用户名: 密码: 验证码:
竞争型网络机器人系统关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着移动计算、物联网等技术的迅速发展,网络机器人研究领域已经成为当前机器人研究中的热门研究课题,受到各国科研机构的高度重视。竞争型网络机器人系统以机器人之间的竞争关系为着眼点,与传统协作型机器人有着本质的区别。本文围绕竞争型网络机器人系统的关键问题以及相应解决方法展开了研究。
     竞争型网络机器人系统中存在的关键问题如下:
     一、二人零和对抗中的最优策略生成问题。在与对手智能体的作业目标是相互对立的情况下,如何制定最优策略才能够为己方带来最大利益是必须面对的问题。
     二、对手模型建立问题。建立有效的对手模型,才能够更加准确的估计对手的策略或意图等高层意识行为,为克敌制胜创造有利的信息条件。
     三、多源不确定性对系统的干扰问题。如何在具有多源不确定性的环境下进行感知、决策及行动是本系统的特有问题。
     本文围绕竞争型网络机器人系统的关键问题,得出如下研究结果:
     (1)针对二人零和对抗中的最优策略生成问题,本文引入了基于理性对手的策略生成方法。该方法通过微分对策将竞争型网络机器人系统的进攻与防守行为视为一种追逃博弈问题,通过找出双方的均衡策略,得出在双方都是理性决策者的情况下,双方的最优策略。本文通过仿真实验证明了在二人零和微分对策中,双方的最理性策略就是均衡策略。任何一方偏离其自身的最优策略都会使得对手收益增大,自己收益减小。
     (2)针对对手模型建立问题,本文应用了基于隐马尔可夫模型的对手意图识别方法。该方法通过将观察到的对手行为序列,离散化为对手攻防条件指数这一显状态,并将对手的攻防时机作为隐状态,分别训练在对手全力进攻、全力防守、普通防守、普通进攻四种意图下的隐马尔可夫模型。在对弈中,通过观察对手的进攻和防守行为所导致的对手攻防条件的变化,运用学习到的隐马尔可夫模型参数比较对手各种意图的概率值,其中最大的概率值对应的对手意图即为其当前意图。最后通过系统实验证明了本方法的有效性。
     (3)针对竞争型网络机器人系统的特点,提炼了竞争型网络机器人系统存在的多源不确定性,包括观测不确定性、执行不确定性、环境不确定性等。
     (4)针对多源不确定性对系统的干扰问题,整合了面向不确定性的竞争型网络机器人系统的分层体系结构。该体系结构分为策略层、执行层、物理接口层。其中策略层有两个作用,一是根据对手信息猜测对手意图,并根据对手历史行为分析对手水平;二是根据环境、对手、己方的状态,给出当前的态势评估结果,根据态势评估值选择相应策略。执行层的核心作用是在充满多源不确定性的环境下,根据策略层意图,选择期望收益最大的行动,从而有效克服不确定性对于系统的严重影响。物理接口层用于机器人获取外界信息,及提供针对当前机器人系统的轨迹规划等控制方法。本层的引入增强了本系统的可移植性及可扩展性。最后通过系统实验证明了该体系结构的优越性。
With the rapid development of technologies such as mobile computing and Internet of Things, networked robot system has already become a hot subject in robotics field and has been highly valued by research institutions in every nation. The competitive networked robot system focuses on the competitive relationship between robots, which is fundamentally different from traditional collaborative robots. The dissertation focuses on the key issues in the competitive networked robot system and corresponding solutions.
     The key issues in the competitive networked robot system are as follows:
     Ⅰ. The generation of the optimal strategy in two-robot zero-sum game. When the goals between two intelligent agents are mutually contradictory, it is inevitable to generate the optimal strategy for each one's own best interest.
     Ⅱ. Modeling of the opponent. The effective modeling of the opponent provides a more precise way to estimate the opponent's high-level consciousness behavior, such as strategy and intention, therefore creates information advantage for victory.
     Ⅲ. The disturbing problems upon system deriving from multi-source uncertainties. The environment perception, decision-making and action under multi-source uncertainties are the peculiar problems in the competitive networked robot system.
