用户名: 密码: 验证码:
11000米ARV总体设计与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于脐带缆的影响,传统ROV的作业范围受到很大限制。AUV的作业范围较大,但不能实现精细定点作业,人工无法及时干预。因此,中船重工七〇二所在国内较早提出了复合型水下机器人(ARV,Autonomous&Remotely-operated Vehicle)的概念。ARV技术是对最新ROV和AUV技术的组合运用,用微细光缆代替传统电缆。这样,ARV既具有AUV大面积水下探测和搜索的功能,又可以通过微细光缆像ROV一样进行手动实时遥控作业。ARV的出现代表了未来深海无人潜水器的一个重要发展方向。
     本文以11000米全海深复合型水下机器人(ARV)的研制攻关为背景,具体研究工作如下:
     (1)11000米ARV总体概念设计
     本文针对ARV在水面和海底之间大深度的上浮下潜以及ARV在深海海底复杂地形下的综合机动与作业两方面的水动力性能,提出了一种双扁平体的ARV总体构型方案。综合考虑光缆对ARV本体水下机动的影响,海面风浪流和母船运动的影响,以及光缆在水下的力学性能、光传输性能,光缆是一次性使用还是可重复的等多方面因素,首次提出了11000米ARV脐带缆概念方案以及全系统布放回收工作流程。
     (2)11000米ARV水动力仿真研究
     根据11000米ARV总体概念方案,本文进行了主体线型及螺旋桨布置方案的设计。在此基础上,采用RNG k模型对ARV进行了水动力数值计算,分析了ARV的相关水动力性能。最后对ARV的运动进行了动力学建模,为后续运动控制算法研究奠定了基础。
     (3)11000米ARV控制技术研究
     本文提出了一种包括人工干预层在内的新型ARV自主控制体系结构,对关键的远距离、高纵深水声通信方案作了初步探讨,并针对水下组合导航、自主避障和运动控制等相关技术分别提出了改进算法,提高了ARV适应水下复杂环境的综合能力。通过数值仿真,初步验证了相关算法的有效性。
     (4)11000米ARV光纤应用技术研究
     由于目前国内尚无成功应用在深海潜器上的微细光缆,本文首次提出了11000米深海主脐带光缆、微细光缆以及被动放线团的设计方案。采用集中质量法建立了深海长距离微细光缆张力模型,计算微细光缆的张力分布,验证了微细光缆的工作安全性。
     (5)11000米ARV的关键技术验证
     为了对11000米ARV部分关键技术进行深入探索,七〇二所先后开展了“海筝Ⅰ型”ARV原理样机和“海筝Ⅱ型”ARV产品的研制工作。通过ARV样机的研制,成功完成了多项重要/关键技术的攻关、试验验证和水下应用。
     综上所述,本文着眼于11000米ARV总体概念设计,较为系统的分析并对11000米ARV关键技术开展了深入的研究工作,并研制了两型ARV试验样机对相关技术进行了试验验证。通过上述研究和技术验证,取得了一批有价值的技术成果,为11000米ARV的研制打下了坚实的技术基础。
The range of traditional ROVs are restricted by umbilical cable largely. Although AUVsare free without tether, they cannot achieve precision fix station operation and timely manualintervention. In order to combine the advantages of ROV and AUV, CSSRC proposed theconcept of ARV (Autonomous&Remotely-operated Vehicle). While the conventional tether isreplaced by micro fiber optic cable, ARV not only can take long range search as AUV, but alsocan be remotely operated like ROV. The appearance of ARV represents an importantdevelopment direction of future deep-sea unmanned vehicle.
     With the background to develop ARV system with full ocean depth, the specific researchwork is shown as follows:
     (1)General concept design
     A double flat overall configuration of11,000meters ARV is chosen after comparison andanalysis with respect to great range of fluctuation between the surface and seafloor as well ascomprehensive maneuvering characteristics and work performance in complicated topographicconditions of bottom. Then, this paper proposes the concept plan of11,000meters ARV’s opticalcable and the launch&recovery procedure of the whole system for the first time through theoverall consideration of the effect on ARV’s underwater maneuvering, the interference caused bysea wave and mothership motion, underwater mechanical property and optical transmissionperformance as well as optical cable’s reusability.
