用户名: 密码: 验证码:
汽车动力总成悬置系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发动机是汽车的主要振动激励源之一,悬置系统是隔离发动机振动向车架或车身传递的重要环节。设计合理的汽车动力总成悬置系统,可以明显地降低汽车动力总成和车体的振动,提高整车的NVH (Noise, Vibration and Harshness)性能,这已成为汽车高速化和轻量化的发展过程中需要解决的关键问题之一。动力总成悬置系统的研究涉及不同的领域,这其中悬置元件的动力学特性、动力总成悬置系统的运行模态分析与识别、悬置系统建模及优化设计是主要的研究领域。
     发动机橡胶悬置不是理想的粘弹性元件,具有非线性的动力学特性。本文详细介绍了橡胶悬置的复刚度模型、Kelvin-Viogt模型、三参数模型和BERG模型的基本理论及特点。构建了某工程车辆悬置的BERG模型,在弹性体动态试验设备平台对悬置多种振幅下的动力学性能进行了实测。结合不同工况的试验数据,采用MATLAB平台的约束非线性多变量优化函数finincon,对悬置BERG模型的参数进行了优化识别。试验及仿真计算表明,橡胶悬置具有频率和振幅依从特性,仿真计算结果和试验数据吻合,动刚度相对误差小于1%,阻尼系数相对误差小于10%。BERG模型能较好的反映橡胶悬置动力学特性的非线性特点,可应用于动力总成悬置系统的优化设计。
     对于180。均布曲轴夹角的直列四缸发动机,其主要激励成分是二阶往复惯性力和汽缸燃烧力矩。建立了发动机悬置系统的六自由度动力学模型。应用四端参数法推导出悬置支撑为弹性的传递率公式,仿真计算了发动机悬置的振动频谱,计算结果与实测数据相吻合,验证了模型及计算方法的有效性。发动机悬置支撑的弹性作用是使得振动传递率曲线在高频段上扬、隔振性能变差的主要原因之一。
     对国产某车型悬置系统的隔振性能进行了试验,分别实测了发动机怠速、1500rpm、2500rPm和3000rPm四种工况下悬置发动机侧和车架侧的振动参数,分析了不同工况悬置的振动传递率。模拟计算了悬置主弹性方向的振动响应,计算曲线与实测振动结果吻合。针对橡胶悬置刚度的非线性特点,提出了基于Newmark数值积分法的动力总成悬置系统位移计算方法。计算并试验验证了轿车3档急加速工况下,悬置在各弹性主轴方向的振动位移。
     对一款SUV汽车的动力总成悬置系统进行了启动、怠速和急加速三种工况的运行模态试验。针对悬置系统大阻尼和模态密集的特点,运用多参考点最小二乘复频域法识别技术(简称PRLSCF或PolyMAX)进行了模态参数识别。发动机激励不具备零均值白噪声的特点,运用模态置信度(MAC)、模态相位共线性(MPC)及平均相位偏移(MPD)等多种置信度指标进行模态验证,获得了可信的模态参数和系统工作振型。运行模态参数与发动机工况有关,运行模态频率高于计算模态频率。多工况的运行模态试验可以更准确的识别悬置系统的模态参数,对于悬置元件参数的设计具有一定的借鉴作用。
     采用正交试验方法,分别计算了试验车型悬置系统6阶固有频率对悬置几何坐标的灵敏度,以及悬置系统振动耦合度对悬置刚度的灵敏度。提出了基于灵敏度分析的发动机悬置系统的稳健优化方法,优化结果具有良好的稳健性。进一步运用灰色理论中的关联分析方法,选取粒子群算法中的全局极值和个体极值,并结合稳健设计思想,提出了适合于多目标模型的灰色粒子群稳健优化算法,并将该算法应用到动力总成悬置系统的优化设计中。优化结果表明,该算法不仅能够很好地协调从不同角度提出的悬置参数的优化目标,获得满意的综合效果,而且可以使优化后的悬置参数有更好的鲁棒性。
Engine is one of the main source of automotive vibration, and mounting system is an important design to prevent the vibration transferring from engine to the frame and body. The reasonably designed automotive powertrain mounting system can significantly reduce the vibration of the automotive powertrain and body, and improve vehicle's NVH (Noise, Vibration and Harshness) properties, which has become a key problem during the process of the development of the vehicle's high speed and light weight.The powertrain mounting system research involves the study of different fields, mainly including the mounting element modeling, powertrain mounting system operation mode analysis and recognition, as well as mounting system modeling and optimization design.