     Concentrated on the key issues of competitive networked robot system, the dissertation draws the following results:
     (1) Aiming at the generation of the optimal strategy in two-robot zero-sum game, the dissertation introduces a strategy generation method based on rational opponent. The method, which is based on differential games, views the offensive and defensive behavior of competitive networked robot system as a pursuit game. Assuming that both sides are rational, this method finds the balanced strategy to generate the optimal strategy for both sides. The simulation results show that in a two-robot zero-sum differential game, the most rational strategy for both sides is balanced strategy. Anyone who deviates from its own optimal strategy will damage its own gains and benefit the opponent's.
     (2) Regarding modeling the opponent, the dissertation applies a method of opponent's intention recognition which is based on Hidden Markov Model (HMM). By taking the offensive and defensive condition index, which is discretized from the observed opponent's behavior sequence, as explicit state and the opponent's offensive and defensive time as hidden state, the method respectively trains four Hidden Markov Models when the opponent commits full attack, full defense, common attack and common defense. During a game, observe the change of the opponent's offensive and defensive condition index, which derives from the opponent's offensive and defensive behavior, and calculate the probability values based on the four HMM parameters above. At this time, the maximum probability value refers to the opponent's intention. The validity of the method is verified with experiment results in the dissertaton.
     (3) According to the characteristics of competitive networked robot system, the dissertation refines the multi-source uncertainties existing in the system, including observation uncertainty, execution uncertainty and environmental uncertainty, etc.
     (4) Aiming at the disturbing problems upon system deriving from multi-source uncertainties, the dissertation proposes a hierarchy architecture for the competitive networked robot system. The architecture is divided into strategy layer, execution layer and the physical interface layer. One effect of the strategy layer is to recognize the opponent's intention and analyze the rival level according to its history behaviors. The other one is to assess the current situation based on the circumstance, opponent and one's own states, and to choose corresponding strategy according to the assessment. The execution layer is mainly used to cope with the multi-source uncertainties, and to select the action which may bring the maximum expected gains. The physical interface layer is used to gather information and to provide control method for current robot system such as trajectory planning. The introduction of the layer improves the portability and the extendibility of the system. Finally, the superiority of the architecture is verified with experiment results in the dissertation.
引文
[1]Jingtai Liu, Lei Sun, Tao Chen, et al.Competitive Multi-robot Teleoperation.in:Proceedings of the 2005 IEEE International Conference on Robotics and Automation(ICRA),2005.75-80.
    [2]孙雷.机器人遥操作技术的研究:[博士学位论文].天津:南开大学,2005.
    [3]黄兴博.竞争型网络机器人系统的研究:[博士学位论文].天津:南开大学,2007.
    [4]刘景泰,孙雷,陈涛,等.竞争型遥操作机器人系统的研究.机器人,2005,(01):68-72+89.
    [5]赵晓泮.智能战争—机器人大战离我们有多远.山东:山东教育出版社,2010.
    [6]Sharkey N. Automated Killers and the Computing Profession. Computer,2007,40(11): 124-123.
    [7]Sharkey N. Cassandra or False Prophet of Doom:AI Robots and War. Intelligent Systems, IEEE,2008,23(4):14-17.
    [8]Weiss L. G. Autonomous robots in the fog of war. Spectrum,IEEE,2011,48(8):30-57.
    [9]http://en.wikipedia.org/wikiy Packbot
    [10]Kumagai J. A Robotic Sentry For Korea's Demilitarized Zone. Spectrum, IEEE,2007,44(3): 16-17.
    [11]Ki Sang Hwang, Kyu Jin Park, Do Hyun Kim, et al.Development of a mobile surveillance robot in:International Conference on Control, Automation and Systems,2007.2503-2508.
    [12]Raibert Marc, Blankespoor Kevin, Nelson Gabriel, et al.Bigdog, the rough-terrain quadruped robotin:Proceedings of the 17th World Congress,2008.10823-10825.
    [13]丁良宏,王润孝,冯华山,等.浅析BigDog四足机器人.中国机械工程,2012,23(05):505-514.
    [14]http://en.wikipedia.org/wiki/Guardium
    [15]http://en.wikipedia.org/wiki/Gladiator_Tactical_Unmanned_Ground_Vehicle
    [16]http://en.wikipedia.org/wiki/General_Atomics_MQ-9_Reaper
    [17]Sharkey N. Death strikes from the sky:the calculus of proportionality. Technology and Society Magazine, IEEE,2009,28(1):16-19.
    [18]Davies S. It's war-but not as we know it Engineering & Technology,2009,4(9):40-43.