     (2)Hydrodynamic simulation study
     This paper has fromed the body lines and the propeller arrangment at the base of generalconcept design. Then, the RNGk model is used for numerical calculation. Thecorresponding hydrodynamic performance of ARV is also analyzed. Finally, the dynamic modelis established as the foundation for the subsequent motion control algorithm research.
     (3)ARV system control study
     This paper proposes a new hybrid control structure of ARV, including surface manualintervention layer. Then, preliminary discussion on remote and deep hydro-acousticcommunication scheme is made. Besides, with respect to underwater integrated navigation,autonomous obstacle avoidance, motion control, the advanced algorithms are put forward toimprove ARV’s ability of adapting complicated underwater environment. Through numericalsimulation, the related algorithms are verified well.
     (4) Optical cable application technology
     As a result of the fact that optical cable has not been applied successfully in domesticsubmersibles nowadays, the paper put forward the design of11,000meters main tether cable,micro optical cable and passive release clew for the first time. The micro optical cable’s model,established by the method of focus quality can calculate the distribution of strain. According tothe computation of static surface tension, the micro optical cable can perform safely under theoperation condition.
     (5) Experimental verification of key technology
     In order to exploring key techniques of ARV with full depth, the R&D work on “Sea-Kite I”ARV as principle prototype and “Sea-Kite II” ARV are continuously carried out by the CSSRC.Through the research of ARV’s principle prototype, several important/key technologicalbreakthroughs are made. Underwater tests indicate that the performance of ARV’s engineeringprototype is stable, its technology direction is correct and application prospect is wide.
     The thesis begins with the general concept design of the11,000meters ARV, and thenexplores in its key technology. Two experimental prototype have been developed for the keytechnology verification. Through the above research and experimental verification, a series ofvaluable technological achievements are gained, which lays a solid foundation for thedevelopment of ARV at11000m level.
引文
[1] Sandra Toye. Deep Submergence:The Beginnings of ALVIN as a Tool of BasicResearch and Introduction of Featured Speaker Dr. Robert D.Ballard[J].Landmark Achievements of Ocean Sciences.2000
    [2] Murashima T, Aoki T, Tsukioka S, et a1.Thin Cable System for ROV and AUVin JAMSTEC[C]. Proceedings of IEEE/MTS OCEANS2003.1999
    [3] T. Murashima, H. Nakajoh, H. Yoshida. The Development and Sea Trial ofKAIKO7000[C]. In Proceedings of The Fifteenth International Offshore andPolar Engineering Conference.2005
