用户名: 密码: 验证码:
考虑轨道竖曲线引起的载荷干扰的悬浮控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁浮列车运行在轨道竖曲线段时,由于列车和轨道之间的几何约束和动力学约束,导致列车悬浮系统会受到各种载荷干扰。试验表明:当列车以一定速度通过竖曲线时,车厢会发生剧烈振动,称为“点头现象”。如果没有有效的控制方法,将会影响悬浮系统的动态性能,严重时可能使系统失稳。本文主要针对列车过竖曲线时的载荷干扰特性,研究如何从控制角度提高悬浮系统的抗载荷干扰的能力。本文的主要研究工作包括:
     1、以单边电磁铁模块为研究对象,建立了两点悬浮系统物理模型。通过分析系统的稳定性和可控性,采用状态反馈的控制方法,得出悬浮系统的仿真模型,并对磁浮列车在平直轨道上的悬浮过程进行仿真分析。
     2、针对列车过竖曲线时的运行现象,对轨道竖曲线段的几何约束和动力学约束以及空气弹簧的特性进行了分析。通过对竖曲线半径、列车运行速度和载荷之间的动力学分析,得出了列车过竖曲线时的扰动力表达式。
     3、在现有控制算法的基础上,对各反馈信号进行分析,针对抑制载荷干扰提出新的反馈信号组合,并通过仿真验证了新控制算法的可行性和有效性。
     4、考虑到当载荷干扰过大时,系统可能出现饱和,为此,研究了悬浮控制器输入饱和对列车悬浮系统稳定性的影响,给出了考虑饱和环节后的悬浮控制系统参数优化方法。通过仿真对比发现,优化参数后的悬浮系统对于同样的载荷干扰其悬浮间隙波动幅度变小。
     本文的理论分析验证了磁浮列车过竖曲线的有关试验现象,仿真结果表明:提出的新控制方案对于工程实际具有一定的参考意义。但同时还需要进一步的工程试验验证。
Due to the geometric constraints and dynamic constraints between the train and track, the electromagnet will meet several load disturbances when maglev train is running across the vertical curve. Experiments show that when the train runs across a vertical curve with a certain speed, the carriage will vibrate severely. It’s named‘nodding phenomenon’. This will influence the performance of levitation system, even make the system unstable. Aiming at improving the anti-jamming capability of levitation system, this paper analyzes the source and character of load disturbance when the train runs across the vertical curve, and optimizes the feedback parameter on condition of levitation controller output saturation based on engineering practice. The main content of this paper can be summarized as following.
     Firstly, a two-point levitation model is built, considering electro magnetic module as investigated subject. And the simulation model adopts state feedback control method, by analyzing the stability and controllability of levitation system. And the model is simulated in the case of the maglev train running on smooth guideway.
     Secondly, the geometry relation and dynamics confinement are analyzed, aiming at the running phenomenon of the train crossing the vertical curve. The relational expression of disturbance force is given by analyzing dynamics confinement among radius of vertical curve, train running speed and the disturbance.
     Thirdly, considering existing control algorithm, the feedback signals are analyzed and new signal combinations is presented, the simulation results show that the new algorithm proves feasible and effective to reject the disturbances.
     Finally, based on the engineering practice, the relationship is analyzed between levitation controller input saturation and system stability. A method is given to optimizes the feedback parameter considering controller saturation. The simulation results show that the system could levitate stably using optimized parameter as the same disturbance force appears, comparing to original parameter.
     In a word, the simulation results in this paper are consistent with the test phenomenon when the train runs across the vertical curve. The new algorithm is helpful to engineering practice and need to be verified in practice.
引文
[1]常文森.磁浮列车:最新研究趋势[J].科学, 1993, 33(6): 34~36.
    [2]陈贵荣,常文森.磁悬浮列车发展综述[J].国外铁道车辆. 1993, 30(1): 17~20.
    [3]常文森.磁浮列车:最新研究趋势[J].科学, 1993, 33(6): 34~36.
    [4] Noriyuki Shirakuni, Motoaki Terai, Katsutoshi Watanabe, etc. The status of development and running tests of Superconducting Maglev[C]. Maglev'2006 Proceedings. 2006.
    [5] Kazuo Sawada. Outlook of the Superconducting Maglev[C]. Maglev'2008 Proceedings. 2008.