    [19]Matuszek C., Mayton B., Aimi R., et al.Gambit:An autonomous chess-playing robotic system.in:IEEE International Conference on Robotics and Automation (ICRA),2011.4291-4297.
    [20]Wang Yingshi, Sun Lei, Liu Jingtai, et al.A novel trajectory prediction approach for table-tennis robot based on nonlinear output feedback observer.in:IEEE International Conference on Robotics and Biomimetics (ROBIO),2010.1136-1141.
    [21]Fernandez J., Marin R., Wirz R. Online Competitions:An Open Space to Improve the Learning Process. IEEE Transactions on Industrial Electronics,2007,54(6):3086-3093.
    [22]Aichholzer O., Detassis D., Hackl T., et al.Playing Pylos with an autonomous robot.in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2010.2507-2508.
    [23]Chih-Yung Cheng, Hsin-Yu Liu, Chien-Chou Lo.Toward a Robot Basketball Game.in:33rd Annual Conference of the IEEE Industrial Electronics Society,2007.3013-3017.
    [24]Mackworth A. K.The dynamo project:The world's first robot soccer players.in:IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2012.5442-5443.
    [25]Ong Seng Keong, Omar K.A review of multi-agent systems in building multiple soccer-playing intelligent robots.in:International Conference on Pattern Analysis and Intelligent Robotics (ICPAIR),2011.139-142.
    [26]Hagras H., Ramadan R., Nawito M., et al.A fuzzy based hierarchical coordination and control system for a robotic agent team in the robot Hockey competition.in:IEEE International Conference on Fuzzy Systems (FUZZ),2010.1-8.
    [27]Sang-Hyun Cho, Hang-Bong Kang.Design of an extended robot game framework.in:2nd International Conference on Software Technology and Engineering (ICSTE),2010.367-371.
    [28]Kunz T, Kingston P., Stilman M., et al.Dynamic chess:Strategic planning for robot motion.in:IEEE International Conference on Robotics and Automation (ICRA),2011.3796-3803.
    [29]Xi Ning, Tarn TJ. Stability analysis of non-time referenced Internet-based telerobotic systems. Robotics and Autonomous Systems,2000,32(2):173-178.
    [30]Elhajj I.,Xi N., Fung W. K., et al.Modeling and control of Internet based cooperative teleoperation.in:IEEE International Conference on Robotics and Automation(ICRA),2001.662-667.
    [31]Jingtai Liu, Tao Chen, Lei Sun, et al.Tele-Game:A New Type of Teleoperation.in: Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou,China,2004. 4741-4744.
    [32]Sun Lei, Liu Jingtai, Lu Guizhang, et al.Internet-Based Tele-Game.in:Proceedings of the 5th World Congress on Intelligent Control and Automation. Hangzhou,China,2004.4933-4936.
    [33]刘贞,王祁,丁明理.基于多目标群决策协调技术的WSN移动节点导航方法.机器人,2009,(04):335-341+350.
    [34]李阳铭,孟庆虎,梁华为,等.基于粒子滤波的无线传感器网络辅助同步定位与地图创建方法研究.机器人,2008,30(05):421-427+434.
    [35]邓宏彬,贾云得,刘书华,等.一种基于无线传感器网络的星球漫游机器人定位算法. 机器人,2007,29(04):384-388.
    [36]Li Haifeng, Liu Jingtai, Li Yan, et al.Visual servoing with an uncalibrated eye-in-hand camera.in:29th Chinese Control Conference (CCC),2010.3666-3672.
    [37]Haifeng Li, Jingtai Liu, Yan Li, et al.Visual servo of uncalibrated eye-in-hand system with time-delay compensation.in:8th World Congress on Intelligent Control and Automation (WCICA), 2010.1322-1328.
    [38]LaValle Steven M. Rapidly-Exploring Random Trees:A New Tool for Path Planning.1998.
    [39]Lozano-Perez T. Spatial Planning:A Configuration Space Approach. IEEE Transactions on Computers,1983, C-32(2):108-120.
    [40]LaValle, M. Steven, J. James, et al.Randomized kinodynamic planning.in:IEEE International Conference on Robotics and Automation,1999.473-479.
    [41]卢翔,刘景泰,于凯妍,等.面向竞争型网络机器人的运动目标快速检测.机器人,2011,33(06):658-665+672.