    [4] Andrew D. Bowen, Dana R. Yoerger, Chris Taylor, et a1. The Nereus HybridUnderwater Robotic Vehicle for Global Ocean Science Operations to11,000mDepth[C]. Proceedings of IEEE/MTS OCEANS2008
    [5] Louis L. Whitcomb, Michael V. Jakuba, James C. Kinsey, et a1. Navigationand Control of the Nereus Hybrid Underwater Vehicle for Global Ocean Scienceto11,000m Depth: Preliminary Results[C]. In Proceedings of the FourteenthYale Workshop on Adaptive and Learning Systems.2008
    [6] Barbara Fletcher,Andrew Bowen,et a1. Journey to the Challenger Deep:50Years Later with the Nereus Hybrid Remotely Operated Vehicle[J]. MarineTechnology Society Journal.2009(05)
    [7] B. Fletcher,C. Young,J. Buescher,L. L. Whitcomb,A. Bowen,R. McCabe, and D.Yoerger. Proof of concept demonstration of the hybrid remotely operatedvehicle (HROV) light fiber tether system[J]. In Proceedings of IEEE/MTSOCEANS2008
    [8] V.Yakhot,S.A.Orszag. Renormalization group analysis of turbulenc:1basictheory[J]. Journal of Scientific Computing.1986(01)
    [9] Kato N., Koda S., and Takahashi T. Motions of Underwater Towed System[C].Fifth International Offshore Mechanics and Arctic Engineering Symposium.1986
    [10] S.Huang and D.Vassalos. Snap Loading of Marine Cables[C]. Proceedings ofthe Fourth International Offshore and Polar Engineering Conference.1994(11)
    [11] Huang, S. and Vassalos, D., Analysis of taut-slack marine cable dynamics[J].OMAE1995
    [12] Georgios A.Demetrious. A Hybrid Control Architecture for an AutonomousUnderwater Vehicle[J]. University of Southwestern Louisiana.1998
    [13] Miller D J,Lennox R C. An Object-Oriented Environment for Robot SystemArchitecture[J]. IEEE Control System.1991(02)
    [14] M. Perrier,J.G. Bellingham. Control Software for an Autonomous SurveyVehicle[J]. Technical Report MITSG93-20J. Autonomous Underwater VehicleLaboratory.1994
    [15] J.G. Bellingham,J.W.Bales. Demonstration of a High-Performance, Low-CostAutonomous Underwater Vehicle[C]. Technical Report MITSG93-28. MIT SeaGrant College Program. Autonomous Underwater Vehicle Laboratory.1994
    [16] A. J. Healy,D. B. Marco. Coordinating the Hovering Behaviors of the NPS AUVII Using Onboard Sonar Servoing[C]. Proceeding of the International AdvancedRobotics Programme. The2ndWorkshop on mobile robots for Subsea Environments.1994
    [17] A. J. Healy,D. B. Marco. Evaluation of the Tri-Level Hybrid Control Systemfor NPS PHOENIX Autonomous Underwater Vehicle[C]. Proceedings of theInternational Program Development in Undersea Robotics and IntelligentControl (URIC)-A joint U.S/Portugal Workshop.1995
    [18] Tarun Kanti Podder,Nilanjan Sarkar. Fault-tolerant Control of an AutonomousUnderwater Vehicle under Thruster Redundancy[J]. Robotics and AutonomousSystem.2002(34)