     Rubber engine mount is not an ideal viscoelastic element, and has the nonlinear dynamic characteristics.This paper introduces in detail the basic theories and characteristics of the complex stiffness of rubber mounting model, Kelvin-Viogt model, three parameters model and the BERG model. BERG model is applied to construct the model of a engineering vehicle's mounting. The dynamic performance tests for mounting in different amplitude are studied by using elastomer dynamic testing equipment. Based on the experimental data of different conditions, The fmincon-the constrained nonlinear multivariable optimization function in MATLAB-is used to recognize the suspension parameters of BERG model. The experiment and simulation results show that there is close relationship between frequency and amplitude of the vibration, and the simulation calculation result is consistent with the experimental result. The dynamic stiffness relative error is less than1%, and the damping coefficient of relative error is less than10%. The BERG model can reflect the nonlinear property in the rubber mounting's dynamic characteristics, and can be applied to the optimization design of the powertrain mounting system.
     As for the inline four cylinder engine of180°uniform layout crank angle, the main incentive component is two order reciprocating inertia force and moment of the cylinder combustion. An engine mount system dynamic model with six degrees of freedom has been established. By four pole parameters method, the transmission rate formula of the elastic mounting support is deduced. The mounting vibration spectrum is calculated and the calculated results coincide with the measured data, so it is verified that the model and the calculation method is effective.The elastic effect of engine mounting support is one of the main reasons for the high rise of the vibration transmissibility curves and the poor isolation performance in high frequency range.
     The mounting vibration isolation performance is tested on a domestic car. The mount engine side and the frame side vibration parameters are measured under four engine's conditions (idling,1500rpm、2500rpm and3000rpm). The mounting system vibration decay rate are analysed under different conditions. The main direction of vibration suspension elastic response was simulated and the calculated results coincide with the measured data. According to the nonlinear characteristics of rubber suspension stiffness, Based on the Newmark numerical integral method, the displacement calculation in the powertrain mounting system is presented. The vibration displacement in the directions of the elastic spindle is calculated and tested in the condition of three-gear sharp acceleration.
     The three kinds of operational modal tests (starting, idling and revving up) are done on a SUV vehicle's powertrain mounting system. For the mounting system with the heavy damping and close modal property, the PRLSCF or PolyMAX technology is employed in the modal parameter identification. As the engine power source does not have zero mean and white noise characteristics, the modal assurance criterion (MAC), modal phase linear (MPC), average phase offset (MPD) and other confidence index are employed in the modal verification, and a credible modal parameters and the system working mode have been obtained. Operational modal parameters are relative to the operating condition of the engine and the operational modal frequency is higher than the calculated modal frequency. Multiple operational modal tests can more accurately identify the modal parameters, which is consistent with the mounting component parameter design.
     Based on orthogonal experiments, sensitivity analysis of an engine mounting system is made to show the influence of the mounting coordinates on the six-order natural frequency and the influence of the mounting stiffness on the vibration decoupling rate. The robust optimization methods based on the sensitivity analysis of the engine mounting system is put forward and the optimization result has good robustness. In the paper, the global best and personal best of particle swarm algorithm are selected by the grey relational analysis. Furthermore, the grey particle swarm robust algorithm is presented for multi-objective models solution in the robust optimization design, and the algorithm is employed in the optimization design of the engine mounting system. It has been verified that the conflicts between optimization objects can be coordinated, the satisfactory synthetic effects can be found, and the reliability of the optimized mounting parameters can be obtained by using the algorithm.