    [42]Zefran M., Kumar V, Croke C. B. On the generation of smooth three-dimensional rigid body motions. IEEE Transactions on Robotics and Automation,1998,14(4):576-589.
    [43]Chun Shin Lin, Po Rong Chang, J. Luh. Formulation and optimization of cubic polynomial joint trajectories for industrial robots. IEEE Transactions on Automatic Control,1983,28(12): 1066-1074.
    [44]X. Broquere, D. Sidobre, I. Herrera Aguilar.Soft motion trajectory planner for service manipulator robot.in:IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS) 2008.2808-2813.
    [45]Bianco C. G. L.Kinematically constrained smooth real-time velocity planning for robotics applications.in:IEEE International Conference on Control and Automation,2009.373-378.
    [46]R. Haschke, E. Weitnauer, H. Ritter.On-line planning of time-optimal, jerk-limited trajectories.in:IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2008. 3248-3253.
    [47]S. Macfarlane, A. Croft E. Jerk-bounded manipulator trajectory planning:design for real-time applications. IEEE Transactions on Robotics and Automation,2003,19(1):42-52.
    [48]Kim Ki Bum, Kim Byung Kook. Minimum-Time Trajectory for Three-Wheeled Omnidirectional Mobile Robots Following a Bounded-Curvature Path With a Referenced Heading Profile. IEEE Transactions on Robotics,2011,27(4):800-808.
    [49]S. Behzadipour, A. Khajepour. Time-optimal trajectory planning in cable-based manipulators. IEEE Transactions on Robotics,2006,22(3):559-563.
    [50]T. Kroger, M. Wahl F. Online Trajectory Generation:Basic Concepts for Instantaneous Reactions to Unforeseen Events. IEEE Transactions on Robotics,2010,26(1):94-111.
    [51]A. Piazzi, A. Visioli.An interval algorithm for minimum-jerk trajectory planning of robot manipulators.in:Proceedings of the 36th IEEE Conference on Decision and Control,1997.1924-1927.
    [52]Huang Panfeng, Chen Kai, Yuan Jianping, et al.Motion Trajectory Planning of Space Manipulator for Joint Jerk Minimization.in:International Conference on Mechatronics and Automation, 2007.3543-3548.
    [53]J. Kyriakopoulos K., N. Saridis GMinimum jerk path generation.in:IEEE International Conference on Robotics and Automation(ICRA),1988.364-369.
    [54]A. Elnagar, M. Hussein A.Acceleration-based optimal trajectory planning in 3D environments.in:IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),1998. 1491-1496.
    [55]F. Amirabdollahian, R. Loureiro, W. Harwin.Minimum jerk trajectory control for rehabilitation and haptic applications.in:IEEE International Conference on Robotics and Automation(ICRA),2002.3380-3385.
    [56]S. Gyorfi J., H. Wu C. A Minimum-Jerk Speed-Planning Algorithm for Coordinated Planning and Control of Automated Assembly Manufacturing. IEEE Transactions on Automation Science and Engineering,2006,3(4):454-462.
    [57]王挺,王越超.非结构环境下基于人机合作技术的抓取作业研究.机器人,2008,(01):7-12.
    [58]和永智,刘伟军,周船,等.轮式移动机器人与地形交互运动仿真研究.机器人,2007,(05):498-504.
    [59]中加刚,董再励,郝颖明,等.排爆作业机器人模拟训练系统研究.机器人,2005,(05):426-430.
    [60]赵迪,李世其,朱文革,等.基于虚拟现实的空间机器人遥操作在维护作业中的应用.航天器工程,2010,(04):92-98.
    [61]于凯妍,刘景泰,卢翔,等.竞争型机器人仿真系统设计与实现.机器人,2011,(06):649-657.
    [62]K. Goldberg, Song Dezhen, Song In Yong, et al.Unsupervised scoring for scalable Internet-based collaborative teleoperation.in:IEEE International Conference on Robotics and Automation(ICRA),2004.4551-4556.
    [63]http://www.tele-actor.net/tele-twister/
    [64]弗登博格,泰勒尔,黄涛,等.博弈论:中国人民大学出版社,2002.
    [65]Yu Lasheng, E. Masabo, C. Mutimukwe.Nash Equilibrium:Better Strategy for Agents Coordination.in:Asia-Pacific Services Computing Conference,2008.795-800.