    [19] R.K.Lea,R.Allen. A comparative study of control techniques for an underwaterfight vehicle[J]. System Science.1999(09)
    [20] Giuseppe Conte,Andrea Serrani. Robust control of remotely operatedunderwater vehecle[J]. Automatica.1998(34)
    [21] Cristi R,Papoulias F A. Adaptive Sliding Mode Control of AutonomousUnderwater Vehicles in the Dive Plate[J]. IEEE Oceanic Eng.1990(03)
    [22] Yong K Hwang,Narendra Ahuja. A Potential Field Approach to Path Planning[J].IEEE Transactions on Robotics and Automation.1992(01)
    [23] A.J.Healey,F.Bahrke,J.Navarrete. Failure Diagnostics for UnderwaterVehicles: A Neural Network Approach[J]. Manoeuvring and Control of MarineCraft.1990(02)
    [24] K.Ishii,T.Ura and T.Fujii. A Feed Forward Neural Network for Identificationand Adaptive Control of Autonomous Underwater Vehicles[J]. Proc. IEEE ICNN.1994
    [25] O.Nerrand. Training recurrent neural networks: why and how? An illustrationin dynamical process modeling[J]. IEEE trans.1994(02)
    [26] I.S. Lee,J.T.Kim,J.W.Lee. Model-based fault detection and isolation methodusing ART2neural network[J]. International journal of intelligent systems.2003(18)
    [27] Q.SONG, W.J.HU, L.YIN and Y.C.SOH. Robust adaptive dead zone technology forfault-tolerant control of robot manipulators using neural networks[J].Journal of intelligent and robotic systems.2002(33)
    [28] T.W.Kim and J.Yuh. A novel neuro-fuzzy controller for autonomous underwatervehicles[C]. Proceeding of2001IEEE international conference on robotics&automation.2001
    [29] David A.Smallwood, Louis L.Whitcomb. Adaptive Identification of DynamicallyPositioned Underwater Robotic Vehicles[J]. IEEE on Control SystemsTechnology.2003(04)
    [30] Rob McEwen,Hans Thomas. Performance of an AUV Navigation System at ArcticLatitudes[C]. Oceans2003
    [31] C.Silvestre,A.Pascoal. Depth Control of the INFANTE AUV usingGain-scheduled Reduced Order Output Feedback[C]. Control EngineeringPractice.2007
    [32] Huang Xiong-Fei,Yuan Bing-Cheng. Study of methods of the navigation ofautonomous underwater vehicle based on Doppler velocity log[J]. BinggongXuebao/Acta Armamentarii.2006(01)
    [33] Lee Chong-Moo,Hong Seok-Won. An integrated DVL/IMU system for precisenavigation of an autonomous underwater vehicle[C]. IEEE Oceans ConferenceRecord.2003
    [34] Ikeda Fukaya. Position and attitude control of an underwater vehicle usingvariable constraint control[C]. Transactions of the Society of Instrumentand Control Engineers.2001(12)
    [35] Opderbecke. At-sea calibration of a USBL underwater vehicle positioningsystem[C]. Oceans Conference Record (IEEE).1997(07)
    [36] Brutzman. Software Reference: A Virtual World for an Autonomous UnderwaterVehicle[C]. Naval Postgraduate School.1994