引文
[1]Joong Jae Kim. Neon Young Kim. Shape Design of An Engine Mount By A Method of Parameter Optimization. Computer&Structure,1997,65(5):725-731.
    [2]W.D. Kim, H.J. Lee, J.Y. Kim, S. K. Koh. Fatigue life estimation of an engine rubber mount, International Journal of Fatigue,2004,26,553-560.
    [3]陈继红,沈秘群,严济宽.汽车发动机悬置的一些设计问题[J].噪声与振动控制,1992,2(1):5-11.
    [4]庞剑,谌刚,何华.汽车噪声与振动—理论与应用[M].北京:北京理工大学出版社,2006:266-286.
    [5]Yunhe Yu, Nagi G Naganathan, Rao V. Dukkipati. A literature review of automotive vehicle engine mounting systems. Mechanism and Machine Theory,36(2001):123-142.
    [6]梁天也,史文库,唐明祥.发动机悬置研究综述[J].噪声与振动控制,2007,1:6-10.
    [7]王利荣,吕振华.汽车动力总成液阻型橡胶隔振器的研究发展[J].汽车工程,2001,23(5):323-328.
    [8]Lord H C. Vibration Dampening Mounting[P]. The U.S.A. Patent,1930.
    [9]Miller L R, Ahmadian M. Active Mounts a Discussion of Future Technological Trends. Internoise Conference, Toronto, Canada,1992,20-21:1-6.
    [10]宋健,邢如飞.带橡胶套的稳定杆有限元分析[J].汽车工程,2005,27(5):592-594.
    [11]上官文斌,吕振华.汽车动力总成橡胶隔振器弹性特性的有限元分析[J].内燃机工程,2003,24(6):50-55.
    [12]赵振东,雷雨成,袁学明.悬架橡胶衬套变形响应的非线性有限元分析[J].上海汽车,2005,9:23-25.
    [13]N Gil-Negretea, J Vin-olasa, L Karib. A Ssimplified Methodology to Predict the Dynamic Stiffness of Carbon-Black Filled Mbber Isolators Using a Finite Element Code[J]. Journal of Sound and Vibration,2006,129(6):757-776.
    [14]GENT AN.橡胶工程(第2版)[M].北京:化学工业出版社,2002,65-68.
    [15]SHASKA K. The Characterization of Nonlinear Viscoelastic Isolators[D]. Michigan:Wayne State University,2005.
    [16]B Gross. Mathematical Structures of the Theories of Viscoelasticity. Paris:Harmann and Co., 1953.
    [17]SJOBERG M, KARIL. Non-line Behavior of a Rubber Isolator System Using Fractional derivatives[J]. Vehicle System Dynamics,2002,37(12):217-236.
    [18]DZIERZEK S. Experiment-Based Modeling of Cylindrical Rubber Bushings for the Simulation of Wheel Suspension Dynamic Behavior[R]. SAE 2000-01-0095,2000.
    [19]SJOBERG M. Nonlinear Isolator Dynamics at Finite Deformations:An Effective Hyperelastic, Fractional Derivative, Generalized Friction Model[J]. Nonlinear Dynamics, 2003(33):323-336.
    [20]SJOBERG M. Robber Isolators-Measurements and Mmodelling Using Fractional Derivatives and Friction[R]. SAE 2000-01-3518.
    [21]GARCLA-TARRAGO M J, KARI L. Frequency and Amplitude Dependence of the Axial and Radial Stiffness of Carbon-Black Filled Rubber Bushings[J]. Polymer Testing,2007(26): 629-638.
    [22]Mats Berg. A Non-Linear Rubber Spring Model for Rail Vehicle Dynamics Analysis[J]. Vehicle System Dynamics,30(3):197-212.
    [23]黄鼎友,孔祥华.对橡胶悬架装置动特性的改进探讨[J].拖拉机与农用运输车,2006,32(2):73-75.
    [24]孙蓓蓓.工程车辆悬架橡胶弹簧动力学特性的试验建模研究[J].中国机械工程,2006,17(12):1313-1316.
