用户名: 密码: 验证码:
考虑车轨相对位置的车轨耦合振动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车轨耦合振动是磁浮列车技术中的一个十分复杂的问题。工程试验表明,车轨相对位置等一系列因素的变化可能引起车轨耦合振动。目前EMS中低速磁浮列车主要使用砼梁和片梁两种轨道梁,这两种梁的振动模型存在区别,因此有必要分别进行讨论。本文针对工程试验中的车轨耦合振动现象,分别在砼梁和片梁条件下对由车轨相对位置等因素引起的车轨耦合振动现象进行了理论分析与仿真研究,从而为从悬浮控制角度解决这一问题提供依据。本文的主要工作包括:
     1、在考虑轨道弹性时,阐明了基于等效间隙的电磁力计算方法,并通过有限元仿真对这一方法的计算精度进行了验证;在此基础上,建立了基于砼梁的双点车轨耦合系统模型与基于片梁的单点多跨车轨耦合系统模型,并设计了基于两种模型的状态反馈控制器。
     2、当轨道为砼梁时,利用基于砼梁的双点车轨耦合系统模型,通过仿真分析了控制参数、轨道参数与车轨相对位置对悬浮系统稳定性的影响。对单跨轨道条件下的不同模型的控制器参数稳定区间进行了对比分析。
     3、当轨道为片梁时,利用基于片梁的单点多跨车轨耦合系统模型分析了车轨相对位置对悬浮系统稳定性的影响。由于在短跨条件下,传感器测量间隙不能准确反映车轨间隙的变化情况,因此车轨相对位置的变化会对悬浮系统稳定性造成很大影响。仿真分析表明,在由测量间隙、电磁铁加速度积分与电磁铁电流组成的三状态反馈控制器的基础上增加间隙微分状态反馈可以抑制车轨相对位置对悬浮系统稳定性的不利影响。
     总之,本文以工程试验现象为出发点,对由车轨相对位置等因素引起的车轨耦合振动现象进行了理论分析与仿真研究,本文的结论对验证车轨耦合振动现象以及从悬浮控制角度解决车轨耦合振动问题具有一定的参考意义,有关结论还有待工程试验进一步验证。
The vehicle-guideway-coupled vibration is a complex problem in the research of the maglev vehicle. The engineering tests show that the change of the relative position between the vehicle and the guideway and some other factors may cause the vehicle-guideway-coupled vibration. At the present time, single-long-span guideway and multi-short-span guideway are mainly used in the EMS systems, and are so different in the forms of vibration that need to be discussed separately. Theoretical research and simulation study were made considering the two different guideways on the vehicle-guideway-coupled vibration caused by the relative position between the vehicle and the guideway and some other factors, which would help to solve this problem in the view of suspension control. The main work of the paper could be organized as below.
     Firstly, a method calculating the electromagnetic force considering the elasticity of the guideway based on the equivalent gap was introduced, and the accuracy of this method was tested by the finite element simulation. With this method, the dual-suspension-point vehicle-guideway-coupled model in condition of the single-long-span guideway and the multi-suspension-point vehicle-guideway-coupled model in condition of the multi-short-span guideway were built, and the state feedback controllers of the models were designed.
     Secondly, based on the dual-suspension-point vehicle-guideway-coupled model, the effects that the feedback coefficients, the guideway parameters and the relative position between the vehicle and the guideway made on the stability of the elevation system were analyzed. Then a comparison was made within different models in condition of the single-long-span guideway.
     Thirdly, based on the multi-suspension-point vehicle-guideway-coupled model, analyses were made on the effect that the relative position between the vehicle and the guideway made on the stability of the elevation system. When the guideway is short-spanned, the gap information measured by the gap sensor could not well reflect the gap between the guideway and the vehicle, so the relative position between the vehicle and the guideway would badly affect the stability of the elevation system. Simulation showed that if the gap differential information was introduced to the state feedback controller which was composed by the gap information measured by the gap sensor, the electromagnet velocity signal and the current signal, the adverse effect of the relative position between the vehicle and the guideway could be depressed.
     In conclusion, the research of this paper came from the engineering tests, and the vehicle-guideway-coupled vibration caused by the relative position between the vehicle and the guideway and some other factors was analyzed with theoretical research and simulation study. The result of this paper would help to verify the test phenomena and solve the vehicle-guideway-coupled vibration in the view of the suspension control, while it needs to be tested by further experiments.
