用户名: 密码: 验证码:
电磁馈能悬架阻尼特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的电磁馈能悬架是指保留传统悬架弹簧部分用于支撑车身静载和缓减路面冲击,利用馈能减振器替代传统减振器的一种新型悬架系统。馈能减振器利用滚珠丝杠将悬架直线运动转化为旋转运动,带动电机发电将悬架振动能量转化为电能回收,同时达到传统减振器衰减车轮与车身振动的目的,作为一种新型的节能手段,特别是对于新能源汽车,具有广阔的应用前景。本文结合吉林省科技发展项目(20080536)“汽车能量再生悬架关键技术研究”课题,对电磁馈能悬架的几个关键问题进行了以下五个方面的研究:
     1.通过对比分析得出,相比于其它构型的馈能悬架,滚珠丝杠式电磁馈能悬架具有独特的优势,而现有的几种滚珠丝杠式电磁馈能悬架结构存在结构复杂,成本高,尺寸较大等缺点,无法满足实际安装和使用要求,因此对其结构进行了重新设计,通过特殊的连接装置,将馈能电机置于翼子板上方,悬架空间只保留运动转化和连接部件,从而极大地减小了馈能悬架的安装空间,改善馈能电机的工作环境,同时也从结构上保证其能实现主动悬架的功能。
     2.用馈能电机取代传统减振器遇到的首要问题是馈能电机的恒扭矩-恒功率特性与传统减振器阻尼特性的不相符,二者相结合形成了本文提出馈能减振器的三段式非线性馈能阻尼特性。通过对非线性阻尼二个重要临界速度的理论研究,得出单自由度系统馈能减振器恒阻尼力对应的临界速度及其调整系数的计算方法。并对其减隔振特性和抗冲击特性进行了仿真分析,结果表明,馈能非线性阻尼的减隔振特性要优于非对称阻尼和半主动on-off阻尼。
     3.由馈能电机和丝杠等旋转部件引入的惯性质量对悬架幅频特性的影响是电磁馈能悬架的另一个关键问题。利用结构振型方法给出了馈能悬架车身和车轮两个偏频的计算公式,惯性质量的引入使得悬架的两个共振频率提前。通过对传递特性的分析表明惯性质量主要对车轮共振峰附近的传递特性产生不利影响;其次考虑了馈能系统各参数对于振动响应量均方根值的影响,并基于人体的主观评价得出平顺性对于惯性质量的定量要求。
     4.针对单纯依靠馈能电机来实现悬架所需阻尼需匹配功率较大的馈能电机,存在“大马拉小车”的缺点,提出了传统线性小阻尼与馈能非线性阻尼并联的结构设计方案,并对系统各参数进行匹配,仿真结果表明并联方案能够满足性能要求的前提下,在回收绝大多数振动能量的同时显著减小所需匹配的馈能电机功率。
     5.对影响馈能悬架能量回收的车辆各参数进行了分析,结果表明馈能悬架可回收能量的大小仅仅与路面不平度、行驶车速以及悬架的刚度有关,而且呈线性相关,提出了减振器耗散功率的近似计算公式,并对馈能电机和电池等各部件进行了建模,进而对其能量回收特性进行了分析。
     6.完成了馈能减振器样机以及馈能电机控制器的的试制,搭建了馈能减振器性能测试平台,并对其系统特性、能量回收特性和阻尼特性进行实验验证。实验结果表明馈能电机的控制效果良好,发电效率、充电效果及其输出特性均满足设计要求。另外馈能减振器无控制特性测试表明,不对馈能电机进行控制,除了无法消除“死区”特性外,馈能电机高速运动时会出现电流过大,可能导致永磁同步馈能电机消磁而损坏,同时其阻尼输出也无法满足要求,得出馈能电机应用于馈能悬架取代传统减振器时必须对馈能电机加收主动控制。
The electromagnetic regenerative suspension researched in this doctoraldissertationis an innovative suspension system, retained the spring for supporting the vehicle massand absorbing the road vibration, and replaced the conventional damper with regenerativedamper. The suspension linear movement was translated into rotary movement byball-screw and net, and then drove the motor to generate electricity, in the meanwhileattenuated the vibration between wheel and vehicle body. As a new energy-saving way, ithas broad application prospects, especially for new-energy vehicles. Combined with theproject of the key issues research of regenerative suspension for vehicle, the paper mainlyinvolved in the following six parts:
     1. Compared with other types of regenerative suspension, electromagneticregenerative suspension with ball-screw and nut has unique advantages. However, thecurrent structure cannot meet the actual installation and usage requirements for itscomplicated structure and large size. So the structure was redesigned by putting the motorabove vehicle fenders, and only kept the movement transforming and connecting parts insuspension space. Benefitted by this design, the installation space was minimized and theworkingenvironment of regenerative motor was improved, also, the active suspension canbe achieved by new structure.