    [25]张伟峰,李金山,彭建方,等.汽车发动机橡胶是置动特性仿真与试验研究[J].汽车科技,2009,4:62-64.
    [26]潘孝勇,上官文斌,柴国钟,黄志.橡胶隔振器动态特性计算方法的研究[J].振动工程学报,2009,22(4):345-351.
    [27]于增亮,张立军,余卓平.橡胶衬套力学特性半经验参数化模型[J].机械工程学报,2010,46(14):115-122.
    [28]梁天也,史文库,唐明祥.发动机悬置研究综述[J].噪声与振动控制,2007,2:6-10.
    [29]Richard A. Muzechuk. Hydraulic Mounts Improved Engine Isolation[C]. SAE Paper 840410.
    [30]Bosengerg D, Boom J. Motorlagerungen in Fahr-zeug Mit Integrierter Hydraulishe Dampfung-ein Weg Zur Verbesser-ung des Fahrkomforts[J]. Grmany:ATZ,1979,81(10).
    [31]P. E. Corcoran, G. H. Ticks. Hydraulic Engine Mount Characteristics[C]. SAE Pape 840407.
    [32]ShoureshiR, Graf P.L. Open-loop Versus Closed-Loop Control for Hydraulic EngineMounts[C]. SAE Paper 880075.
    [33]Douglas Mowrey. Rubber to Metal-adhesives Improve Quality of Hydraulic Mounts[J]. Automotive Engineering,1990,7.
    [34]Takao Ushijima. High Performance Hydraulic Mount for Improving Vehicle Noise and Vibrationf[C]. SAE Paper 880073.
    [35]Marc Bemuchon. A New Generation of Engine Mounts[C]. SAE Paper 840259.
    [36]Flower W. C. Understanding Hydraulic Mounts for Improved Vehicle Noise, Vibration and Ride Qualities[J]. SAE Paper 850976.
    [37]Corocoran P E, Ticks G H. Hydraulic Engine Mount Characteristics[J]. SAE Paper 840407, 881134.
    [38]Singh R, Kim G, Ravidra P. V. Linear Analysis of Automotive Hydro-mechanic-al Mount with Emphasis on Decoupler Characteristics[J]. J. Sou Vib.,1992,158(2):219-243.
    [39]Rivin T. J, Singh R. Periodic Response of Nonlinear Engine Mounting Systems[J]. SAE Paper 951297.
    [40]Mizuguchi M, SudaT, andChikanori S etc. Chassis Electronic Control System for Mitsubishi 1984Galant[C]. SAE Paper 840258.
    [41]Brach, R. M. and Haddaw, A. G. On the Dynamic Response of Hydraulic engine Mounts[J]. SAE Paper 931921.
    [42]Metzeler and Freudenberg Inc. Advanced Rubber Technology[J]. Antomotive Engineering, 1991,16(3):36-39.
    [43]West J. P. Hydraulically Damped Engine Mounting[J]. Antomotive Engineering,1987,12(1): 17-19.
    [44]R. Solomon. Engine Mount System Focusing to Reduce Vehicle Shake[J]. SAE Paper 973727.
    [45]Peter Burgess. Lexus RX300-luxury on the off-road[J]. Automotive Engineering,2001,26(1): 74-78.
    [46]王立公,冯振东.汽车动力总成液力悬置—一种新型隔振元件的结构发展[J].汽车工程,1994,16(6):340-347.
    [47]范让林,吕振华,冯振东.惯性通道-解耦膜式液压悬置动特性分析[J].汽车工程,1997,19(4):226-233.
    [48]上官文斌,吕振华.液阻型橡胶隔振器非线性特性仿真分析[J].振动工程学报,2003,16(4):393-398.
    [49]吕振华,上官文斌.基于液-固耦合有限元仿真的液阻悬置集总参数模型动特性分析[J].机械强度,2004,26(1):29-37.
    [50]郑瑞清.主动控制电致伸缩液压悬置隔振特性仿真[J].吉林大学学报,2004,35(1):100-105.