引文
[1]吴祥明.磁浮列车[M].上海:上海科学技术出版社,2003.
    [2]谢云德.EMS型磁浮列车动力学建模与仿真的研究[D].湖南长沙:国防科技大学工学博士学位论文, 1998.
    [3]邹东升.EMS型磁浮列车车轨耦合振动悬浮控制问题研究[D].长沙:国防科技大学工学博士学位论文, 2009.
    [4] Dr. Rogg.The Development of High-speed Magnetic Levitation System in the Federal Republic of Germany, Objective and Present State[C].The Proceedings of the 10th Int. Conf. on Maglev System, 1988, 1: 3~5.
    [5] Y. Tejima, Zhirong Liu.Commercialization of HSST, an Access Line for the 2005 World Exposition in Aichi, Japan[J].Converter Technology & Electric Traction, 2005, 3(1): 50~52.
    [6] H. Yoshioka, E. Suzuki, H. Seino, et al. Results of Running Tests and Characteristics of the Dynamics of the MLX01 Yamanashi Maglev Test Line Vehicle[C].Maglev’1998 Proceedings, 1998, 1: 225~230.
    [7]李云钢,常文森,闫宇壮.美国新型结构磁浮交通技术分析与比较[J].机车电传动.2006, (3): 6~9.
    [8]崔鹏.低速磁浮列车车辆导向动力学研究[D].长沙:国防科技大学工学博士学位论文, 2010.
    [9]唐锐,吴俊泉.中低速磁浮列车在我国城轨交通中的应用前景[J].都市快轨交通.2006, 19(2): 12~16.
    [10]洪华杰.EMS型低速磁浮车轨耦合振动研究[D].长沙:国防科技大学工学博士学位论文, 2005.
    [11] Luguang Y.Development of the maglev transportation in China[C].The 18th Int. Conf. on Magnetically Levitated Systems and Linear Drives, 2004.
    [12]周丹峰.EMS型磁浮列车车轨供共振机理研究[D].长沙:国防科技大学工学硕士学位论文,2006.
    [13]张丙飞.应用于磁浮列车车轨耦合振动控制的状态反馈组合方法研究[D].长沙:国防科技大学工学硕士学位论文,2007.
    [14]佘龙华.国家自然科学基金申请书:静浮条件下磁浮列车的车轨弹性耦合振动控制研究[R].2009.
    [15] W.Kortum, A.Utzt. Control Law Design and Dynamic Evaluations for a Maglev Vehicle with a Combined Lift and Guidance Suspension System[J]. Trans. of theASME, 1984 106(12): 286-292.
    [16] Chu, Donald. Francis Moon. Dynamic Instabilities in Magnetically Levitated Models[J]. Appl. Phys, 1983 54(3): 1619-1625.
    [17] S.G, Meisenholder. Wang T.C. Dynamic analysis of an electromagnetic suspension system for a suspended vehicle system[R]. US Federal Rail Administration Report, 1972.
    [18] B.C.Fabien. Controller Gain Selection for an Electromagnetic Suspension Under Random Excitation[J]. Trans. of the ASME, 1993 115: 156-165.
    [19] W.Lortum, D. N. W. Dynamic interactions between traveling vehicles and guideway systems[J]. Vehicle system dynamics, 1981 10: 285-317.
    [20] B.V.Jayawant, P.K.Sinha. Low-Speed vehicle dynamics and ride quality using controlled D.C.Electromagnets[J]. Automatica, 1977 13: 605-610.
    [21] K.Pop. Mathematical modeling and control system design of Maglev vehicles[M]. 1978: 333-364.
    [22]施晓红.常导高速磁浮列车车轨耦合非线性动力学问题研究[D].长沙:国防科技大学工学博士学位论文,2005.
    [23] K. popp WS. Dynamics of magnetically levitated vehicles on flexible guideways[C]. Proc. IUTAM symp. on the dynamics of vehicles on roads and railways tracks. 1975, 479-503.
    [24] Matsuura A. Dynamic intercation between vehicle and girders in high speed railway[J]. Quarterly reports. 1974, 15(3): 133-136.