    [37] JC Young. Simultaneous Bidirectional Fiber Optic Data Link for an AutonomousUnderwater Vehicle[C]. Pennsylvania State Univ.1993
    [38] Tobias Damm. State-feedback H∞-type Control of Linear Systems withTime-varying Parameter Uncertainty[J]. Linear Algebra and its Apllications.2002(01)
    [39] Myung H.Kim,Daniel J.Inmam. An on-line adaptive and neural network controlof underwater vehicles[C]. SPIE conference on mobile robots XIV.1999
    [40] Andrew D. Bowen,Dana R. Yoerger,Chris Taylor,et a1. The Nereus HybridUnderwater Robotic Vehicle for Global Ocean Science Operations to11,000mDepth[C]. Proceedings of IEEE/MTS Oceans2008
    [41] James C. Kinsey and Louis L. Whitcomb. In-situ Calibration of Attitude andDoppler Sensors for Precision Underwater Vehicle Navigation[J]. IEEEJournal of Oceanic Engineering,2007(02)
    [42] Stephen C. Martin,Louis L. Whitcomb,Dana Yoerger,Hanumant Singh. MissionController for High Level Control of Autonomous and Semi-Autonomous VehicleOperation[C]. Proceedings of IEEE/MTS Oceans'2006
    [43] C. Young,B. Fletcher,J. Buescher,L.L. Whitcomb,D. Yoerger,A. Bowen,R.Mccabe,M. Heintz,R. Fuhrmann,C. Taylor,R. Elder. Field Tests of the HybridRemotely Operated Vehicle (HROV) Light Fiber Optic Tether[C]. Proceedingsof IEEE/MTS Oceans'2006
    [44] C. Machado. Design Considerations for the11km Hybrid Remotely OperatedVehicle (HROV) Woods Hole Oceanographic Institution's Newest Vehicle[C].Paper and Presentation for SNAME Student Paper.2007
    [45] PHINS USER MANNUL. MU/3457/TIG/001/F. IXSEA.2002
    [46] Cui Weicheng. An Overview of Hadal Science and Technology. Internal Report.2012
    [47] http://www.woodhole.org
    [48] http://www.eca.com
    [49] http://www.saabgroup.com
    [50] http://www.rdinstruments.com
    [51] http://www.ixsea.com
    [52]蒋新松,封锡盛.水下机器人[M].辽宁科学技术出版社.2000
    [53]朱继懋.潜水器设计[M].上海交通大学出版社.1992
    [54]宋伟刚.机器人学[M].科学出版社.2007
    [55]施生达.潜艇操纵性[M].国防工业出版社.1995
    [56]陈厚泰.潜艇操纵性[M].国防工业出版社.1981
    [57]孙元泉,马运义,邓志纯.潜艇和潜水器的现代操纵理论与应用[M].国防工业出版社.2001
    [58]张树侠等.捷联式惯性导航系统[M].国防工业出版社.1992
    [59]王德人.非线性方程组解法与最优化方法[M].人民教育出版社.1979
    [60] Reckten Wald,G.数值方法和Matlab实现与应用[M].机械工业出版社.2004
    [61] M.J.Morgen.近海船舶的动力定位[M].国防工业出版社.1978
    [62]刘伯胜等.水声学原理[M].哈尔滨工程大学出版社.1993
    [63]刘基余. GPS卫星导航定位原理与方法[M].科学出版社.2003
    [64]秦永元,张洪铺,汪叔华.卡尔曼滤波与组合导航原理[M].西北工业大学出版社.1998
    [65]张学孚,陆怡良.磁通门技术[M].国防工业出版社.1995
    [66]江德藩.船用小型陀螺罗经[M].人民交通出版社.1985
    [67]易继揩等.智能控制技术[M].北京工业大学出版社.1999
    [68]田华,蒋慰孙.机器人规划系统[M].上海化工学院自动化研究所.1996
    [69]朱海等.水下导航信息融合技术[M].国防工业出版社.2002
    [70]高为炳.变结构控制的理论与设计方法[M].科学出版社.1998
    [71]廖晓昕.动力系统的稳定性理论和应用[M].国防工业出版社.2000
    [72]崔维成,徐芑南,刘涛,胡震等.“和谐”号载人深潜器的研制[J].舰船科学技术.2008(01)
    [73]吴白军,周怀阳.刍议中国国际深海资源开发中长期发展战略[J].国际海底开发动态.2004(01)
    [74]方银霞,包更生,金翔龙.21世纪深海资源开发利用的展望[J].海洋通报.2000(05)