    [51]潘双夏,王芳,王维锐.液压悬置动特性实验分析及模型修正方法研究[J].汽车工程,2005,27(6):736-739.
    [52]史文库,蔡俊.主动控制式电磁液压悬置隔振性能研究[J].噪声与振动控制,2006,3:28-31.
    [53]梁天也,史文库,马闯.汽车动力总成液压悬置橡胶主簧静特性有限元分析[J].振动与冲击,2007,26(9):155-157.
    [54]姜明,侯硕,才建军,等.基于键合图理论的汽车发动机液压悬置动特性的仿真研究[J].机械设计与制造,2008,4:70-72.
    [55]岳跃珍,黄鼎友.液压悬置参数对其动特性的影响[J].机械设计与制造,2010,4:90-92.
    [56]陈无畏,王景蓉,陈晓新,等.基于ALE有限元法的发动机液压悬置动态特性仿真[J]. 合肥工业大学学报(自然科学版),2011,34(5):641-645.
    [57]樊江玲.基于输出响应的模态参数辨识方法研究[D].上海交通大学博士论文,2007.
    [58]黄鼎友,吉向东.动力总成悬置系统建模及振动仿真[J].江苏大学学报,2005(3):222-226.
    [59]龙岩,史文库,兰靛靛等.基于工作模态法的动力总成刚体模态参数识别[J].噪声与振动控制,2008(6):88-91.
    [60]李建康,郑立辉,宋向荣.汽车发动机悬置系统动刚度模态分析[J].汽车工程,2009,31(5):457-461.
    [61]樊逸斌,张平,段小成等.基于运行模态法的动力总成刚体模态试验研究[J].噪声与振动控制,2010,6:70-74.
    [62]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.7.
    [63]陈林,张立民,段合朋.基于环境激励的车辆系统工作模态试验分析[J].噪声与振动控制,2008(6):81-84.
    [64]LMS Test Lab manuals [M]. TBelgiumT LMS company,2005.
    [65]MCLAMORE V R, HART G C, STUBBSI R. Ambient Vibration of Two Suspension Bridges[J]. Journal of the Structural Division,1971,97(10):2567-2582.
    [66]B. Peeters, G. de Roeck. Reference-Based Stochastic Subspaee Identification for Output-Only Modal Analysis[J]. Mechanical Systems and Signal Processing,1999,13: 855-878.
    [67]BRINKER R, ZHANG L, ANDERDEN P. Modal Identification from Ambient Responses Using Frequency Domain Decomposition [C]. Proceedings of 18th IMAC, San Antonio, TX, 2000,625-630.
    [68]GENTILE C, GALLINO N. Ambient Vibration Testing and Structural Evaluation of an Historic Suspension Footbridge[J]. Advances in Engineering Software,2008,39(4):356-366.
    [69]E. Parloo, P. Guillaume, et. al. Modelling of Sprayer Boom Motion by Means of Output-Only Maximum Likelihood Identification Techniques[C]. Proceedings of ISMA 2002.
    [70]CAUBERGHE B, GUILLAUME P, VERBOVEN P, et al. Frequency Response Function-Based Parameter Identification from Short Data Sequences[J]. Mechanical Systems and Signal Processing,2004.18(5):1097-1116.
    [71]翟东武,朱唏.基于输出响应的识别结构参数的神经网络方法[J].北方交通大学学报,2001,25(1):26-29.
    [72]王彤,张令弥.运行模态分析的频域空间域分解法及其应用[J].航空学报,2006,27(1):62-66.
    [73]李静,金玉华.基于遗传算法的导弹结构模态参数识别[J].现代防御技术,2008,36(3):31-34.
    [74]张义民,·张守元,李鹤等.运行模态分析中固有模态和谐波模态区分方法研究[J].振动与冲击,2009,28(1):64-67.
    [75]Bart Peeters, Geert Lowet, Auweraer,Herman Van der. Operational PolyMAX for Estimating the Dynamic Properties of a Stadiums Structure During a Football Game Orlando, Florida, IMAC23,2005.
    [76]梁君,赵登峰.工作模态分析理论研究现状与发展[J].电子机械工程,2006,22(6):7-8,32.