    [25] M.Nagai, M. I. Vibrational characteristics of electormagnetic levitation vehicle-guideway system[C]. Proceeding of the 6th IAVSD-IUTAM symposium. 1979, 352~366.
    [26] Miyamoto, M. A dynamic response of magnetically levitated flexible vehicle to random track irregularities[J]. Quarterly reports of RTRI. 1980, 21(1): 44~-48.
    [27] Hyung-Suk HAN. A Study on the Dynamic Modeling of a Magnetic Levitaiton Vehicle[J]. JSME International Journal. 2003,46(4):1497-1501.
    [28] Dongsheng Zou, Longhua She, et al. Maglev System Controller Design Based on the Feedback Linearization Methods[C]. Proceedings of the 2008IEEE Int. Conf. on Information and Automation. 2008, 6: 1280-1284.
    [29] D.F. Zhou et al. Suspension of maglev vehicle-grider self-excited vibration using a virtual turned mass damper[J]. Journal of Sound and Vibration (2010), doi: 10.1016/j,jsv.2010.09.018
    [30]王洪坡.EMS型低速磁浮列车/轨道系统的动力相互作用问题研究[D].长沙:国防科技大学工学博士学位论文,2007.
    [31] L. Zhang, et al. Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control[J]. Nonlinear Dyn. 2009, 57: 197-207.
    [32]刘德生.EMS型低速磁浮列车模块悬浮控制问题研究[D].长沙:国防科技大学工学博士学位论文, 2006.
    [33] H.P. Wang, et al. Vibration analysis of the maglev guideway with moving load[J]. Journal of Sound and Vibration. 2007, 305: 621-640.
    [34] Y. Cai et al. Vehicle/Guideway Dynamic Interaction in Maglev Systems[J]. Transactions of the ASME. 1996, 118: 526-530.
    [35]武际可,周鹍.非线性问题和分岔问题及其数值解法[J].力学与实践.1994, 16(1): 1-8.
    [36]佘龙华,柳贵东,施晓红.磁悬浮系统的HOPF分岔自适应控制研究[J].动力学与控制学报.2006, 4(1): 54-57.
    [37]施晓红,佘龙华,常文森.EMS磁浮列车车/轨耦合系统的分岔现象研究[J].力学学报.2004.9, 36(5):634-640.
    [38]柳贵东.车轨耦合振动研究[D].长沙:国防科技大学工学硕士学位论文, 2004.
    [39]王浩.应用HOPF分岔理论研究磁浮列车车轨耦合弹性振动控制[D].长沙:国防科技大学工学硕士学位论文, 2008.
    [40]武建军,沈飞,史筱红.磁悬浮控制系统的稳定性及Hopf分岔的研究[J].振动与冲击.2010, 29(3): 193-196.
    [41]谢云德,常文森,尹力明.磁悬浮列车系统轨道动力学分析与试验研究[J].国防科技大学学报.1997, 19(5): 58-63.
    [42]龙志强,郝阿明,常文森.考虑轨道周期性不平顺的磁浮列车悬浮控制系统设计[J].国防科技大学学报.2003, 25(2): 84~89.
    [43]张亚辉,林家浩.结构动力学基础[M].辽宁大连:大连理工大学出版社, 2007: 124-141.
    [44] [日]大久保信行著,尹传家译.机械模态分析[M].上海:上海交通大学出版社, 1985.
    [45]曹永晟.高速磁浮列车轨道模态分析[D].长沙:国防科技大学工学硕士学位论文, 2003.
    [46]杨茀康.结构动力学[M].人民交通出版社,1987.
    [47]张锟.磁浮列车悬浮系统的数字控制技术研究[D].长沙:国防科技大学工学博士学位论文, 2004.
    [48]林科文.低速磁浮列车过轨道台阶的悬浮控制研究[D].长沙:国防科技大学工学硕士学位论文, 2010.
    [49]赵博,张洪亮等.Ansoft12在工程电磁场中的应用[M].北京:中国水利水电出版社, 2010.
    [50]哈尔滨工业大学理论力学教研室.理论力学[M].北京:高等教育出版社, 2002, 8.
    [51]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社, 2002.
    [52] B.D. Hassard et al. Theory and application of Hopf bifurcation[M]. Cambridge University Press, 1981.
    [53]胡寿松.自动控制原理[M].北京:科学出版社, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700