracking[J]. IEEE Transaction on Circuits and System for Video Technology,1998,8(5):539-546.
    [25]R. Mech, M. Wollborn. A noise robust method for 2D shape estimation of moving objects in video sequences considering a moving camera [J]. Signal Processing,1998,66(2):203-217.
    [26]R. Castagno, T. Ebrahimi, M. Kunt. Video segmentation based on multiple features for interactive multimedia applications [J]. IEEE Transactions on Circuits and Systems for Video Technology,1998, 8(5):562-571.
    [27]Coifman B., Beymer D., Mclauchlan P., Malik J.. A real-time computer vision system for vehicle tracking and traffic surveillance [J]. Transportation Research Part C,1998,6(4):271-288.
    [28]Magee D.. Tracking multiple vehicles using foreground, background and motion models[J]. Image and Vision Computing,2004, 22(2):143-155.
    [29]Koller D., Daniilidis K., Nagel H.. Model-based object tracking in monocular image sequences of road traffic scene[J] International Journal of Computer Vision,1993,10(3):257-281.
    [30]Dubuisson-Jolly M., Lakshmanan S., Jain A. K.. Vehicle segmentation and classification using deformable templates[J]. IEEE Trans. Pattern Analysis and Machine Intelligence,1996,18(3):293-308.
    [31]Tai J., Tsang S., Lin C., Song K.. Real-time image tracking for automatic traffic monitoring and enforcement application[J], Image and Vision Computing,2004,22(6):485-501。
    [32]Zhu Z., Xu G., Yang B., Shi D., Lin X.. VISATRAM:a real-time vision system for automatic traffic monitoring[J]. Image and Vision Computing,2000,18(10):781-794.
    [33]Haag M., Nagel H.. Tracking of complex driving maneuvers in traffic image sequences[J]. Image and Vision Computing,1998, 16(8):517-527.
    [34]Pai C., Tyan H., Liang Y., Liao H. M., Chen S.. Pedestrian detection and tracking at crossroads[J]. Pattern Recognition,2004, 37(5):1025-1034.
    [35]Masoud O., Papanikolopoulos N. P.. A novel method for tracking and counting pedestrians in real-time using a single camera[J]. IEEE Trans. Vehicular Technology,2001,50(5):1267-1278.
    [36]Foresti G. L., Murino V., Regazzoni C.. Vehicle recognition and tracking from road image sequences[J]. IEEE Trans. Vehicular Technology,1999,48(1):301-318.
    [37]Betke M., Haritaoglu E., Davis L. s.. Real-time multiple Vehicle detection and tracking from a moving vehicle [J]. Machine Vision and Applications,2000,12(2):69-83.
    [38]Ferryman J. M., Maybank S. J., Worrall A. D.. Visual surveillance for moving vehicle[J]. International Journal of Computer vision,2000,37 (2):187-197.
    [39]Furuhashi Toshio, Inagaki Renya, Mochii Masayoshi. Economic radar video transmissionutilizing band compression technique[J]. NEC Research & Development.1973, (28):80-88.
    [40]Seacombe R. J., Shilling A. G. REMOTE VIDEO MONITORING SYSTEMS [J]. Engineering (London).1976,216(11):802-803.
    [41]Coifman B., Beymer D., McLauchlan P. A real-time computer vision system for vehicle tracking andtraffic surveillance[J]. Transportation Research Part C-Emerging Technologies.1998,6(4): 271-288.
    [42]田捷,沙飞,张新生.实用图像分析与处理技术[M].北京:电子工业出版社,1995.
    [43]郭桂荣.模糊模式识别[M].长沙:国防科技大学出版社,1994.
    [44]谢维信,刘健庄.一种快速模糊边缘检测方法[C].模糊模式识别论文集.郭桂荣主编,国防科技大学西安电子科技大学,1991.
    [45]L. Vincent, P. Soille. Watersheds in Digital Spaces:An efficient algorithm based on immersion simulations [J]. IEEE Transactions on Pattern Analysis and machine intelligence,1991,13(6),583-598.
    [46]D. Wang. Unsupervised video segmentation based on watersheds and temporal tracking[J]. IEEE Transaction on Circuits and System for Video Technology,1998,8(5):539-546.
    [47]R. Adams, L. Bischof. Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence [J],1994,16(6),641-647.