     2. The primary problem of replacing the conventional damper with motor is that theconstant torque and constant power characteristic of motor does not match the dampingcharacteristic of the convention damper. The new nonlinear regenerative dampingcharacteristic with three stages was proposed by combined two characteristics mentionedabove. Through theoretical study on the two important critical speeds of nonlineardamping characteristic proposed, the critical speed for constant damping force and itsadjusting coefficient were obtained based on1-dof system model. Simulation results showthat the performance of regenerative nonlinear damping is superior to the semi-active andon-off damping.
     3. The other key issue for regenerative suspension is the influence of inertia massintroduced by rotary parts of motor and ball-screw on the amplitude-frequency characteristics of the suspension. The vehicle body and wheel resonant frequencyequation of regenerative suspension was deduced from structure modal analysis methodand showed that the two resonant frequencies were shifted to small values as the inertiamass. The transformation characteristics of regenerative suspension show that the inertiamass mainly has bad influence on vehicle ride performance near the wheel resonantfrequency. What’s more, the influence of parameters of regenerative system on RMS ofvibrationresponse was evaluated, and based on the body subjective evaluation, thequantitative requirements of inertia mass was obtained.
     4. A high power regenerative motor is needed to satisfy the required suspensiondamping force, if there is no conventional damper. Such scheme is unsatisfactory,therefore a new scheme of regenerative nonlinear damping combined with a conventionaldamper of small damping was proposed. After the parameters matching and simulation,the results show that new scheme can minimize the motor power needed while recyclingmost of vibration energy.
     5. On the basis of analyzing the factors influenced the energy recycle of suspensionvibration, and it was conclude that the energy which can be regenerated is proportional tothe vehicle speed, suspension stiffness and road roughness. The approximate formula ofpower dissipated by damper is also deduced. The model of regenerative motor and batterywas built and simulated for its performance evaluation.
     6. Produced the prototype of regenerative damper and motor controller, builtitsperformance testing platform, and the characteristics of regenerative system, energyrecovery and damping was tested and validated.The results shows that the performance ofmotor controller, the generating efficiency of motor, the charging characteristic of battery,and output characteristic of regenerative damper can match the requirements. It is alsorevealed that the regenerative motor should be controlled to satisfy the requirements ofdamper. Without proper control, not only dead-zone of motor cannt be eliminated, butalso damage will be caused for motor when its speed was too large.
引文
[1]王望予.汽车设计[M].北京:机械工业出版社,2010
    [2]Glenn R. Wendel, Joe Steiber, Gary L. Stecklein, Regenerative Active Suspension onRough Terrain Vehicles [C], SAE940984, March1994.
    [3]Glenn R. Wendel, Gary L. Stecklein, A Regenerative Active Suspension System [C], SAE910659,1991.
    [4] Janusz Kowal, Janusz P Luta, Jaroslaw Konieczny. Energy Recovering in ActiveVibration IsolationSystem.Results of Experimental Research [J]. Journal of Vibrationand Control,2008,14(7):1075–1088
    [5]陈士安,何仁,陆森林.新型馈能型悬架及其工作原理[J].机械工程学报,2007,11:177-182.