    [66]Yan Ping, Ding Mingyue, Zhou Cheng-Ping.Game-theoretic route planning for team of UAVs.in:Proceedings of International Conference on Machine Learning and Cybernetics,2004. 723-728.
    [67]周浦城,洪炳镕.基于对策论的群机器人追捕-逃跑问题研究.哈尔滨工业大学学报,2003,(09):1056-1059.
    [68]方宝富,潘启树,洪炳镕,等.多追捕者-单-逃跑者追逃问题实现成功捕获的约束条件.机器人,2012,(03):282-291.
    [69]R. Emery Montemerlo, G. Gordon, J. Schneider, et al.Game Theoretic Control for Robot Teams.in:IEEE International Conference on Robotics and Automation(ICRA),2005.1163-1169.
    [70]杨洋,陈小平.动态不确定环境下的决策:一种分层决策模型.计算机科学,2005,(01):151-154.
    [71]蔡云飞,唐振民,阎岩.一种新的基于SOA的多机器人协作分层体系结构.机器人,2010,(06):805-811.
    [72]何斌,周艳敏,黎明和,等.湿吸仿生爬壁机器人分层控制系统.同济大学学报(自然科学版),2010,(12):1813-1817+1827.
    [73]曹卫华,桂卫华,吴敏,等.一种基于行为的足球机器人双层决策模型.in:第25届中国控制会议.中国黑龙江哈尔滨,2006.4.
    [74]赵逢达,孔令富,李贤善.基于分层结构模型的机器人足球决策系统设计.哈尔滨工业大学学报,2005,(07):933-935.
    [75]柴慧敏.态势估计中的关键技术研究:[博士学位论文]:西安电子科技大学,2009.
    [76]黄玺瑛,赵定海.态势评估研究现状初探.科协论坛(下半月),2009,(04):95-96.
    [77]李长江,李孝安.基于隐马尔可夫模型的机器人足球赛场态势评估.科学技术与工程,2012,(04):789-793.
    [78]张彦铎,彭丽,阂锋.基于条件事件代数的机器人足球比赛态势评估.华中科技大学学报(自然科学版),2011,(S2):268-270.
    [79]王福军,梅卫,王春平,等.基于敌我对抗信息的目标机动态势估计.火力与指挥控制,2010,(09):152-155.
    [80]Kautz Henry, Allen James F.Generalized plan recognition.in:Proceedings of the fifth national conference on artificial intelligence:Philadelphia, PA,1986.86.
    [81]A. Kautz Henry. A formal theory of plan recognition:[Doctoral dissertation]:Bell Laboratories,1987.
    [82]Schmidt Charles F., Sridharan NS, Goodson John L. The plan recognition problem:an intersection of psychology and artificial intelligence. Artificial Intelligence,1978,11(1):45-83.
    [83]Charniak Eugene, Goldman Robert P. A Bayesian model of plan recognition. Artificial Intelligence,1993,64(1):53-79.
    [84]Bui Hung H, Venkatesh Svetha, West Geoff. Policy Recognition in the Abstract Hidden Markov Model. Journal of Artificial Intelligence Research,2002,17:451-499.
    [85]Liao Lin, Patterson Donald J., Fox Dieter, et al. Learning and inferring transportation routines. Artificial Intelligence,2007,171(5-6):311-331.
    [86]David Ball, Gordon Wyeth.Classifying an opponent's behaviour in robot soccer.in: Proceedings of the Australasian Conference on Robotics and Automation:Australian Robotics and Automation Association Inc,2003.
    [87]Ramin Fathzadeh, Vahid Mokhtari, Mohammad Kangavari. Opponent provocation and behavior classification:A machine learning approach. RoboCup 2007:Robot Soccer World Cup Ⅺ, 2008:540-547.
    [88]Iglesias Jose, Ledezma Agapito, Sanchis Araceli. A comparing method of two team behaviours in the simulation coach competition. Modeling Decisions for Artificial Intelligence,2006: 117-128.
    [89]Gal Kaminka, Mehmet Fidanboylu, Allen Chang, et al.Learning the sequential coordinated behavior of teams from observations.in:RoboCup 2002:Robot Soccer World Cup Ⅵ:Springer,2003. 111-125.
    [90]Andreas Lattner, Andrea Miene, Ubbo Visser, et al. Sequential pattern mining for situation and behavior prediction in simulated robotic soccer. RoboCup 2005:Robot Soccer World Cup ⅠⅩ, 2006:118-129.