    [48]L. Salgado, N. Garcia, J. M. Menendez, E. Rendon. Efficient image segmentation for region-based motion estimation and compensation[J]. IEEE Transactions on Circuits and Systems for Video Technology,2000,10(7),1029-1039.
    [49]D. Wang, L. Wang. Global motion parameters estimation using a fast and robust algorithm[J]. IEEE Transactions on Circuits and Systems for Video Technology,1997,7(5),823-826.
    [50]G. B. Rath, A. Makur. Iterative least squares and compression based estimation for a four-parameter linear global motion model and global motion compensation[J]. IEEE Transactions on Circuits and Systems for Video Technology,1999,9(7):1075-1099.
    [51]A. Smolic, T. Siroa, J. R. Ohm. Long-term global motion estimation and its application for sprite coding content description and segmentation [J]. IEEE Transactions on Circuits and Systems for Video Technology,1999,9(8):1227-1242.
    [52]T. Papadimitriou, K. I. Diamantaras, M. G. Strintzis, M. Roumeliotis. Robust estimation of rigid-body 3-D motion parameters based on point correspondences[J]. IEEE Transactions on Circuits and Systems for Video Technology,2000,10(4):541-549.
    [53]P. C. Liu, W. T. Chang. Recursive Wiener filter for motion parameter estimation in three-parameter motion model[J]. IEEE Transactions on Circuits and Systems for Video Technology,1998,8(8):1001-1014.
    [54]H. K. Aghajan, B. H. Khalaj, T. Kailath. Estimation of multiple 2-D uniform motions by SLIDE:subspace-based line detection[J]. IEEE Transactions on Image Processing,1999,8(4):517-526.
    [55]0. Yli-Harja, J. Astola, Y. Neuvo. Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation[J]. IEEE Trans. Signal Process.,1991,2(39):395-410.
    [56]S.-J. Ko, Y. H. Lee. Center weighted median filters and their applications to image enhancement[J]. IEEE Trans. Circuit Syst. 1991,9(38):984-993.
    [57]B. Jeong, Y. H. Lee. Design of weighted order statistic filters using the perceptron algorithm[J] IEEE Trans. Signal Process, 1994,11 (42):3264-3269.
    [58]T. Sun, Y. Neuvo. Detail-preserving median based filters in image processing [J]. Pattern Recognit. Lett.,1994,4(15).
    [59]T. Chen, H. R. Wu. Adaptive impulse detection using centerweighted median filters[J]. IEEE Signal Process. Lett.,2001,1(8):1-3.
    [60]S. Zhang, M. A. Karim. A new impulse detector for switching median filters[J]. IEEE Signal Process. Lett.,2002,11(9).
    [61]G. Pok, Y. Liu, A. S. Nair. Selective removal of impulse noise based on homogeneity level information[J]. IEEE Trans. Image Process., 2003,1(12):85-92.
    [62]V. Crnojevic, V. Senk, Z. Trpovski. Advanced Impulse Detection Based on Pixel-Wise MAD[J]. IEEE Signal Process. Lett.,2004,7 (11):589-592.
    [63]E. Bes, dok. Impulsive noise suppression from images with a modified two-step iterative-median filter[J]. Electron. Imag.,2004,4(13): 714-719.
    [64]E. Bes.dok, M. E. Yuksel. Impulsive noise rejection from images with Jarque-Berra test based median filter [J]. Int. J. Electron. Commun., 2005,2 (59):105-109.
    [65]M. E. Yuksel, E. Bes,dok. A simple neuro-fuzzy impulse detector for efficient blur reduction of impulse noise removal operators for digital images[J]. IEEE Trans. Fuzzy Syst.,2004,6(12):854-865.
    [66]M. E. Yuksel, A. Bas,turk, E. Bes.dok. Detail preserving restoration of impulse noise corrupted images by a switching median filter guided by a simple neuro-fuzzy network [J]. EURASIP J. Appl. Signal Process.,2004,16(2004):2451-2461.
    [67]T. Chen, K.-K. Ma, L.-H. Chen. Tri-state median filter for image denoising[J]. IEEE Trans. Image Process.,1999,12(8):1834-1838.
    [68]T. Chen, H. R. Wu. Space variant median filters for the restoration of impulse noise corrupted images [J]. IEEE Trans. Circuit Syst. Ⅱ, Analog Digit. Signal Process.,2001,8(48).