    [6]戴政.磁悬浮技术综述[J].中小型电机. 2000.27(2): 24~26
    [7]周富民.考虑轨道若干因素的悬浮控制研究[D].长沙:国防科学技术大学. 2007.
    [8]李晓龙.常导高速磁浮列车悬浮系统信号处理及控制技术研究[D].长沙:国防科学技术大学. 2009.
    [9] Rotem. Maglev for Urban Transit [J/OL]. 2004. http://www.rotem.kr.
    [10]洪梅.大德特区磁悬浮列车三月施工[N/OL]. 2006.2.27. http://www.hellodd.com
    [11] Yan LuGuang. Development of the Maglev Transportation in China[C]. Maglev'2004 Proceedings. 2004.
    [12]魏亮. EMS型磁浮列车悬浮系统抗载荷干扰问题研究[D].长沙:国防科学技术大学.
    [13]刘德生. EMS型低速磁浮列车模块悬浮控制问题研究[D].长沙:国防科学技术大学. 2006.
    [14]陈慧星,龙志强,常文森.磁浮列车在坡道段运行时动态特性分析[J].控制工程. 2006,13卷增刊.
    [15]龙志强,李淑娟,郝阿明.电磁型磁浮列车在坡道段运行时的系统分析[J].机车电传动. 2003,4: 25~28.
    [16]尹力明,赵志苏.空气弹簧在磁浮列车上的应用研究[J].机车电传动. 2002,5: 28~29.
    [17]赵志苏,尹力明.磁悬浮列车空气悬架系统研究[J].液压与气动. 2003, 12: 23~25.
    [18]黄志辉,高定刚.常导中低速磁浮车辆竖曲线通过分析[J].铁道车辆. 2005,11: 5~6.
    [19]李云峰,陈革,李杰.中低速磁悬浮列车五单元转向架曲线通过研究[J].机车电传动. 2007,4: 26~27.
    [20]赵志苏,尹力明,罗昆.磁悬浮列车转向机构运动分析与设计[J].机车电传动. 2000, 6: 11~13.
    [21]卢建,赵志苏.一种新型磁悬浮列车空气弹簧悬挂结构的设计分析[J].机电工程技术. 2007, 36(11): 59~61.
    [22]赵志苏.基于空气悬架系统的磁悬浮列车安全冗余研究[J].液压与气动. 2008,1: 18~21.
    [23]任治军,赵志苏.中低速磁浮列车转向架的结构动力学分析[J].机械工程师. 2005, 08: 31~33.
    [24] Hong Huajie, L. J., Chang Wensen. The leviation control simulation of magelv bogie based on virtual prototyping platform and matlab[C]. The 18th international conference on magnetically levitated systems and linear drives. 2004: 1006~1011.
    [25]洪华杰,李杰,李淑娟.基于虚拟样机的磁悬浮列车动力学仿真研究[J].机车电传动. 2005(2): 40~44.
    [26]龙志强,郝阿明,罗坤,谢云德.电磁型磁悬浮列车侧向力特性和弯道段运行分析[J].机车电传动. 2003(3): 17~20.
    [27]曾佑文,王少华.三转向架磁悬浮车几何曲线通过分析[J].西南交通大学学报. 2003, 28(3).
    [28]魏爱荣.饱和控制系统稳定性及干扰抑制研究[D].济南:山东大学. 2006.
    [29]魏爱荣,赵克友.运用线性反馈分析设计饱和线性系统[J].控制与决策. 2005,20(1):59~61,68.
    [30]解淑英,张承进.一种输入饱和受限系统的自适应逆控制[J].山东大学学报:工学版. 2006,6.
    [31]陈贵荣.磁浮列车电磁铁的磁场饱和与承受能力分析[J].机车电传动. 1998,3.
    [32]倪红艳.中低速磁浮列车悬浮电磁铁的电磁铁特性研究[D].长沙:国防科学技术大学. 2005.
    [33]林科文.低速磁浮列车过轨道台阶的悬浮控制研究[D].长沙:国防科学技术大学. 2010.
    [34]尹力明.空气弹簧在磁浮列车上的应用研究[J].机车电传动, 2002, 9: 28~30.
