用户名: 密码: 验证码:
智能车辆视觉环境感知技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能车辆是智能交通系统的重要组成部分,其研究的主要目的在于降低日趋严重的交通事故发生率,提高现有道路交通安全和运输效率,在某种程度上缓解能源消耗和环境污染等问题。该技术的研究日益受到国内外学者的关注。
     本文针对智能车辆技术中的环境感知问题,对采用视觉技术的车道线检测、车辆检测与跟踪、以及行人检测问题进行了较深入的研究,具体研究内容归纳如下:
     (1)一种改进的自适应加权正则化迭代图像复原算法。该算法能够自适应地选择并自动修正正则化参数。在每一步迭代中,不断更新正则化参数并进行复原滤波,使复原结果能够快速趋向于最优,增强了复原过程对强噪声的适应性;一种基于信息测度和支持向量机的图像去噪方法。算法仅对图像中的退化象素进行复原滤波,而未退化的象素保持不变,能够在消除噪声的同时,保存尽可能多的图像细节。
     (2)一种面向结构化道路的单目视觉的车道线实时检测方法。首先用Canny边缘检测方法对给定图像进行边缘检测;然后用基于方向优先级的车道线搜索方法,分别对左、右车道独立完成搜索,在增强车道线特征的同时削弱其他边缘特征;接下来用霍夫变换计算每条线段的直线度,过滤具有复杂纹理的边缘;最后利用图像的亮度信息及其变换识别出车道线。对提出方法进行了实验验证,结果显示提出方法定位准确,在PIII 933MHz CPU上的处理速度达平均每秒13帧。
     (3)一种融合多种目标特征的单目视觉车辆检测与跟踪方法。首先利用车辆尾部的结构对称性提取出感兴趣区域,减少搜索范围;再利用车辆底部的阴影特征,在感兴趣区域中搜寻车辆可能出现的位置,找出假设目标;然后利用亮度和轮廓信息对假设目标进行对称性验证,排除虚假目标;融合颜色和梯度方向建立目标特征模型,利用均值平移算法在随后的图像序列中对目标进行快速跟踪定位;检测与跟踪联合工作在一种互动机制下,大幅改善了算法的有效性和实时性。实验结果显示提出方法的正确识别率为96%,平均处理速度达每秒24帧。
     (4)一种基于小波分形特征的行人检测方法。首先用哈尔小波基将图像分解为不同分辨率下的小波子模式;然后在小波域中选出适当分辨率的小波子模式,对每一个小波子模式都构造出相应尺度的小波分形特征,将这些由小波分形特征组成的特征向量用于训练支持向量机分类器。用戴姆勒克莱斯勒公司提供的测试平台进行了测试,实验结果显示:该方法较现有方法的特征表达简洁、识别效率高。
     (5)为配合实车试验工作的开展,试制了智能车辆辅助驾驶装置的原理性样机。设计了视频采集、处理与显示硬件电路,基于OpenCV设计了人机交互界面,用具有较强移植性的C/C++程序设计语言实现了本文所提出的算法。基于该样机,对所提出的车道线检测方法、车辆检测与跟踪方法进行了实车试验验证。
     综上所述,本文研究了图像复原、车道线检测、障碍物检测与跟踪,并在试制辅助驾驶装置原理性样机的基础上,对车道线检测、车辆检测与跟踪进行了实车试验,其研究结果在相关领域中有较重要的理论意义和工程应用价值。
Intelligent Vehicle (IV) is an important constituent of the Intelligent Transportation System (ITS).The purpose of IV technology is to reduce the growing incidence of traffic accidents and to improve both the road traffic safety and the transport efficiency. To some extent, it can alleviate the energy consumption and environmental pollution. As a result, the IV technologies have been attracting worldwide attention of scholars increasingly.
     This paper conducts in-depth discussions on the vision based lane detection, vehicle detection and tracking, pedestrian detection in different road scenes for environmental perception of intelligent vehicles. Concrete content of the research has been summarized as follows:
     (1) Based on adaptive regularization architecture, an improved weighted iterative restoration algorithm is presented. It can select the regularization parameter and modify it automatically. In each iteration step, the algorithm updates the parameter and restores a part of the degraded image synchronously and finally gets the optimal image. Experimental results show that the algorithm is robustness under significant noise. A novel approach of the image de-noising using information measure and SVM is proposed. It can improve image quality by recovery corrupted pixels only, and keep good pixels unchanged. The proposed algorithm can achieve better performance both on de-noising and preserve more image detail.
     (2) A real-time structural road oriented approach in monocular camera based lane marking detection is presented. Firstly, Canny detection approach is used to obtain the edge map from a given road image. Secondly, a searching method based on orientation-priority is proposed, which reinforces those potential road lines while degrading otherwise edge features. Thirdly, Hough transform is employed to compute the linearity degree of every edge segment and filter the edges of intricate texture. Finally, the lane markings are identified by the pixel intensity of the image and its transform. Experiment results show that the proposed approach can achieve robust and effective localization of lane markings. The approach can run at an average speed of 13 frames per second on a P III 933 MHz CPU, and can meet the requirements of safety and real-time of vehicle driving.