    [69]Z. Wang, D. Zhang. Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. Circuit Syst. Ⅱ, Exp. Briefs,1999,1 (46):78-80.
    [70]T. Chen, H. R. Wu. Application of partition-based median type filters for suppressing noise in images[J]. IEEE Trans. Image Process.,2001,6(10):829-836.
    [71]E. Abreu, M. Lightstone, S. K. Mitra, K. Arakawa. A newefficient approach for the removal of impulse noise from highly corrupted images[J] IEEE Trans. Image Process.,1996,6(5):1012-1025.
    [72]W. Y. Han, J. C. Lin, Minimum-maximum exclusive mean (MMEM) filter to remove impulse noise from highly corrupted images [J]. Electron. Lett.,1997,2(33):124-125.
    [73]F. Russo, G. Ramponi. A fuzzy filter for images corrupted by impulse noise[J]. IEEE Signal Process. Lett.,1996,6(3):168-170.
    [74]D. Van De Ville, M. Nachtegael, D. Van der Weken, E. E. Kerre, W. Philips, Ⅰ. Lemahieu. Noise reduction by fuzzy image filtering[J]. IEEE Trans. Fuzzy Syst.,2003,4(11):429-436.
    [75]M. E. Yuksel and A. Bas, ttirk. Efficient removal of impulse noise from highly corrupted digital images by a simple neuro-fuzzy operator. Int. J. Electron. Commun.,2003,3(57).
    [76]E. Bes.dok, P. Qivicio glu, and M. Alci. Impulsive noise suppression from highly corrupted images by using resilient neural networks [J]. Lecture Notes Artif. Intell.,2004,3070:670-675.
    [77]M. Emin Yuksel. A Hybrid Neuro-Fuzzy Filter for Edge Preserving Restoration of Images Corrupted by Impulse Noise[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2006 4(15):928-936.
    [78]Hosin David Lee, Kihyoung Jeffery Kang. Development of Automated Pavement Distress Measurement System Following New AASHTO Provisional Protocol[C].14th Annual RPUG Meeting, Virginia, Roanoke,2002,21-25.
    [79]黄卫,肖旺新,路小波,封晓强,刘志刚.基于图像子块分布特性的路面破损图像特征提取[J].土木工程学报,2005,16(3):54-60.
    [80]李晋惠.用图像处理的方法检测公路路面裂缝类病害[J].长安大学学报(自然科学版),2004,24(3):24-29.
    [81]Miyojim M, Cheng H D. Novel System for automatic pavement distress detection[J]. Journal of computing in civil Engineering ASCE,1998,12 (3):145-152.
    [82]初秀民,王荣本,储江伟等.沥青路面破损图像分割方法研究[J].中国公路学报,2003,16(3):11-14.
    [83]Siriphan Jitprasithsiri. Development of a new digital pavement image processing algorithm for unified crack index computation [D]. USA:UMI Company 1997.78-99.
    [84]Ikhlas Abdel-Qader, Osama Abudayyeh, and Michael E. Analysis of edge-detection techniques for crack identification in bridges [J] Journal of computing in civil engineering ASCE,2003,17(4).225-263
    [85]Ingrid Daubechies.小波十讲[M].李建平,译.北京:国防工业出版社出版,2004.
    [86]FERWERDA J A. Element of Early Vision for Computer Graphics [J]. IEEE Computer Graphics and Applications,2001,21(5):22-33.
    [87]Gong W., Shi Q.Y., and Cheng M.D., CB morphology and its applications, Proc. Int. Conf. for Yong Computer Scientists,1991,260-264
    [88]Gong W., Shi Q.Y.,and Cheng M.D., A morphological filter without distorting image,Proc, Ⅱth. Conf. on Pattern Recognition,1992,3:684-678
    [89]王丰元,周一鸣,毛恩荣.车辆有线引导的计算机视觉系统[J].汽车工程,1997,19(6):357-362.
    [90]储江伟,施树明,王荣本,郭烈,刘锐.视觉导航智能汽车试验平台总体设计[J].汽车工程,2004,26(2):214-219.
    [91]M. EminY u ksel. Edge detection in noisy images by neuro-fuzzy processing[J]. Int. J. Electron. Commun.,2007,61:82-89.
    [92]Y. Becerikli, T. M. Karan. A new fuzzy approach to edge detection[J]. Lecture Notes Comput. Sci.,2005,3512:943-951.