    [6]陈士安,何仁,陆森林.馈能型悬架的仿真与性能评价研究[J].汽车工程,2006,2(28):167-171.
    [7]Charles G. Triplett. Vehicle mounted piezoelectric generator [P], US patent4504761,1985
    [8] Shashank Priya. Advances in energy harvesting using low profile piezoelectrictransducers [J]. Journal of electro ceramics, vol.19,pp.165-182,2007
    [9]曹秉刚,左贺,庞龙云等.汽车振动能量压电发电方法及其系统:中国,ZL200410073241.5[P].2005.04.06
    [10] Johannes J. H. Paulides, Laurentiu Encica, Elena A. Lomonova. Design Considerationsfor a Semi.ActiveElectromagnetic Suspension System[C]. IEEE TRANSACTIONS ONMAGNETICS,42(10):3446-3448
    [11] Bart L J. Gysen, J.L.G. Janssen, J. J.H. Paulides and E.A. Lomonova,Design aspects foran active electromagnetic suspension system for automotive applications[C],43rdIEEEIAS annual meeting, October2008.
    [12] Bart L.J. Gysen, Johannes J.H. Paulides, Jeroen L.G. Janssen. Active ElectromagneticSuspension System for Improved Vehicle Dynamics[C]. IEEE Vehicle Power andPropulsion Conference (VPPC), September3.5,2008, Harbin, China
    [13] Bart L J. Gysen,van der Sande Tom P J, Paulides Johannes J H. Efficiency of aregenerative direct.drive electromagnetic active suspension[C].IEEE Transactions onVehicular Technology,2011,60(4):1384-1393.
    [14]刘俊. Bose公司推出主动悬架控制系统[J/OL].汽车每日资讯,2004.10.11, pp.1-2.
    [15] Mat Jonasson, Fredrik Roos. Design and evaluation of an active electromechanicalwheel suspension system [J]. Mechatronics18(2008):218-230
    [16] D.A. Weeks, D.A.Bresie, J.H.Beno. Guenin. The Design of anElectromagnetic LinearActuator for an Active Suspension [C]. SAE1999.01.0730.
    [17] D.A. Weeks, J.H. Beno, A.M. Guenin. Electromechanical ActiveSuspensionDemonstration for Off.Road Vehicles [C]. SAE2000.01.0102.
    [18] W. Bylsma, A. M. Guenin, D. A. Weeks. Electromechanical SuspensionPerformanceTesting[C]. SAE2001.01.0492
    [19] J.H. Beno, D.A. Weeks, D.A. Bresie.Experimental Comparison of Losses forConventional Passive and Energy EfficientActive Suspension Systems [C]. SAE2002.01.0282.