     (3) A monocular camera vehicle detection and tracking approach which by fuse multi-cues is proposed. First, the horizontal symmetry of vehicle rear view is utilized to achieve the region of interest (ROI) so as to reduce search area of following process. Then, the sign of underneath shadow is employed to generate hypothetical positions on which potential vehicles maybe present. Following, both image intensity and figure information are combined to use to verify the vertical symmetry of the potential vehicle candidates. Meanwhile, Mean Shift procedure, based on the object feature model of combining color histogram and orientation histogram, is used to search the potential objects between two sequential image frames fast. More important, both detection and tracking work together under an interactive mechanism which can dramatically improve both detection efficiency and real-time. It shows that the proposed approach can achieve 96% true detection rate and run about average 24 frames per second, which validate the security and real-time requirements.
     (4) A novel pedestrian detection approach is presented. Firstly, Haar wavelet is employed to transform the input image into its sub patterns of wavelet region with different resolutions. And then, some relevant wavelet sub patterns are selected to compute the wavelet fractal signature in different scales. Next, this wavelet fractal signature is assembled to be a Wavelet Fractal Signature (WFS) vector, which is utilized to training Support Vector Machine classifier. To validate this approach, some experiments based on Daimler’s Pedestrian Detection Benchmark are conducted; the experimental results show that the proposed approach has the advantages of compact feature expression form and higher detection rate than available approach.
     (5) An intelligent vehicle driving assistant device for the purpose of real world experimentation is developing. The hardware is designed including video acquire, image proceeding and display. Based on OpenCV (Open source Computer Vision platform), we designed a simple and friendly man-machine interface. The proposed algorithms have been realized by C/C++, and providing both lane departures reminds and prevents collision warning function. A test in practice has been conducted using this device, and the result validates the approaches proposed by this paper.
     In summary, this paper focus on the image de-noising, lane detection, obstacle detection and tracking, and based on the self-developed principle prototype of the driving assistance system, conducts a real vehicle tests of lane detection and vehicle detection and tracking, the results contribute practical and heuristic significance to both theory and engineering application in related fields.
引文
[1] Bishop R. Survey of Intelligent Vehicle Applications Worldwide [A]. In: IEEE Intelligent Vehicles Symposium[C]. Dearborn, Ml, USA, 2000, 25~31.
    [2]李舜酩,沈峘,毛建国,等.智能车辆发展及其关键技术展望[J].传感器与微系统, 2009, 28(1): 1~4.
    [3]王荣本,李斌,储江伟,等.世界智能车辆行驶安全保障技术的研究进展[J].公路交通科技, 2002, 19(2): 112~117.
    [4] Broggi A, Bertozzi M, Conte G, et al, Argo Prototype Vehicle. In Intelligent Vehicle Technologies, Vlacic L, Harashima F, Parent M,‘‘Eds.’; Butterworth-Heinemann: London, UK, 2001;
    [5] Gharavi H, Prasad K V, Ioannou P. Scanning Advanced Automobile Technology [J]. Proceedings of the IEEE, 2007, 95(2): 328~333.
    [6] Sheng W H, Yang Q, Guo Y. Cooperative Driving Based On Inter-Vehicle Communications: Experimental Platform and Algorithm [A]. In: International Conference on Intelligent Robots and Systems[C]. Beijing, China, 2006, 5073~5078.
    [7] Commission E. European Transport Policy for 2010: Time to Decide [EB/OL]. http://ec.europa.eu/transport/roadsafety/road_safety_observatory/rsap_en.htm, 2007-11-28.
    [8] Tsugawa S, Saito T, Hosaka A. Super Smart Vehicle System: Avcs Related Systems for the Future [A]. In: IEEE Intelligence Vehicles Symposium[C]. Detroit, MI, USA, 1992, 132~137.
    [9]王笑京,沈鸿飞,汪林.中国智能交通系统发展战略研究[J].交通运输系统工程与信息, 2006, 6(4): 9~12.
    [10] An X J, Wu M, He H G. A Novel Approach to Provide Lane Departure Warning Using Only One Forward-Looking Camera[A]. In: International Symposium on Collaborative Technologies and Systems[C]. Las Vegas, Nevada, USA, 2006, 356~362.
    [11]早川泰久,岩坂武志.车道偏离防止装置及方法[P]. CN101062676, 2007.10.31.
    [12] Wang J F, Gao F X, Guo Y, et al. Application of Machine Vision to Vehicle Automatic Collision Warning Algorithm[J]. Journal of Beijing Institute of Technology, 2008, 17(1): 25~29.
    [13] Fan X, Yin B C, Sun Y F. Yawning Detection for Monitoring Driver Fatigue[A]. In: International Conference on Machine Learning and Cybernetics[C]. Hong Kong, China, 2007.2:664~668.
    [14] Tian Y L, Kanade T, Cohn J. Eye-State Action Unit Detection by Gabor Wavelets[A]. In: Proceedings of the Third International Conference on Advances in Multimodal Interfaces[C]. Beijing, China, 2000. 1948:143~150.
    [15] Singh S, Papanikolopoulos N P. Monitoring Driver Fatigue Using Facial Analysis Techniques[A]. In: Proceedings of the International Conference on Intelligent Transportation Systems[C]. Tokyo, Japan, 1999, 314~318.