    [93]Zhuge Y, Udupa JK, Saha PK. Vectorial scale-based fuzzy-connected image segmentation[J]. Comput Vision Image Understanding, 2006,101 (3):177-93.
    [94]Yuksel ME. A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise[J]. IEEE Trans Image Processing,2006,15(4):928-36.
    [95]D. L. Zhou, Q. Pan, and H. C. Zhang. An improved algorithm of edge detection based on fuzzy sets[J]. Image Graph,2001,6(4):353-358.
    [96]Chung-Chia Kang, Wen-JuneWang. A novel edge detection method based on the maximizing objective function[J]. Pattern Recognition 2007,40:609-618.
    [97]Jinbo Wu, Zhouping Yin, Youlun Xiong. The Fast Multilevel Fuzzy Edge Detection of Blurry Images [J]. IEEE Signal Processing Letters:2007, 14(5):34-42.
    [98]Tamalika Chaira, A. K. Ray. A new measure using intuitionistic fuzzy set theory and its application to edge detection[J]. Applied Soft Computing:2008,8:919-927.
    [99]0. Javed, K. Shafique, M. Shah. A hierarchical approach to robust background subtraction using color and gradient information [C]. The Workshop on Motion and Video Computing, Orlando, FL,2002,22-27.
    [100]M. Thomas, K. N. Ngan. Automatic segmentation of moving objects for video object plane generation[J]. IEEE Transactions on Circuits and Systems for Video Technology,1998,8(5):525-538.
    [101]Xiao mei, Zhang lei. A background reconstruction algorithm based on two-threshold sequential clustering[C]. ISECS Internatinal Colloquium on Computing, Communication, control, and Management,2008,389-393.
    [102]F. Long, D. Feng, H. Peng, W. C. Siu. Extracting semantic video objects[J]. IEEE Computer Graphics and Applications,2001,21(1): 48-55.
    [103]C. Kim, J. N. Hwang. Object-based video abstraction for video surveillance systems [J]. IEEE Transaction on Circuits and Systems for Video Technology,2002,12(12):1128-1138.
    [104]J. C. Huang, W.S. Hsieh. Wavelet-based moving object segmentation[J]. Electronics Letters,2003,39(19):1380-1382.
    [105]J. C. Huang, T. S. Su, L. J. Wang, W. S. Hsieh. Double-change-detection method for wavelet-based moving-object segmentation[J]. Electronics Letters,2004,40(13):798-799.
    [106]E. Herrero, C. Orrite, J. Senar. Detected motion classification with a double-background and a neighborhood-based difference[J]. Pattern Recognition Letters,2003,24(12):2079-2092.
    [107]Z. Q. Hou, C. Z. Han. A background reconstruction algorithm based on pixel intensity classification in remote video surveillance system[C]. The Seventh International Conference on Information Fusion, Stockholm, Sweden,2004,754-759.
    [108]M. Betke, E. Haritaoglu, L. S. Davis. Real-time multiple vehicle detection and tracking from a moving vehicle [J]. Machine Vision and Applications,2000,12(2):69-83.
    [109]O. Javed, K. Shafique, M. Shah. A hierarchical approach to robust background subtraction using color and gradient information [C]. The Workshop on Motion and Video Computing, Orlando, FL,2002,22-27.
    [110]D. S. Lee, J. J. Hull, B. Erol. A Bayesian framework for Gaussian mixture background modeling[C].2003 International Conference on Image Processing, Barcelona, Spain,2003,973-976.
    [111]Z. Zivkovic, D. H. F. Van. Recursive unsupervised learning of finite mixture models [J]. IEEE Transactions on pattern analysis and machine intelligence,2004,5(26):651-656.
    [112]A. Elgammal, D. Harwood, L. Davis. Non-parametric model for background subtraction[C].6th European Conference on Computer Vision, Dublin Ireland,2000,751-767.
    [113]A. Elgammal, R. Duraiswami, D. Harwood, L. Davis. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J]. Proceedings of IEEE,2002, 90(7):1151-1163.
    [114]D. Magee. Tracking multiple vehicles using foreground, background and motion models [J]. Image and Vision Computing,2004, 22(2):143-155.
    [115]M. Piccardi, T. Jan. Mean-shift background image modeling[C]. 2004 international conference on image processing, Singapore,2004, 3399-3402.