    [20] J. H. Beno, M. T. Worthington, J. R. Mock. Suspension Trade Studies forHybrid ElectricCombat Vehicles[C]. SAE2005.01.0929
    [21] Xu Lin, Guo Xuexun. Hydraulic transmission electromagnetic energy.regenerativeactive suspension and its working principle[C].2010the2nd international work shopon intelligent systems and applications, pp.1047-1050
    [22] Lin Xu, Xuexun Guo, Jun Yan. Feasibility study on active control of hydraulicelectromagnetic energy.regenerative absorber[J]. Advanced Materials Research, vols,139.141(2010) pp.2636-2635
    [23] Xu Lin, Yang Bo, Guo Xuexun, etc. Simulation and performance evaluation ofhydraulic transmission electromagnetic energy.regenerative active suspension[C].2010second global congress on intelligent system, pp.58-61
    [24] Lin Xu, Bo Yang, Xuexun Guo. Controlling methods study on damping force ofhydraulic electromagnetic energy.regenerative absorber[J]. SAE Paper2011.01.0761
    [25] Xuexun Guo, Lin Xu, Bo Yang. Structure designs and evaluation of performancesimulation of hydraulic transmission electromagnetic energy.regenerative activesuspension[J]. SAE Paper2011.01.0760
    [26]徐琳.汽车液电式馈能减振器研究[D].武汉理工大学博士论文.2011年5月
    [27]费上宝.液电式馈能减振发电特性研究[D].武汉理工大学硕士论文.2012年5月
    [28]寇发荣.基于电动静液压的车辆主动悬架样机及试验系统设计研究[J].液压与气动,2008(02):61-63
    [29]寇发荣.基于EHA的汽车主动悬架控制时滞研究[J].设计.计算.研究,2008(04):21-24
    [30]寇发荣.基于电动静液压作动的新型汽车主动悬架[J].西安科技大学学报,2008,3(28):542-546
    [31]寇发荣.车辆EHA主动悬架PID控制的试验研究[J].机床与液压,2009.4(39):94-96
    [32]寇发荣.基于EHA的汽车电-液主动悬架系统的仿真研究[J].系统仿真学报,2009.4(21):2085-2089
    [33]寇发荣. EHA汽车电控主动悬架的模糊控制试验[J].西安科技大学学报,2009.5(29):589-593
    [34] MIT News,2009,“More power from bumps in theroad”,http://web.mit.edu/newsoffice/2009/shock.absorbers.0209.html.
    [35] Jason David Hedlund. Hydraulic Regenerative Vehicle Suspension [D].The UniversityOf Minnesota, master degree,2010
    [36] Kynan E.Graves, Pio G.lovenitti, Dario Toncich. Electromagnetic regenerative dampingin vehicle suspension systems[J]. Int.J. Vehicle Design,2000(24):182-197
    [37] Yongchao Zhang, Kun Huang, Fan Yu. Experimental VerificationofEnergyregenerativeFeasibility for an Automotive Electrical SuspensionSystem[C].IEEE,2007
    [38]张勇超,郑雪春,喻凡.馈能式电动悬架的原理与试验研究[J].汽车工程,2008.1(30):48-52
    [39]于长淼.混合动力汽车馈能式悬架的方案设计及仿真分析[D].吉林大学硕士论文,2008年4月
    [40] Yohji Okada, Hideyuki Harada. Regenerative control of active vibration damper andsuspension systems [C]. Proceeding of the35th Conference on Decision and Control,Kobe, Japan. December1996
    [41] Kimihiko NAKANO, Yoshihiro SUDA, Shigeyuki NAKADAI. Anti.Rolling System forSelf.Powered Active Control[J]. JSME International Journal,2001.03(44):587-593
    [42] Kimihiko Nakano, Yoshihiro Suda, Shigeyuki Nakadai. Self.powered active vibrationcontrol using a single electric actuator[J]. Journal of Sound and Vibration,2003(260):213-235
    [43] Sang.Soo Kim, Yohji Okada. Variable Resistance Type Energy Regenerative DamperUsing Pulse Width Modulated Step.up Chopper[J]. Transactions of the ASME,2002.02(124):110-115
    [44] A.M.A. Abouelnour, N. Hammad. Electric utilization of vehicle damper dissipatedenergy[C]. AEIC2003
    [45]李志成.汽车馈能悬架的结构选型与性能分析[D].吉林大学硕士论文,2009年4月
    [46] Yoshihiro Suda, Shigeyuki Nakadai, Kimihiko Nakano. Hybrid suspension system withskyhook control and energy regeneration[J]. Vehicle System Dynamics Supplement,1998(28):619-634
    [47] Kimihiko Nakano, Yoshihiro Suda. Combined type self.powered active vibrationcontrol of truck cabins[J]. Vehicle Systems Design,2004.06(41):449-473