    [16] Zhu Z W. Real Time and Non-Intrusive Driver Fatigue Monitoring[A]. In: Proceedings of International Conference on Intelligent Transportation Systems[C]. Troy, New York, USA, 2004, 657~662.
    [17] Krotosky S J, Cheng S Y, Trivedi M M. Real-Time Stereo-Based Head Detection Using Size, Shape and Disparity Constraints[A]. In: IEEE Intelligent Vehicles Symposium[C]. Las Vegas, USA, 2005, 550~556.
    [18] Yamamura Y, Tabe M, Kanehira M, et al. Development of an Adaptive Cruise Control System with Stop-and-Go Capability[A]. In: SAE 2001 World Congress[C]. Detroit, Michigan, USA, 2001, 1480~1490.
    [19] Broggi A, Bertozzi M, Fascioli A, et al. The Argo Autonomous Vehicle's Vision and Control Systems [J]. The International Journal of Intelligent Control and Systems, 1999, 3(4): 409~441.
    [20] Naranjo J E, García-Rosa R, González C, et al. Crossroad Cooperative Driving Based On Gps and Wireless Communications [A]. In: International Conference on Computer Aided Systems Theory[C]. Las Palmas de Gran Canaria, Spain, 2007. 4739:1073~1080.
    [21] Baber J, Kolodko J, Noel T, et al. Cooperative Autonomous Driving: Intelligent Vehicles Sharing City Roads[J]. IEEE Robotics & Automation Magazine, 2005, 12(1): 44~49.
    [22] Wicks M C. Radar the Next Generation - Sensors as Robots[A]. In: Proceedings of the International Radar Conference[C]. Washington, USA, 2003, 8~14.
    [23] Gregor R, Lutzeler M, Pellkofer M, et al. Ems-Vision: A Perceptual System for Autonomous Vehicles[A]. In: IEEE Intelligent Vehicles Symposium[C]. Dearborn, MI, USA, 2000, 52~57.
    [24]贾鑫.智能车辆视觉感知中的车道标线识别方法的研究[D]:[工学博士学位论文].吉林:吉林大学, 2008.
    [25] Sun Z H, Bebis G, Miller R. Monocular Precrash Vehicle Detection: Features and Classifiers[J].IEEE Transactions on Image Processing, 2006, 15(7): 2019~2034.
    [26] Chen Y, Wu Q, He X J. Motion Based Pedestrian Recognition[A]. In: Congress on Image and Signal Processing[C]. Sanya, Hainan, China, 2008. 2:376~380.
    [27] Satumino M B, Sergio L A, Pedro G J, et al. Road-Sign Detection and Recognition Based On Support Vector Machines[J]. IEEE Transactions on intelligent transportation systems, 2007, 8(2): 264~278.
    [28] Yang Y C, Farrell J A. Magnetometer and Differential Carder Phase Gps-Aided Ins for Advanced Vehicle Control[J]. IEEE Transactions on Robotics and Automation, 2003, 19(2): 269~282.
    [29] Xu H G, Yang R Q, Wang C X. An Experimental Study of the Magnetic Sensing System for Autonomous Vehicles Guidance [A]. In: Proceedings of the First JTU-TIT Joint Workshop on Innovation of Creative Engineering[C]. Shanghai, China, 1996, 373~378.
    [30]辛江慧,李舜酩,廖庆斌.基于传感器信息的智能移动机器人导航研究[J].传感器与微系统, 2008, 27(4): 4~7.
    [31] Shen H, Li S M, Bo F C, et al. Intelligent Vehicles Oriented Lane Detection Approach Under Bad Road Scene[A]. In: Proceeding of the Ninth International Conference on Computer and Information Technology[C]. Xiamen, China, 2009. 1:177~182.
    [32] Shen H, Li S M, Mao J G, et al. Image Denoising Using Information Measure and Support Vector Machines[A]. In: Proceeding of the Fifth International Conference on Computational Intelligence and Software Engineering[C]. Wuhan, Hubei, China, 2009. 2:121~125.
    [33] Xin J H, Li S M, Liao Q B, et al. The Application of Fuzzy Logic in Exploration Vehicle [A]. In: International Conference on Fuzzy Systems and Knowledge Discovery[C]. Haikou, Hainan, China, 2007. 4:199~203.
    [34] Abdullah A S, Hai L K, Osman N A A, et al. Vision Based Automatic Steering Control Using a Pid Controller[J]. Journal Teknologi, 2006, 44(A): 97~114.
    [35] Unyelioglu A, Hatipoglu C, Ozguner J. Design and Stability Analysis of a Lane Following Controller[J]. IEEE Transaction on Control Systems Technology, 1997, 5(1): 127~134.
    [36] Liu Y, Ozguner U, Acarman T. Performance Evaluation of Inter-Vehicle Communication in Highway Systems and in Urban Areas[J]. IEE Proceedings of Intelligent Transport Systems, 2006, 153(1): 63~75.
    [37] Chen Q, ?zgünerü, Redmill K. Ohio State University at the 2004 Darpa Grand Challenge:Developing a Completely Autonomous Vehicle[J]. IEEE Intelliget Systems, 2004, 19(5): 8~11.