    [35]金志颖,杨仕友. EMS型磁浮列车电磁系统动态电磁场的有限元分析及其悬浮与牵引力特性的研究[J].中国电机工程学报. 2004, 24(10): 133~137.
    [36]李增. ADMAS入门详解与应用[M].北京:国防工业出版社. 2006.
    [37]哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社. 2002,8.
    [38]哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社.2002,8.
    [39]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社. 2002.
    [40]张丙飞.应用于磁浮列车车轨耦合振动控制的状态反馈组合方法研究[D].长沙:国防科学技术大学. 2007.
    [41]胡寿松.自动控制原理[M].北京:国防工业版社. 2000.
    [42]林科文,佘龙华.磁浮列车过轨道台阶问题研究[J].兵工自动化. 2010, 29(10) :56~69.
    [43]朱德库,刘晓杰,马平.空气弹簧及其控制系统[M].济南:山东科学技术出版社. 1989, 9~17.
    [44]刘增华,李芾,黄运华.空气弹簧及其在轨道车辆上的应用[J].电力机车与城轨车辆. 2003,26(6):24~27
    [45]王进,林达文,彭立群等.轨道交通用空气弹簧的刚度特性试验[J].世界橡胶工业. 2006,11.
    [46]洪华杰. EMS型低速磁浮车轨耦合振动研究[D].长沙:国防科学技术大学. 2005.
    [47]李云钢. EMS型磁浮列车悬浮控制技术研究[D].长沙:国防科学技术大学. 1997.
    [48]李云钢,常文森.磁浮列车悬浮系统的串级控制[J].自动化学报. 1999, 25(2): 247~251.
    [49] K.Zhou, J.C.Doyle, K.Glove. Robust and optimal control[M]. NJ: Prentice Hall. 1996.
    [50] A. Saberi, J. Han. Constrained stabilization problems for linear plants[J], Automatica. 2002, 38(4): 639~654.
    [51] A. Saberi, J. Han, A. A. Stoorvogel. Constrained stabilization problems for discrete-time linear plants[J]. International Journal of Robust and Nonlinear Control. 2004, 14(5): 435~461.
    [52] A. A. Stoorvogel, A. Saberi, G.Shi. Properties recoverable region and semi-global stabization in recoverable region for linear systems subject to constraints[J]. Automatica. 2004, 40(9): 1481~1494.
    [53] H. Fang, Z. lin. Stability analysis for linear systems understate constraints[J]. IEEE trans. Automat. Control. 2004, 49(6): 950~955.
    [54] S. E. Faiz, M. A. Rami, A. Benzaouia. Stabilization and pole placement with respect to state constraints: a robust design via LMI[C]. Proceedings of the conference on Decision and Control. 2003, (1): 616~621.S.L.
    [55] G. Shi, A. Saberi, A. A. Stoorvogel. Output regulation of descrete-time linear plants subject to state and input constraints[J]. International Journal of Robust andNonlinear Control. 2003, 13(8): 691~713.
    [56] A. Saberi, G.Shi, A. A. Stoorvogel. Output regulation of linear plants subject to constraints[J]. International Journal of Control. 2003, 76(2): 149~164.
    [57]冯国楠.最优控制理论与应用[M].北京,北京工业大学出版社. 1991.
    [58] G. Shi. Control of linear systems subject to constraints-stabilization, output regulation, and performance analysis. Dissertation. 2002.
    [59]张骏,席裕庚.基于几何分析的约束预测控制直接算法[J].控制与决策. 1997, 12(2), 184~187.
    [60] L.H, B.Huang, Y.Cao. Robust digital model predictive control for linear uncertain systems with saturation[J]. IEEE Transactions on Automatic Control. 2004, 49(5): 792~796.
    [61] S.L. Oliveira, M. Morari. Contractive model predictive control for constrained nonlinear systems[J]. IEEE Transactions on Automatic Control. 2000, 45(6): 1053~1071.
    [62] F. Blanchini. Set invariance in control[J] Automatica. 1999, 35(11): 1747~1767.
    [63] Y. Cao, Z. Lin. Min-max MPC algorithm for LPV systems subject to input saturation[J]. IEE Proceedings of Control Theory and Applications, 2005,152(3):266~272.
    [64]王宁.中低速常导磁悬浮列车悬浮斩波器研究[D].长沙:国防科学技术大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700