    [116]W. Long, Y. Yang. Stationary Background Generation:An alternative to the difference of two images [J]. Pattern Recognition, 1990,23(12):1351-1359.
    [117]D. Gutchess, M. Trajkonic, E. Cohen-Solal, D. Lyons, A. K. Jain. A background model initialization algorithm for video surveillance[C].8th International Conference on Computer Vision, Vancouver, BC,2001,733-740.
    [118]B. Gloyer, H. K. Aghajan, K. Y. Siu, T. Kailath. Video-based freeway monitoring system using recursive vehicle tracking[C]. The International Society for Optical Engineering:Image and Video Processing, San Jose, CA, USA,1995,173-180.
    [119]E. Herrero, C. Orrite, J. Senar. Detected motion classification with a double-background and a neighborhood-based difference[J]. Pattern Recognition Letters,2003,24(12):2079-2092.
    [120]Z. Q. Hou, C. Z. Han. A background reconstruction algorithm based on pixel intensity classification in remote video surveillance system[C]. The Seventh International Conference on Information Fusion, Stockholm, Sweden,2004,754-759.
    [121]C. R. Wren, A. Azarbaye jani, T. Darrell, P. Pentland. Pfinder: real-time tracking of the human body[J]. IEEE Transactions On Pattern Analysis and Machine Intelligence,1997,19(7):780-785.
    [122]N. Friedman, S. Russell. Image segmentation in video sequences: A probabilistic approach[C].13th Conference on Uncertainty in Artificial Intelligence (UAI), San Francisco,1997,175-181.
    [123]C. Stauffer, W. E. L. Grimson. Adaptive background mixture models for real-time tracking[C]. The 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Collins, CO, USA,1999,246-252.
    [124]P. KaewTraKulPong, R. Bowden. An improved adaptive background mixture model for real-time tracking with shadow detection[C].2nd European Workshop on Advanced Video-based Surveillance Systems, Kingston, UK,2001,149-158.
    [125]O. Javed, K. Shafique, M. Shah. A hierarchical approach to robust background subtraction using color and gradient information[C]. The Workshop on Motion and Video Computing, Orlando, FL,2002,22-27.
    [126]D. S. Lee, J. J. Hull, B. Erol. A Bayesian framework for Gaussian mixture background modeling[C].2003 International Conference on Image Processing, Barcelona, Spain,2003,973-976.
    [127]Z. Zivkovic, D. H. F. Van. Recursive unsupervised learning of finite mixture models [J]. IEEE Transactions on pattern analysis and machine intelligence,2004,5(26):651-656.
    [128]A. Elgammal, D. Harwood, L. Davis. Non-parametric model for background subtraction[C].6th European Conference on Computer Vision, Dublin Ireland,2000,751-767.
    [129]A. Elgammal, R. Duraiswami, D. Harwood, L. Davis. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J]. Proceedings of IEEE,2002, 90(7):1151-1163.
    [130]D. Magee. Tracking multiple vehicles using foreground, background and motion models [J]. Image and Vision Computing,2004, 22(2):143-155.
    [131]K. Toyama, J. Krumm, B. Brumitt, B. Meyers. Wallflower: Principles and practice of background maintenance [C]. The 1999 7th IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999,255-261.
    [132]C. Ridder,O. Munkelt, H. Kirchner. Adaptive background estimation and foreground detection using Kalman-filter[C]. International Conference on Recent Advances in Mechatronics, UNESCO Chair on Mechatronics,1995,193-199.
    [133]M. Piccardi, T. Jan. Mean-shift background image modeling[C]. 2004 international conference on image processing, Singapore,2004, 3399-3402.
    [134]郁梅,蒋刚毅,贺赛龙.基于路面标记的车辆检测和计数[J].仪器仪表学报,2002,23(4):387-399.
    [135]J. M. Collado, C. Hilario, A. De La Escalera, J. M. Armingol model based vehicle detection for intelligent vehicles[C].2004 IEEE Intelligent Vehicles Symposium, Parma, Italy,2004,572-577.
    [136]S. S. Huang, C. J. Chen, P. Y. Hsiao, L. C. Fu. On-board system for lane recognition and front-vehicle detection to enhance driver's awareness[C]. IEEE International Conference on Robotics and Automation, New Orleans, LA, United States,2004,2456-2461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700