    [38] Lu W, Zheng Y C, Ma Y Q, et al. An Integrated Approach to Recognition of Lane Marking and Road Boundary [A]. In: First International Workshop on Knowledge Discovery and Data Mining[C]. Adelaide, Australia, 2008, 649~653.
    [39] Foda S G, Dawoud A K. Highway Lane Boundary Determination for Autonomous Navigation[A]. In: IEEE Pacific Rim Conference on Computers and signal Processing[C]. Victoria, BC, Canada, 2001. 2:698~702.
    [40] Hattori H. Stereo for 2D Visual Navigation[A]. In: IEEE Intelligent Vehicles Symposium[C]. Dearborn, MI, USA, 2000, 31~38.
    [41] Benmansour N, Labayrade R, Aubert D, et al. Stereovision-Based 3D Lane Detection System: A Model Driven Approach[A]. In: IEEE Intelligent Transportation Systems Conference[C]. Beijing, China, 2008, 182~188.
    [42]卢卫娜,史忠科.基于单目视觉的车道线和道路边界同步检测[J].传感技术学报, 2007, 20(5): 1171~1175.
    [43] Chapuis R, Aufrere R, Chausse F. Accurate Road Following and Reconstruction by Computer Vision[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 3(4): 261~270.
    [44] Ramstrom O, Christensen H. A Method for Following Unmarked Roads [A]. In: IEEE Intelligent Vehicles Symposium[C]. LasVegas, USA, 2005, 650~655.
    [45]沈峘,毛建国,李舜酩.单目视觉车道线识别算法及其ARM实现[J].南京航空航天大学学报, 2008, 40(2): 208~212.
    [46] Marola G. Using Symmetry for Detecting and Locating Objects in a Picture[J]. Computer Vision, Graphics, and Image Processing, 1989, 46(2): 179~195.
    [47] Mallot H A, Bülthoff H H, Little J, et al. Nverse Perspective Mapping Simplifies Optical Flow Computation and Obstacle Detection[J]. Biological Cybernetics, 1991, 64(3): 177~185.
    [48] Zhao G W, Yuta S. Obstacle Detection by Vision System for an Autonomous Vehicle[A]. In: IEEE Intelligent Vehicles Symposium[C]. Tokyo, Japan, 1993, 31~36.
    [49] Bertozzi M, Broggi A. Gold: A Parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection[J]. IEEE Transactions on Image Processing, 1998, 7(1): 62~81.
    [50] Fletcher L, Petersson L, Zelinsky A. Driver Assistance Systems Based On Vision in and Out of Vehicles[A]. In: IEEE Intelligent Vehicles Symposium[C]. Columbus, OH, USA, 2003, 322~327.
    [51] Franke U, Gavrila D M, Gern A, et al, From Door to Door - Principles and Applications of Computer Vision for Driver Assistant Systems. In Intelligent Vehicle Technologies, Vlacic L, Harashima F, Parent M, ''Eds.' ; Oxford: Butterworth Heinemann, 2001; pp 131~189
    [52] Mandelbaum R, Mcdowell L, Bogoni L, et al. Real-Time Stereo Processing, Obstacle Detection, and Terrainestimation From Vehicle-Mounted Stereo Cameras[A]. In: IEEE Workshop on Applications of Computer Vision[C]. Princeton, NJ, USA, 1998, 288~289.
    [53] Barron J L, Fleet D J, Beauchemin S. Performance of Optical Flow Techniques[J]. International Journal of Computer Vision, 1994, 12(1): 43~77.
    [54] Giachetti A, Campani M, Torre V. The Use of Optical Flow for Road Navigation [J]. IEEE Transactions on Robotics and Automation, 1998, 14(1): 34~48.
    [55] Wu J W, Zhang X G. A Pca Classifier and its Application in Vehicle Detection [A]. In: International Joint Conference Neural Networks[C]. Washington D C, USA, 2001. 1:600~604.
    [56] Noll D, Werner M, von Seelen W. Real-Time Vehicle Tracking and Classification [A]. In: IEEE Intelligent Vehicles Symposium[C]. Orlando, Florida, USA, 1995, 101~106.
    [57] Sun Z H, Bebis G, Miller R. On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(2): 125~137.
    [58] Betke M, Haritaoglu E, Davis L S. Real-Time Multiple Vehicle Detection and Tracking From a Moving Vehicle [J]. Machine Vision and Applications, 2000, 12(2): 69~83.
    [59] Gavrila D M, Munder S. Multi-Cue Pedestrian Detection and Tracking From a Moving Vehicle[J]. International Journal of Computer Vision, 2007, 73(1): 41~59.
    [60] Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models[J]. International Journal of Computer Vision, 1988, 1(4): 321~331.
    [61] Blake A, Isard M. Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion [M]. New York: Springer-Verlag, 1998.
    [62] Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours[J]. International Journal of Computer Vision, 1997, 22(1): 61~79.
    [63] Kichenassamy S, Kumar A, Olver P, et al. Gradient Flows and Geometric Active Contour Models[A]. In: International Conference on Computer Vision[C]. Cambridge, MA, USA, 1995,810~815.