    [77]陈林,张立民,段合朋.基于环境激励的车辆系统工作模态试验分析[J].噪声与振动控制,2008,6:82-84.
    [78]谢小平,韩旭,吴长德,雷飞.基于PolyMAX方法的某轿车白车身实验模态分析[J].汽车工程,2009,31(5):440-440.
    [79]孙鑫晖,郝木明,王淮维.PolyMAX模态参数识别算法的快速实现[J].振动与冲击,2011,30(10):6-8,18.
    [80]S. R. Ibrahim, E. C. Mikulcik. A Method for the Direct Identification of Vibration Parameters from the Free Response[J]. Shock and Vibration Bulletin,1977,47:183-198.
    [81]JAMES G H, GARNE TG, LAUFFER J P. The Natural Exci ration Technique (NExT) for Modal Parameter Extraction from Operating Wind Turbines[C]. Technical Report, New Mexico,1993.
    [82]H. A. Cole. Online Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures. NASA CR-2205,1973.
    [83]PEETERS B, DE ROECK G. Reference-Based Stochastic Subspace Identification for Output-Only Modal Analysis[J]. Mechanical Systems and Signal Processing,1999,13(6): 855-878.
    [84]尹志宏,范文冲.主轴系统空运转模态分析[J].机械强度,2006,28(S):30-32.
    [85]李守巨,刘迎曦,冯颖.基于混合遗传算法的动力系统阻尼参数识别方法[J].计算力学学报,2004,21(5):551-556.
    [86]VERBOVEN P, CAUBERGHE B, GUILLAUME P. Improved Total Least Squares Estimators for Modal Analysis[J]. Computers and Structures,2005,83(25-26):2077-2085.
    [87]VANLANDUIT S, CAUBERGHE B, GUILLAUME P, et al. Reduction of Large Frequency Response Function Data Sets Using a Robust Singular Value Decomposition[J]. Computers and Structures,2006,84(12):808-822.
    [88]Joseph Lardies, et al. Identification of Modal Parameters Using the Wavelet Transform[J]. International Journal of Mechanical Sciences,2002,44:2263-2283.
    [89]M. Ruzzene, A. Fasana, L. Garibaldi, B. Piombo. Natural Frequencies and Dampings Identification Using Wavelet Transform:Application to Real Data[J]. Mechanical Systems and Signal Processing,1997,11(2):207-218.
    [90]Qi Keyu, He Zhengjia, Li Zhen, et al. Vibration Based Operational Modal Analysis of Rotor Systems[J]. Measurement,2008,41(7):810-816.
    [91]郑立辉.发动机悬置系统动力学计算与实验研究[D].江苏大学硕士论文,2009.
    [92]Johnson S. R, Subhedar J. W. Computer Optimization of Engine Mounting Systems[J]. SAE Paper 790974.
    [93]Clark J. Radcliffe. Simulation of Engine Idle Shake Vibration[J]. SAE Paper 830258.
    [94]Geck P. E, Patton R. D. Front Wheel Drive Engine Mounts Optimization[J]. SAE Paper 840736.
    [95]H. Hata, H. Tanaka. Experimental Method to Derv Optimum Engine Mount System for Idle Shake[J]. SAE Paper 870961.
    [96]Demic Miroslav. A Contribution to the Optimization of the Position and the Characteristics of Passenger Car Powertrain Mounts[J]. International Journal of Vehicle Design,1990,1.
    [97]John Brett. Optimization of Engine Mounting Systems to Minimize Vehicle Vibration. SAE Transactions Journal of passenger Cars,1993,102.
    [98]Taeseok Jeong, Rajendra Singh. Analytical Methods of Decoupling the Automotive Engine Torque Roll Axis[J]. Journal of Sound Vibration,2000,234(1):85-114.
    [99]潘旭峰,胡子正,邬惠乐.发动机支承参数的模糊多目标优化设计[J].机械工程学报,1989,25(4):61-67.