    [48] Ping Hsu. Power recovery property of electrical active suspension systems[C]. IEEE,1996:1899-1904
    [49] Yohiji Okada, Keisuke Ozawa. Energy regenerative and active control ofelectro.dynamic vibration damper[J]. Mechanisms and Structures,2005:233-242
    [50] Xuechun Zheng, Fan Yu. Study on the potential benefits of an energy regenerativeactive suspension for vehicles[J]. SAE:2005.01.3564
    [51]喻凡,曹民,郑雪春.能量回馈式车辆主动悬架的可行性研究[J].振动与冲击,2005.04(24):27-30
    [52]欧阳冬,张克跃,张继业等.车辆能量回馈式主动悬架系统研究[J].振动与冲击,2008.08(27):88-92
    [53] Essamudin A.Ebrahim, N.Hammad, A.M.A.Abuelnour. Electric power recovery forthe mechanical damper in a vehicle suspension systems using artificial intelligentcontrol[J]. Vehicle System Dynamics supplement,2004(41):647-656
    [54] Ammar A.Aldair, Weiji J.Wang. the energy regeneration of electromagnetic energysaving active suspension in full vehicle with neuron.fuzzy controller[C]. InternationalJournal of Artificial Intelligent&Applications (IJIA),2011.02(02):32-43
    [55] Antonin Stribrsky, Katerina Hyniova, Jarsolav Honcu. Energy recuperation inautomotive active suspension systems with linear electric motor[C]. Proceeding of the15th mediterranean conference on control&automation, Athens, Greece,2007
    [56]黄昆,喻凡,张勇超.电磁式主动悬架模型预测控制器设计[J].上海交通大学学报,2011.11(44):1619-1624
    [57]黄昆,喻凡,张勇超.基于能量流动分析的电磁式馈能型主动悬架控制[J].上海交通大学学报,2011.07(45):1068-1073
    [58] Ismenio Martins, Jorge Esteves, Gil D.Marques. Permanent Magnets Linear actuatorsapplicability in automobile active suspension[C]. IEEE transactions on vehiculartechnology,2006.01(55):86-94
    [59] Sagiv Bar David, Ben Zion Bobrovsky. Actively controlled vehicle suspension withenergy regeneration capabilities[J]. Vehicle System Dynamics,2011.06(49):833.854
    [60] Willem.Jan Evers, Arjan Teerhuis, Albert van der Knaap. The electromechanical lowpower active suspension modeling, control, and prototype testing[J]. Journal ofdynamic systems, measurement, and control,2011(133)
    [61]顾永辉,喻凡,张勇超.汽车馈能式电动主动悬架控制器设计与试验研究[J].试验.测试,2007.11:40-44
    [62]欧阳冬,张继业,张卫华.能量回馈式主动悬架研究[J].机械与电子2008(2):7-10
    [63]欧阳冬,张克跃,张继业等.车辆能量回馈式主动悬架研究[J].2008,27(8):88-92
    [64] Koji Hio, Masaharu Sato, Takaaki Uno. Electromagnetic suspension system for vehicle
    [P]. US patent7005816B2, Feb.28,2006
    [65] Roy I.Davis, Prabhakar B, Patil. Electromagnetic powered active suspension for avehicle[P]. US patent5060959, Oct.29,1991
    [66] Xuechun Zheng, Fan Yu. Study on the potential benefits of an energy.regenerativeactive suspension for vehicles[J]. SAE,2005.01.3564
    [67]曹民,杨玉珍,王熙.电池蓄能主动悬架. CN:1626370A
    [68]郑雪春.馈能式汽车电动主动悬架的理论及试验研究[D].上海交通大学硕士学位论文.2007年1月
    [69] ZHENG Xue.chun, YU Fan, ZHANG Yong.chao. A novel energy.regenerative activesuspension for vehicles[J]. J. Shanghai Jiaotong Univ.(Sci.),2008,13(2):184-188
    [70]曹民,刘为,喻凡.车辆主动悬架用电机作动器的研制[J].机械工程学报,2008,44(11):224-228
    [71]张勇超,郑雪春,喻凡等.馈能式电动悬架的原理与试验研究[J].汽车工程,2008,30(1):48-52
    [72] Yongchao Zhang, Fan Yu, Kun Huang. Permanent.magnet DC motor actuatorsapplication in automotive energy.regenerative active suspensions[J]. SAE,2009.01.0227
    [73]黄昆,张勇超,喻凡等.电动式主动馈能悬架综合性能的协调性优化[J].上海交通大学学报,2009,43(2):226-230
    [74]喻凡,张勇超.馈能型车辆主动悬架技术[J].农业机械学报,2010,41(1):1-6
    [75] Xubin Song, Zhesheng Li. Regenerative damping method and apparatus[P]. US patent6920951B2,2005
    [76]于长淼.双超越离合器式电磁馈能阻尼器的研究[D].吉林大学博士学位论文.2012年6月
    [77]于长淼,王伟华,王庆年.电磁馈能式悬架方案设计与节能分析[J].汽车技术.2010(2):21-25.