    [64] Paragios N, Deriche R. Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(3): 266~280.
    [65] Paragios N, Deriche R. Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision[J]. Journal of Visual Communication and Image Representation, 2002, 13: 249~268.
    [66] Fukunaga K, Hostetler L. The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition [J]. IEEE Transactions on Information Theory, 1975, 21(1): 32~40.
    [67] Cheng Y. Mean Shift, Mode Seeking, and Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790~799.
    [68] Zheng L Y, Zhang J, Wang Q Y. Mean-Shift-Based Color Segmentation of Images Containing Green Vegetation[J]. Computers and Electronics in Agriculture, 2009, 65(1): 93~98.
    [69] Raoa S, de Medeiros Martinsb A, Príncipea J C. Mean Shift: An Information Theoretic Perspective [J]. Pattern Recognition Letters, 2009, 30(3): 222~230.
    [70] Fashing M, Tomasi C. Mean Shift is a Bound Optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 471~474.
    [71] Comaniciu D, Meer P. Mean Shift-a Robust Approach Toward Feature Space Analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligenc, 2002, 24(5): 603~619.
    [72] Dalal N, Triggs B, Schmid C. Human Detection Using Oriented Histograms of Flow and Appearance [A]. In: European Conference on Computer Vision[C]. Graz, Austria, 2006, 7~13.
    [73]李同治,丁晓青,王生进.利用级联SVM的人体检测方法[J].中国图象图形学报, 2008, 13(3): 566~570.
    [74] Mikolajczyk K, Schmid C, Zisserman A. Human Detection Based On a Probabilistic Assembly of Robust Part Detectors[A]. In: Proceedings of the 8th European Conference on Computer Vision[C]. Prague, Czech Republic, 2004, 69~81.
    [75] Enzweiler M, Kanter P, Gavrila D M. Monocular Pedestrian Recognition Using Motion Parallax[A]. In: IEEE Intelligent Vehicles Symposium[C]. Eindhoven, The Netherlands, 2008, 792~797.
    [76] Gavrila D M, Munder S. Multi-Cue Pedestrian Detection and Tracking From a MovingVehicle[J]. International Journal of Computer Vision, 2007, 73(1): 41~59.
    [77] Yang R, Weiss I, Zheng Q F, et al. Pedestrian Detection Via Periodic Motion Analysis[J]. International Journal of Computer Vision, 2007, 71(2): 143~160.
    [78] Gavrila D M. Pedestrian Detection From a Moving Vehicle[A]. In: Proceedings of European conference on Computer Vision[C]. Dublin, Ireland, 2000. 1843:37~49.
    [79] Chen H, Tang G R, Luo Y P. Pedestrian Detection by Multiple Decision-Based Neural Networks[A]. In: International Symposium on Neural Networks[C]. Chongqing, China, 2005. 3498:457~462.
    [80] Kang S, Byun H, Lee S W. Real-Time Pedestrian Detection Using Support Vector Machines [A]. In: International Workshop on Pattern Recognition with Support Vector Machines[C]. Niagara Falls, Canada, 2002. 2388:273~281.
    [81]田广,戚飞虎.移动摄像机环境下基于特征变换和SVM的分级行人检测算法[J].电子学报, 2008, 36(5): 1024~1028.
    [82] Enzweiler M, Gavrila D M. Monocular Pedestrian Detection: Survey and Experiments [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12): 2179~2195.
    [83] Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[A]. In: International Conference on Computer Vision and Pattern Recognition[C]. San Diego, CA, USA, 2005. 1:886~893.
    [84] Schauland S, Kummert A, Park S B, et al. Vision-Based Pedestrian Detection - Improvement and Verification of Feature Extraction Methods and Svm-Based Classification[A]. In: IEEE Intelligent Transportation Systems Conference[C]. Toronto, Canada, 2006, 97~102.
    [85] Gerace I, Panolfi R, Pucci P. A New Estimation of Blur in the Blind Restoration Problem [A]. In: International Conference on Image Processing[C]. Barcelona, Catalonia, Spain, 2003. 1:261~264.
    [86] Leung C M, Lu W S. A Two-Phase Blind Restoration Algorithm [A]. In: Canadian Conference on Electrical and Computer Engineering[C]. Vancouver, Canada, 1993. 2:1029~1032.
    [87] Kang M G, Katsaggelos A K. General Choice of the Regularization Functional in Regularizedimage Restoration[J]. IEEE Transactions on Image Processing, 1995, 4(5): 594~602.
    [88] Robbins G M, Huang T S. Inverse Filtering for Linear Shift-Variant Imaging Systems [J]. Proceedings of the IEEE, 1972, 60(7): 862~872.
    [89] Berger T, Stromberg J O, Eltoft T. Adaptive Regularized Constrained Least Squares Image Restoration[J]. IEEE Transactions on Image Processing, 1999, 8(9): 1191~1203.
    [90] You Y L, Kaveh M. Ringing Reduction in Image Restoration by Orientation-Selective Regularization[J]. IEEE Signal Processing Letters, 1996, 3(2): 29~31.