    [100]上官文斌,蒋学锋.发动机悬置系统的优化设计[J].汽车工程,1992,14(2):103-119.
    [101]阎红玉,徐石安.发动机-悬置系统的能量法解耦及优化设计[J].汽车工程,1993,15(6):321-328.
    [102]孙蓓蓓,张启军,等.汽车发动机悬置系统解耦方法研究[J].振动工程学报,1994,7(3):240-245.
    [103]徐石安.汽车发动机弹性支承隔振的解耦方法[J].汽车工程,1995,17(4):198-204.
    [104]温任林,颜景平.汽车发动机悬置系统多目标优化的研究[J].东南大学学报,1996,26(6A):105-110.
    [105]樊兴华,陈金玉,黄席樾.发动机悬置系统多目标优化设计[J].重庆大学学报(自然科学版),2001,24(2):41-44.
    [106]史文库,林逸,等.动力总成悬置元件特性对整车振动的影响[J].汽车工程,1997,19(2):103-107.
    [107]史文库,林逸,等.考虑弹性基础的发动机悬置隔振特性分析[J].内燃机学报,1998,16(2):232-237.
    [108]吕振华,范让林.动力总成-悬置系统振动解耦设计方法[J].机械工程学报,2005,41(4):49-54.
    [109]周密,侯之超.基于遗传算法的动力总成悬置系统优化设计[J].汽车技术,2006,9:13-16.
    [110]刘丹,侯之超.动力总成悬置设计中惯性参数的灵敏度分析[J].汽车工程,2007,29(10):884-888.
    [111]李海斌,武一民,王亮.汽车动力总成悬置刚度灵敏度研究[J].农业机械学报,2007,38(6):38-41.
    [112]龙岩,史文库,梁天也,等.基于改进传递路径分析法的动力总成悬置系统优化及评价[J].汽车工程,2009,31(10):957-962.
    [113]吴杰,上官文斌,等.动力总成悬置系统解耦布置的鲁棒性分析[J].振动与冲击,2009,28(9):15-20.
    [114]时培成,陈无畏,高立新.基于蒙特卡罗法的动力总成悬置系统稳健性设计[J].汽车工程,2010,32(8):707-711.
    [115]王亚楠,吕振华.以广义力传递率为目标的动力总成隔振悬置系统优化设计方法[J].机械工程学报,2011,47(11):52-58.
    [116]费久金等著,刘约翰译.橡胶的技术性能和工艺性能[M].北京:中国石化出版社,1990.
    [117]Mats Berg. Dzierzcks Experiment-Based Modeling of Cylindrical Rubber Bushings for the Simulation of Wheel Suspension Dynmaic Behabior[R]. SAE 2000-01-0095,2000.
    [118]何渝生等编著.汽车振动学[M].北京:人民交通出版社.
    [119]靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002.
    [120]严济宽.机械振动隔离技术[M].上海:上海科学技术文献出版社,1986.
    [121]邹经湘.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,1996.
    [122]上官文斌,徐驰,黄振磊,李岐,李涛.汽车动力总成悬置系统位移控制设计计算方法[J].汽车工程,2006,28(8):738-742.
    [123]杨利勇.基于Adams/View的悬置系统工况计算方法[J].公路与汽运,2009,134(5):1-4.
    [124]刘祖斌,刘英杰.发动机悬置设计中的动、静刚度参数研究[J].汽车技术,2008,6:21-23.
    [125]刘馥清,安宏伟.多参考最小二乘幅频域(PolyMAX)法在汽车轮胎及车身模态参数识别中的应用[C].苏州:2006年LMS首届用户年会,2006.
    [126]H. Van der Auweraer, P. Guillaume, P. Verboven, etal. Application of a Fast-Stabilizing Frequency Domain Parameter Estimation Method. ASME Journal of Dynamic systems Measurement and Control,2001,123(4):651-658.
    [127]Peeters B., P. Guillaume, H. Van der Auweraer, etal. Automotive and Aerospace Applications of the LMS PolyMAX Modal parameter Estimation Method. Proceedings of IMAC 22,2004.