    [78]王伟华,李志成,于长淼,一种新型汽车馈能减振器的结构设计与特性分析[J],汽车技术,2010(3)
    [79] Liu Song.shan, Wei Hao, Wang Wei.hua. Investigation on some key issues ofregenerative damper with rotary motor for automobile suspension[C]//2011International Conference on Electronic and Mechanical Engineering and InformationTechnology (EMEIT),Harbin, China,2011:1435-1439.
    [80] Cangmiao Yu, Weihua Wang, Qingnian Wang, et.al. Property Analysis of anElectro.Mechanical Regenerative Damper Concept[C]. Proceedings of the ASME2011International Design Engineering Technical Conferences&Computers and Informationin Engineering Conference. August29.31,2011, Washington, DC, USA
    [81]于长淼,王伟华, SubhashRakheja,王庆年.双超越离合器式电磁馈能阻尼器原型机试验测试与分析[J].吉林大学学报(工学版),2012,42(02):292-297.
    [82]李志成.汽车馈能悬架的结构选型与性能仿真[D].吉林大学硕士学位论文,2009年4月
    [83] Bart L.J. Gysen, Jeroen L.G. Janssen, Johannes J.H. Paulides,etal. Design Aspects of anActive Electromagnetic Suspension System for Automotive Applications[C]. Industryapplications society annual meeting,2008IEEE, Page:1-8
    [84] Shigley Joseph E,Mischke Charles R, Brown Thomas H. Standard Handbook ofMachine Design[M]. Third Edition. McGraw.Hill,2004
    [85]王庆年,刘松山,王伟华等.滚珠丝杠式馈能型减振器的结构设计及参数匹配[J].吉林大学学报(工学版),2012,42(05):1100-1106
    [86] Yasuhiro KAWAMOTO, Yoshihiro SUDA, Hirifumi INOUE, et al. Modeling ofelectromagnetic damper for automobile suspension[J]. Journal of System Design andDynamics,2007,01(03):524-534
    [87] Oly Paz. Design and performance of electric shock absorber[D]. master degress thesisof Louisiana State University,2004, December
    [88] Reimpell, J., Stoll, H., and Betzler, J. The automotive Chassis EngineeringPrinciples[M], Second Edition,2001, pp.347-385
    [89]黄胜.汽车双筒式减振器阻尼特性仿真[D].华中科技大学硕士学位论文,2007
    [90]俞德孚,陈庆东,方大雨.悬架减振器外特性平安比(η)的设计研究[J].车辆与动力技术,2003,87(3):11-17
    [91]王伟.车用永磁同步电机的参数匹配、协调控制与性能评价研究[D].长春:吉林大学,2010.