    [91] Jin W. Image Restoration in Neutron Radiography Using Complex-Wavelet Denoising and Lucy-Richardson Deconvolution[A]. In: International Conference on Signal Processing[C]. Guilin, China, 2006. 2:16~20.
    [92] Fukuma S, Ikuta S, Ito M, et al. An Roi Image Coding Based On Switching Wavelet Transform[A]. In: Proceedings of the International Symposium on Circuits and Systems[C]. Bangkok, Thailand, 2003. 2:420~423.
    [93] Lin T C, Yu P T. Adaptive Two-Pass Median Filter Based On Support Vector Machines for Image Restoration[J]. Neural Computation, 2004, 16(2): 333~354.
    [94] Wu D X, Peng D Q, Tian J W. Image Denoising Using Local Adaptive Least Squares Support Vector Regression[J]. Geo-Spatial Information Science, 2007, 10(3): 196~199.
    [95]沈峘,李舜酩,毛建国,等.数字图像复原技术综述[J].中国图象图形学报, 2009, 14(9): 1764~1775.
    [96] Bouhamidi A, Jbilou K. Sylvester Tikhonov-Regularization Methods in Image Restoration[J]. Journal of Computational and Applied Mathematics, 2007, 206(1): 86~98.
    [97] Leung C M, Lu W S. Optimal Determination of Regularization Parameters and Thestabilizing Operator[A]. In: IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing[C]. Victoria, British Columbia, 1995, 403~406.
    [98] Galatsanos N P, Katsaggelos A K. Methods for Choosing the Regularization Parameter and Estimatingthe Noise Variance in Image Restoration and their Relation[J]. IEEE Transactions on Image Processing, 1992, 1(3): 322~336.
    [99] Nakano K, Eguchi M, Toyota Y, et al. On Regularization for Image Restoration Problems from the Viewpointof a Bayesian Information Criterion [A]. In: International Conference on Industrial Electronics, Control, and Instrumentation[C]. Hawaii, USA, 1993. 1:445~450.
    [100] Reeves S J. Optimal Regularized Image Restoration with Constraints [A]. In: IEEE International Conference on Acoustics, Speech, and Signal Processing[C]. San Francisco, CA, USA, 1992. 3:301~304.
    [101] Molina R, Katsaggelos A K, Mateos J. Bayesian and Regularization Methods forHyperparameter Estimation in Image Restoration [J]. IEEE Transactions on Image Processing, 1999, 8(2): 231~246.
    [102] Leung C M, Lu W S. An L-Curve Approach to Optimal Determination of Regularization Parameter in Image Restoration [A]. In: Canadian Conference on Electrical and Computer Engineering[C]. Vancouver, Canada, 1993. 2:1021~1024.
    [103] Demoment G. Image Reconstruction and Restoration: Overview of Common Estimation Structures and Problems [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12): 2024~2036.
    [104]睛苗,唐斌兵,周海银.空域中基于正则化技术的有效图像复原算法[J].系统工程, 2005, 23(11): 91~94.
    [105] Charbonnier P, Blanc-Feraud L, Aubert G, et al. Deterministic Edge-Preserving Regularization in Computed Imaging [J]. IEEE Transactions on Image Processing, 1997, 6(2): 298~311.
    [106] Sun Y. Hopfield Neural Network Based Algorithms for Image Restoration and Reconstruction: Part I I : Performance Analysis[J]. IEEE Transactions on Signal Processing, 2000, 48(7): 2119~2131.
    [107] Stephanakis I M, Kollias S. Generalized-Cross-Validation Estimation of the Regularizationparameters of the Subbands in Wavelet Domain Regularized Image Restoration [A]. In: Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems & Computers[C]. California, USA, 1998. 2:938~940.
    [108] Chui C K, Wang J Z. Wavelet-Based Minimal-Energy Approach to Image Restoration [J]. Applied and Computational Harmonic Analysis, 2007, 23(1): 114~130.
    [109] Jeong D S, Beex A A. Nonlinear Image Restoration Using a Segmentation-Oriented Expert System [A]. In: International Conference on Acoustics, Speech, and Signal Processing[C]. Seattle, Washington, USA, 1998. 2:984~987.
    [110] Hu G S, Zhang G H. Comparison on Neural Networks and Support Vector Machines in Supplier's Selection [J]. Journal of Systems Engineering and Electronics, 2008, 19(2): 316~320.
    [111] Pankajakshan P, Kumar V. Detail-Preserving Image Information Restoration Guided by Svm Based Noise Mapping [J]. Digital Signal Processing, 2007, 17(3): 561~577.
    [112] Yao C C, Yu P T. The Optimal Design of Weighted Order Statistics Filters by Using Support Vector Machines [J]. EURASIP Journal on Applied Signal Processing, 2006, 2006(1): 24185~24198.
    [113] Li D, Mersereau R, Simske S. Blind Image De-Convolution through Support Vector Regression [J]. IEEE Transactions on Neural Networks, 2007, 18(3): 931~934.
    [114] Vapnik V N A, Chervonenkis J. The Necessary and Sufficient Conditions for Consistency of the Method of Empirical Risk Minimization [J]. Pattern Recognition, 1991, 1(3): 284~305.
    [115] Zhao Y P, Sun J G. Boosting Sparse Least Squares Support Vector Regression and its Application to Thrust Estimation [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2008, 25(4): 254~261.