    [128]Jeroen Lanslots, Bert Rodiers, B. Peeters. Automated Pote-Selection:Proof of concept & Validation. LMS International,2004.
    [129]M. Qatu, M. Sirati and F. Johns. Robustness of Powertrain Mount System for Noise, Vibration and Harshness Idle[J]. Automobile Engineering,2002:5-15.
    [130]陈立周.稳健设计[M].北京:机械工业出版社,2000.5.
    [131]Taeseok Jeong, Rajendra Singh. Analytical methods of decoupling the automotive engine torque roll axis[J]. Journal of Sound Vibration,2000,234(1):85-114.
    [132]Crede C E. Vibration and shock Isolation[M]. New York:John and Sons Inc.1979.
    [133]Riesing E F. Resilient Mountings for Passenger-Car Power-plant[J]. SAE Trans,1950(1).
    [134]Harrison H C. Engine Installation-A Discussion of Methods to Suit Unitary Constration[J]. Automobile Engineer, Oct.1956.
    [135]Taeseok Jeong, Rajiendra Singh. Analytical Methods of Decoupling the Automotive Engine Torque Roll Axis. Journal of Sound and Vibration,2000,234(1):85-114.
    [136]周晓峰.基于隔振理论的发动机悬置系统研究及其工程应用[D].合肥工业大学硕士论文,2006:34-36.
    [137]夏海.汽车发动机总成悬置系统分析与稳健优化[D].合肥工业大学硕士论文,2009:24-25.
    [138]户原春彦.防振橡胶及其应用[M].北京:中国铁道出版社,1982:80-106.
    [139]吕振华,范让林,冯振东.汽车动力总成隔振悬置布置的设计思想论析[J].内燃机工程,2004,25(3):37-43.
    [140]张武,陈剑,夏海.基于灵敏度分析的发动机悬置系统稳健优化设计[J].汽车工程,2009,31(8):728-732.
    [141]Qatu M, Sirafi M, Johns F. Robustness of powertrain mount system for noise, vibration and harshness at idle[J]. Proc. Instn Mech. Engrs, Part D, Journal of Automobile Engineering, 2002,216:805-810.
    [142]邱清盈,冯培恩.基于正交试验的灵敏度分析法[J].机械设计,1997(5):4-7.
    [143]廖林清,陈益.基于灵敏度分析的工程稳健优化设计方法及其应用[J].机械设计与制造工程,2000,29(6):7-8.
    [144]QIAN Chunqing, FU Jun, ZHU Detong. Projected Quasi-Newton Algorithm with Nonmonotone Trust Region for Equality Constrained Optimization Problems[J]. Journal of Shanghai Teachers University,2002,31(1):24-30.
    [145]陈兰平,焦宝聪.非凸无约束优化问题的广义拟牛顿法的全局收敛性[J].应用数学,2005,18(4):573-79.
    [146]白新理.结构优化设计[M].郑州:黄河水利出版社,2008.
    [147]唐文艳,顾元宪.遗传算法在结构优化中的研究进展[J],力学进展,2002,32(1):26-40.
    [148]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005.
    [149]梅益.灰色系统理论在汽车制动器生产规划和结构优化设计中的研究与应用[D].贵州工业大学硕士学位论文,2000:2.
    [150]罗佑新,张龙庭,李敏.灰色系统理论及其在机械工程中的应用[M].长沙:国防科技大学出版社,2001.
    [151]Kennedy J, Eberhart R C. Swarm intelligence [M]. [S.I.]:Morgan Kaufmann Publisher, 2001:165-178.
    [152]Kannan S, Slochanal S. Mary R, et al. Application of particle swarm optimization technique and its variants to generation expansion planning problem[J]. Electric Power Systems Research,2004,70:203-210.
    [153]边培莹,李德信,包宝军,等.粒子群算法在生产物流调度中的应用研究[J].计算机工程与应用,2010,46(17):220-223.
    [154]张武,陈剑.基于灰色粒子群算法的发动机悬置系统多目标优化设计[J].机械设计,2011,28(8):57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700