    [92] Hong Su. An Investigation of Vibration Isolation Systems Using Active, Semi.Activeand Tunable Passive Mechanisms with Applications to Vehicle Suspensions [D]. TheConcordia University, Doctor Degree,1990
    [93]余志生.汽车理论[M].北京:机械工业出版社,2007
    [94] William T. Thomson, Marrie Dillon Dahlen. Theory of Vibration with Applications(Fifth Edition)[M]. PRENTICE HALL Upper Saddle River, NJ07458
    [95] Rajalingham C and Rakheja S. Influence of Suspension Damper Asymmetry onVehicle Vibration Response to Ground Excitation[J], Journal of Sound and Vibration,2003, Vol266, pp1117-1129.
    [96]吴志成,张斌,杨杰等.非线性阻尼对悬架的影响仿真研究[C].中国汽车工程学会越野汽车技术分会2008年学术年会论文集,391-396
    [97][6]Verros G, Natsivas S and Stepan G. Control and Dynamics of Quarter.Car Modelswith Dual.rate Damping[J]. Journal of Vibration and Control,2000,06, pp1045-1063.
    [98] Simms A and Crolla D. The Influence of Damper Properties on Vehicle DynamicBehavior, SAE Paper,2002.01.0319.
    [99] Karnopp D, Crosby M.J, and H. R.A., Vibration control using semi.active forcegenerators [J]. Engineering for Industry, vol.96,no2, pp.619-626,1974.
    [100] Rakheja, S. and S. Sankar, Vibration and shock isolation performance of asemi.active'on-off' damper[J]. ASME, Transactions, Journal of Vibration, Acoustics,Stress, and Reliability in Design,1985.107: p.398-403.
    [101] Dixon J C. The shock Absorber Handbook [A]. SAE Inc (2007), Warrendale, PA.
    [102]于长淼.双超越离合器式电磁馈能阻尼器的研究[D].长春:吉林大学,2012
    [103]陈宇东.结构振动分析[M].长春:吉林大学出版,2008.
    [104] Dave Corolla,喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2003
    [105] ISO2631.1:1997(E). Mechanical vibration and shock.Evaluation of human exposureto whole.body vibration.Part1: General requirement [S]
    [106] GB/T4970.2009,汽车平顺性试验方法[S]
    [107]周长城.车辆悬架设计及理论[M],北京大学出版社,2011
    [108]檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1997,3(11):96-101
    [109]张国胜,方宗德,陈善志等.基于幂函数的路面不平度白噪声激励模拟方法[J].汽车工程,2008,1(30):44-47
    [110]陈杰平,陈无畏,祝辉等.基于Matlab/Simulink的随机路面建模与不平度仿真[J].农业机械学报,2010,3:11-15
    [111]王永生,姜文志,王建国等.基于Simulink连续系统仿真驱动噪声生成[J].计算机仿真,2007,11(24):308-311
    [112] Lei Zuo, Pei.Sheng Zhang. Energy harvesting, ride comfort, and road handling ofregenerative vehicle suspension[J]. Journal of vibration and acoustics.2013,2(135):1105-1121
    [113] Segel L, Lu X P. Vehicular resistance to motion as influenced by road roughness andhighway alignment[J]. Australian Road Research,1982,12(4):211-222.
    [114] Abouelnour, A., and Hammad, N.,2003,“Electric Utilization of VehicleDamperDissipated Energy,” Al.Azhar Engineering Seventh InternationalConference (AEIC),Cairo, Egypt, April7–10.
    [115]于长淼,王伟华,王庆年.混合动力车辆馈能式悬架的节能潜力[J].吉林大学学报:工学版,2009,39(4):841-845
    [116] Browne A, Ham burg J. On road measurement of the energy dissipated in automotiveshock absorbers[C]. Symposium on Simulation and Control of Ground Vehicles andTransportation Systems, Anaheim CA, USA: ASME,1986:167-186.
    [117]陈荫三,余强.汽车动力学[M].清华大学出版社,2009
    [118] Matlab/Simulink2012a help
    [119]王成元,夏加宽、孙宜标.现代电机控制技术[M]北京:机械工业出版社,2012
    [120]唐任远.现代永磁电机理论与设计[M].机械工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700