    [116]赵永平.支持向量回归机及其在智能航空发动机参数估计中的应用[D]:[工学博士学位论文].南京:南京航空航天大学, 2009.
    [117] Vapnik V N. An Overview of Statistical Learning Theory [J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988~999.
    [118]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社, 2004.
    [119]克里斯内勒.支持向量机导论[M].北京:电子工业出版社, 2004.
    [120] Keerthi S S, Shevade S K, Bhattacharyya C, et al. Improvements to Platt'S Smo Algorithm for Svm Classifier Design [J]. Neural Computation, 1999, 13(3): 637~649.
    [121] Charbonnier P, Diebolt F, Guillard Y, et al. Road Markings Recognition Using Image Processing [A]. In: Proceedings of IEEE Conference on Intelligent Transportation System[C]. Boston, MA, 1997, 912~917.
    [122] Broggi A. Robust Real-Time Lane and Road Detection in Critical Shadow Conditions [A]. In: Proceedings of IEEE International Symposium on Computer Vision[C]. Coral Gables, Florida, 1995, 353~359.
    [123] Bertozzi M, Broggi A, Fascioli A. Vision-Based Intelligent Vehicles: State of the Art and Perspectives [J]. Robotics and Autonomous Systems, 2000, 32(1): 1~16.
    [124] Goldbeck J, Huertgen B, Ernst S, et al. Lane Following Combining Vision and Dgps[J]. Image and Vision Computing, 2000, 18(5): 425~433.
    [125] Pomerleau D, Jochem T. Rapidly Adapting Machine Vision for Automated Vehicle Steering [J]. IEEE Expert: Special Issue on Intelligent System and their Applications, 1996, 11(2): 19~27.
    [126] Wang Y, Teoh E K, Shen D. Lane Detection and Tracking Using B-Snake[J]. Image Visual Compute, 2004, 22(4): 269~280.
    [127] Kim Z W. Robust Lane Detection and Tracking in Challenging Scenarios [J]. IEEETransactions on Intelligent Transportation System, 2008, 9(1): 16~26.
    [128] Ieng S S, Tarel J P, Labayrade R. On the Design of a Single Lane-Markings Detectors Regardless the On-Board Carmera's Position [A]. In: IEEE Intelligent Vehicle Symposium[C]. Ohio, USA, 2003, 564~569.
    [129] Canny J. A Computational Approach to Edge Detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679~698.
    [130]孙丰荣,刘积仁.一种快速霍夫变换算法[J].计算机学报, 2001, 24(10): 1102~1109.
    [131]董春利,董育宁,刘杰.基于粒子滤波和GVF-Snake的目标跟踪算法[J].仪器仪表学报, 2009, 30(4): 828~833.
    [132]管志强,陈钱,顾国华,等.基于光流直方图的云背景下低帧频小目标探测方法[J].光学学报, 2008, 28(8): 1496~1501.
    [133] Sun Z, Bebis G, Miller R. On-Road Vehicle Detection Using Gabor Filters and Support Vector Machines [A]. In: International Conference on Digital Signal Processing[C]. Santorini, Greece, 2002. 2:1019~1022.
    [134] Hoffmann C, Dang T, Stiller C. Vehicle Detection Fusing 2D Visual Features [A]. In: IEEE Intelligent Vehicles Symposium[C]. Parma, Italy, 2004, 280~285.
    [135] Avidan S. Support Vector Tracking [J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064~1072.
    [136] McKenna S, Jabri S, Duric Z, et al. Tracking Groups of People [J]. Computer Vision and Image Understanding, 2000, 80(1): 42~56.
    [137] Regensburger U, Volker G. Visual Recognition of Obstacles On Roads [A]. In: IEEE International Conference on Intelligent Robots and Systems[C]. Cambridge, USA, 1994. 2:980~987.
    [138] Lipton A J, Fujiyoshi H, Patil R S. Moving Target Classification and Tracking From Real-Time Video [A]. In: IEEE Workshop Applications of Computer Vision[C]. Princeton, New Jersey, USA, 1998, 8~14.
    [139] Mori H, Charkari. N M. Shadow and Rhythm as Sign Patterns of Obstacle Detection [A]. In: International Symposium on Industrial Electronics[C]. Budapest, Hungary, 1993, 271~277.
    [140] Tzomakas C, Seelen W V. Vehicle Detection in Traffic Scenes Using Shadows[R]. Internal Report IRINI, 1998.
    [141] Raboisson S, Schmouker P. Obstacle Detection in Highway Envirment by Color Ccd Cameraand Image Processing Prototype Installed in a Vehicle[A]. In: IEEE Intelligent Vehicles Symposium[C]. Paris, France, 1994, 44~49.
    [142]曲兴华,何滢,韩峰,等.强反射复杂表面随机缺陷检测照明系统分析[J].光学学报, 2003, 23(5): 547~551.
    [143] Parzen E. On Estimation of a Probability Density Function and Mode [J]. Annals of Mathematical Statistics, 1962, 33(3): 1065~1076.