    [91]Agapito Ledezma, Ricardo Aler, Araceli Sanchis, et al. Predicting opponent actions by observation. RoboCup 2004:Robot Soccer World Cup Ⅷ,2005:286-296.
    [92]Fernando Ramos, Huberto Ayanegui.Discovering tactical behavior patterns supported by topological structures in soccer agent domains.in:Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems:International Foundation for Autonomous Agents and Multiagent Systems,2008.1421-1424.
    [93]Ramin Fathzadeh, Vahid Mokhtari, Morteza Mousakhani, et al.Mining Opponent Behavior: A Champion of RoboCup Coach Competition.in:IEEE 3rd Latin American Robotics Symposium, 2006.80-83.
    [94]Riley Patrick, Veloso Manuela.On behavior classification in adversarial environments. Distributed autonomous robotic systems,2000,4:371-380.
    [95]Riley Patrick, Veloso Manuela. Recognizing probabilistic opponent movement models. RoboCup 2001:Robot Soccer World Cup V,2002:205-245.
    [96]Iglesias Jose Antonio, Ledezma Agapito, Sanchis Araceli.Caos coach 2006 simulation team: An opponent modelling approach.2009.
    [97]Ahmadi Mazda, Lamjiri Abolfazl Keighobadi, Nevisi Mayssam M, et al.Using a two-layered case-based reasoning for prediction in soccer coach.in:Proceedings of the International Conference of Machine Learning,2003.181-185.
    [98]Tamer Basar, Jan Olsder Geert. Dynamic noncooperative game theory.2nd ed. San Diego, California:Academic Press,1995.
    [99]E Bryson Arthur, Chi Ho Yu, M Siouris George. Applied optimal control:Optimization, estimation, and control. IEEE Transactions on Systems, Man and Cybernetics,1979,9(6):366-367.
    [100]H Breitner Michael, Josef Pesch Hans, W Grimm. Complex differential games of pursuit-evasion type with state constraints, part 1:Necessary conditions for optimal open-loop strategies. Journal of Optimization Theory and Applications,1993,78(3):419-441.
    [101]F Shampine Lawrence, Jacek Kierzenka, W Reichelt Mark. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial notes,2000.
    [102]H. Ehtamo, T. Raivio. On Applied Nonlinear and Bilevel Programming or Pursuit-Evasion Games. Journal of Optimization Theory and Applications,2001,108(1):65-96.
    [103]Tuomas Raivio, Harri Ehtamo. On the Numerical Solution of a Class of Pursuit-Evasion Games. In:Filar J, Gaitsgory V, Mizukami K, editors. Advances in Dynamic Games and Applications: Birkhauser Boston; 2000.177-192.
    [104]Brooks Rodney A. A robot that walks; emergent behaviors from a carefully evolved network. Neural computation,1989,1(2):253-262.
    [105]Stone Peter, Sridharan Mohan, Stronger Daniel, et al. From pixels to multi-robot decision-making:A study in uncertainty. Robotics and Autonomous Systems,2006,54(11):933-943.
    [106]Roumeliotis Stergios I, Bekey George A. Distributed'multirobot localization. IEEE Transactions on Robotics and Automation,2002,18(5):781-795.
    [107]Durrant-Whyte Hugh F. An autonomous guided vehicle for cargo handling applications. The International journal of robotics research,1996,15(5):407-440.
    [108]Chuck Thorpe, Hugh Durrant Whyte.Field robots.in:Proceedings of the 10th International Symposium of Robotics Research,2001.
    [109]Williams Stefan, Dissanayake Gamini, Durrant-Whyte Hugh. Towards terrain-aided navigation for underwater robotics. Advanced Robotics,2001,15(5):533-549.
    [110]Zheng Yu, Qian Wen-Han. Coping with the grasping uncertainties in force-closure analysis. The International journal of robotics research,2005,24(4):311-327.
    [111]Bae Ji Hun, S. Arimoto, Y. Yamamoto, et al.Reaching to Grasp and Preshaping of Multi-DOFs Robotic Hand-Arm Systems Using Approximate Configuration of Objects.in:IEEE/RSJ International Conference on Intelligent Robots and Systems,2006.1605-1610.
    [112]Dmitry Berenson, S Srinivasa Siddhartha, J Kuffner James.Addressing pose uncertainty in manipulation planning using task space regions.in:IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS):IEEE,2009.1419-1425.
    [113]Morales Antonio, Chinellato Eris, Fagg Andrew H, et al. Using experience for assessing grasp reliability. International Journal of Humanoid Robotics,2004,1(04):671-691.
    [114]Freek Stulp, Evangelos Theodorou, Jonas Buchli, et al.Leaming to grasp under uncertainty.in:IEEE International Conference on Robotics and Automation (ICRA):IEEE,2011. 5703-5708.
    [115]Hsiao Kaijen, Kaelbling Leslie Pack, Lozano-Perez Tomas.Task-driven tactile exploration.in: Robotics:Science and Systems Conference,2010.
    [116]Berleant Daniel, Anderson Gary T.Decision-making under severe uncertainty for autonomous mobile robots.in:IEEE International Conference on Systems, Man and Cybernetics:IEEE, 2007.2360-2365.
    [117]Moghadasi Mahdi Naser, Haghighat Abolfazl Toroghi, Ghidary Saeed Shiriy.Evaluating markov decision process as a model for decision making under uncertainty environment.in: International Conference on Machine Learning and Cybernetics:IEEE,2007.2446-2450.
    [118]赵传杰,张辉.击剑运动项目技战术特征的理论研究.南京体育学院学报(社会科学版),2009,(03):116-119.
    [119]付全.信息量与认知风格对击剑运动员决策速度、准确性和稳定性的影响:[博士学位论文]:北京体育大学,2004.
    [120]Thrun Sebastian, Burgard Wolfram, Fox Dieter. Probabilistic robotics:MIT press Cambridge, 2005.
    [121]钱堃,马旭东,戴先中,等.预测行人运动的服务机器人POMDP导航.机器人,2010,(01):18-24+33.
    [122]李江洪,韩正之.马尔可夫决策过程自适应决策的进展.控制与决策,2001,(01):7-11.
    [123]范长杰.基于马尔可夫决策理论的规划问题的研究:[博士学位论文]:中国科学技术大学,2008.
    [124]Cassandra Anthony R, Kaelbling Leslie Pack, Kurien James A.Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation.in:IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS):IEEE,1996.963-972.
    [125]陈一民,张云华.基于手势识别的机器人人机交互技术研究.机器人,2009,31(04):351-356.
    [126]Awais M., Henrich D.Human-robot collaboration by intention recognition using probabilistic state machines.in:19th International Workshop on Robotics in Alpe-Adria-Danube Region,2010.75-80.
    [127]Huang Yi Che, Yang Hsiang Ping, Ko Chun Hsu, et al.Human intention recognition for robot walking helper using ANFIS.in:8th Asian Control Conference (ASCC),2011.311-316.
    [128]吴军,黄剑,王永骥.集成运动意图辨识与虚拟现实环境的上肢康复机器人.in:第二十九届中国控制会议.中国北京,2010.7.
    [129]Tambe Milind, Rosenbloom Paul S.RESC:An approach for real-time, dynamic agent tracking.in:International Joint Conference on Artificial Intelligence:DTIC Document,1995.103-111.
    [130]Tambe Milind, Adibi Jafar, Al-Onaizan Yaser, et al. Building agent teams using an explicit teamwork model and learning. Artificial Intelligence,1999,110(2):215-239.
    [131]Rao Anand S, Murray Graeme. Multi-agent mental-state recognition and its application to air-combat modelling. Proceedings of the Workshop on Distributed Artificial Intelligence,1994: 283-304.
    [132]李毅,石纯一.基于BDI的对手Agent模型.软件学报,2002,(04):643-648.
    [133]顿文力,孟庆春,庄晓东.对抗性多机器人系统对手建模的研究.计算机应用研究,2004,(03):53-55.
    [134]王磊,孙增圻.基于行为的多机器人对手意图识别二次估计方法.清华大学学报(自然科学版),2005,(10):127-130.
    [135]薛方正,方帅,徐心和.多机器人对抗系统仿真中的对手建模.系统仿真学报,2005,(09):2138-2141.
    [136]马静.贝叶斯网络的战场作战意图评估方法.西安工业大学学报,2010,(04):397-401.
    [137]王福军,梅卫,王春平,等.基于战术意图的空中目标机动态势估计.电光与控制,2009,(02):51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700