    [144] Elgammal A, Duraiswami R, Davis L. Probabilistic Tracking in Joint Feature Spatial Spaces [A]. In: IEEE Conference on Computer Vision and Pattern Recognition[C]. Madison, Wisconsin, 2003. 1:781~788.
    [145] Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564~577.
    [146]岑峰,戚飞虎,陈茂林.长期视频监控系统的多分布模型背景差方法[J].红外与毫米波学报, 2002, 21(1): 59~63.
    [147] Mira V P, Ferreira R, Grossmann V, et al. Docking of a Mobile Platform Based On Infrared Sensors[A]. In: IEEE International Symposium on Industrial Electronics[C]. Guimaraes,Portugal, 1997. 2:7~11.
    [148] Larry M, Todd L, Ken O, et al. Performance Evaluation of Ugv Obstacle Detection with Ccd/Flir Stereo Vision and Ladar [A]. In: Proceedings of IEEE International Symposium on Intelligent Control[C]. Gaithersburg, Maryland, USA, 1998, 658~670.
    [149]许言午,曹先彬,乔红.行人检测系统研究新进展及关键技术展望[J].电子学报, 2008, 36(5): 962~968.
    [150] Lowe D G. Distinctive Image Features From Scale Invariant Keypoints [J]. Intentional Journal of Computer Vision, 2004, 60(2): 91~110.
    [151] Sirovitch L, Kirby M. Low-Dimensional Procedure for the Characterization of Human Faces [J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1987, 4(3): 519~524.
    [152] Monteiro G, Peixoto P, Nunes U. Vision-Based Pedestrian Detection Using Haar-Like Features [A]. In: Scientific meeting of the 6th Robotics Portuguese Festival[C]. Guimar?es, Portugal, 2006, 16~21.
    [153] Jain A K, Duin R P W, Mao J. Statistical Pattern Recognition: A Review [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1): 4~37.
    [154] Li S M. Harmonic Wavelet Packet Analysis of the Dynamic Signals [A]. In: International Symposium on Test and Measurement[C]. Shenzhen, China, 2003, 2569~2572.
    [155]李舜酩.二进离散小波能量谱及其对微弱信号的检测[J].中国机械工程, 2004, 15(2): 394~397.
    [156] Rajpoot N, Yao Z, Wilson R. Adaptive Wavelet Restoration of Noisy Video Sequences [A]. In: International Conference on Image Processing[C]. Singapore, 2004, 957~960.
    [157] MServetto S D, Ramchandran K, Orchard M T. Image Coding Based On a Morphological Representation of Wavelet Data[J]. IEEE Transactions on Image Processing, 1999, 8(9): 1161~1174.
    [158] Rijal O M, Noor N M, Hussin A, et al. Discriminant Functions and Multi-Resolution Analysis (Mra) for Disease Detection[J]. WSEAS Transactions on Mathematics , 2006, 5(5): 605~608.
    [159] Jaideva C, Goswami, Chan Andrew K.小波分析理论、算法及其应用[M].北京:国防工业出版社, 2007.
    [160]李水根,吴纪桃.分形与小波[M].北京:科学出版社, 2002.
    [161]李舜酩,李香莲,盛爱兰.分形与谐波小波相结合的车辆振动信号分析[J].农业机械学报, 2002, 33(4): 77~81.
    [162] Palmer M W. Fractal Geometry: A Tool for Describing Spatial Patterns of Plant Communities [J]. Vegetatio, 1988, 75(1): 91~102.
    [163] Cherkassky B V, Goldberg A V, Radzik T. Shortest Paths Algorithms: Theory and Experimental Evaluation [J]. Mathematical Programming, 1996, 73(2): 129~174.
    [164] Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco, CA: Freeman, 1982.
    [165] Peleg S, Naor J, Hartley R, et al. Multiple Resolution Texture Analysis and Classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(4): 518~523.
    [166] Bertozzi M, Broggi A, Rose M D, et al. A Pedestrian Detector Using Histograms of Oriented Gradients and a Support Vector Machine Classifier [A]. In: Proceedings of the IEEE Intelligent Transportation Systems Conference[C]. Seattle, WA, USA, 2007, 143~148.
    [167] Bertozzi M, Broggi A, Conte G, et al. The Experience of the Argo Autonomous Vehicle [A]. In: SPIE Conference on AeroSense Conference [C]. Orlando, FL, USA, 1998. 3364:218~229.
    [168] Bishop R. Intelligent Vehicle Applications Worldwide [J]. IEEE Intelligent Systems, 2000, 15(1): 78~81.
    [169] Dagan E, Mano O, Stein G P, et al. Forward Collision Warning with a Single Camera [A]. In: IEEE Intelligent Vehicles Symposium[C]. Parma, Italy, 2004, 37~42.
    [170]刘瑞祯,于仕琪. OpenCV教程——基础篇[M].北京:北京航空航天大学出版社, 2007.
    [171] Hemayed E E. A Survey of Camera Self-Calibration [A]. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance[C]. Miami, FL, USA, 2003, 303~309.
    [172]邱茂林,马颂德,毅李.计算机视觉中摄像机定标综述[J].自动化学报, 2000, 26(1): 43~55.
    [173] Zhang Z Y. A Flexible New Technique for Camera Calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330~1334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700