    [75]崔维成,胡震,叶聪等.深海载人潜水器技术的发展现状与趋势[J].中南大学学报(自然科学版).2011(02)
    [76]沈明学,胡震等.一种新型潜水器HROV及其关键技术综述[J].海洋工程.2006(03)
    [77]张宁.浅谈我国深海载人潜水器的发展趋势及管理体制[J].海洋开发与管理.2008(08)
    [78]刘水庚译.日本载人深潜器的设计研究[J].船舶技术信息.2005(01)
    [79]崔维成,徐芑南,刘涛等.7000m载人潜水器研发简介[J].上海造船.2008(01)
    [80]刘正元,王磊等.国外无人潜器最新进展研究报告[R].中国船舶科学研究中心.2010
    [81]王养柱,崔中兴.捷联式惯性导航系统算法研究[J].中国惯性技术学报.2000(02)
    [82]刘学敏,徐玉如.水下机器人运动的S面控制方法[J].海洋工程.2001(03)
    [83]刘建成,于华男,徐玉如.水下机器人改进S面控制方法[J].哈尔滨工程大学学报.2002(01)
    [84]胡灵斌,唐军.悬链线方程的求解及其应用[J].船舶工程.2004(01)
    [85]易丛. Spar平台系缆张力及垂荡运动响应分析[J].天津大学硕士学位论文.2005
    [86]聂孟喜,王旭升,王晓明.防风水鼓系泊系统系泊力的计算方法[J].水运工程.2003(05)
    [87]聂孟喜,王旭升,张琳.单锚腿系泊系统动力响应的时域计算方法[J].海洋工程.2004(02)
    [88]郝春玲,滕斌.不均匀可拉伸单系缆系统的静力分析[J].中国海洋平台.2003(04)
    [89]沈明学,崔维成,徐玉如,胡震.微细光缆的水下应用研究综述[J].船舶力学.2008(01)
    [90]徐鹏飞,崔维成等.遥控自治水下机器人控制系统[J].中国造船.2010(04)
    [91]彭学伦.水下机器人的研究现状与发展趋势[J].技术应用.2004(04)
    [92]李开生,张慧慧,费仁元,宗光华.机器人控制其体系结构研究的现状和发展[J].机器人.2000(03)
    [93]李殿璞,赵爱民,迟岩.水下机器人运动控制和仿真的数学模型[J].哈尔滨工程大学学报.1997(03)
    [94]吕葵.干涉式光纤陀螺基础性研究[J].上海交通大学博士学位论文.1994
    [95]曾华霖.重力仪的现状及发展[J].物探与化探.1999(04)
    [96]刘光军,袁书明,黄咏梅.海底地形匹配技术研究[J].中国惯性技术学报.1999(01)
    [97]徐玉如,庞永杰,甘永.智能水下机器人技术展望[J].智能系统学报.2006(01)
    [98]熊崴,庄良杰,翁海娜,刘玉峰. INS/ESGM/Doppler组合导航系统中的联合滤波方法[J].中国惯性技术学报.2001(03)
    [99]戴学丰,边信黔.6自由度水下机器人运动轨迹滑模控制[J].计算技术与自动化.2000(02)
    [100]尚游,徐玉如.基于模糊逻辑的智能水下机器人运动控制技术的研究[J].中国第五届机器入学术会议论文集.1997
    [101]彭良,卢迎春,万磊,孙俊岭.水下智能潜器的神经网络运动控制[J].海洋工程.1995(02)
    [102]张铭钧,祝海涛,苗青.水下机器人运动控制神经网络的结构与学习算法[J].哈尔滨工程大学学报.2000(01)
    [103]甘永,孙玉山,万磊.堤坝探测水下机器人运动控制系统的研究[J].哈尔滨工程大学学报.2005(05)
    [104]封锡盛,刘永宽.自治式水下机器人研究开发的现状和趋势[J].高技术通讯.1999(03)
    [105]兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人.1996(06)
    [106]张明开,李龙澍.关于人工势场法局部极小问题的一种解决方法[J].计算机技术与发展.2007(05)
    [107]王肖青,王奇志.传统人工势场法的改进[J].计算机技术与发展.2006(04)
    [108]甘永,王丽荣,刘建成等.水下机器人嵌入式基础运动控制系统[J].机器人.2004(03)
    [109]刘健,于闯,刘爱民.无缆自治水下机器人控制方法研究[J].机器人.2004(01)
    [110]王醒策,张汝波,顾国昌.基于势场栅格法的机器人全局路径规划[J].哈尔滨工程大学学报.2003(02)
    [111]吴小平,冯正平,朱继懋.模糊PID策略在AUV控制中应用[J].舰船科学技术.2007(01)
    [112]王志博. ARV操纵性数值计算及动稳性评估[R].中国船舶科学研究中心.2011
    [113]王磊,杨申申,徐鹏飞,谢俊元.一种新型水下机器人的研究与开发[J].中国造船.2010(01)
    [114]王磊,刘涛,杨申申,徐鹏飞等.深海潜水器ARV关键技术[J].火力与指挥控制.2010(11)
    [115]熊华胜,边信黔,施小成.自治水下机器人深度的鲁棒H∞控制仿真[J].计算机仿真.2007(24)
    [116]许广清.8A4水下机器人控制系统[J].船舶工程.1997(03)
    [117]谢俊元,许广清.遥控水下机器人分布式控制系统[J].机器人.1997(09)
    [118]陈建平.发展我国载人深潜器的几点思考[J].机器人技术与应用.2001(02)
    [119]闫茂德.不确定非线性系统的自适应变结构控制研究[J].西北工业大学博士学位论文.2001
    [120]徐竞清,黄俊峰,李一平.水下机器人通用实时控制软件研究与实现[J].机器人.2003(09)
    [121]杨凌轩,王晓辉.模糊自适应PID控制在载人潜器动力定位中的应用研究[J].船海工程.2004(06)
    [122]辛廷慧.水下地形辅助导航方法研究[J].西北工业大学硕士学位论文.2004
    [123]吴清潇,李硕.基于模型的水下机器人视觉悬停定位技术[J].高技术通讯.2005(10)
    [124]徐鹏飞.小型遥控水下机器人控制系统研制总结报告[R].中国船舶科学研究中心科技报告.2008
    [125]谢木生.卡尔曼滤波在INS/GPS组合导航中的应用研究[J].中南大学硕士学位论文.2013
    [126]吴琪.欠驱动智能水下机器人的三维轨迹跟踪控制方法研究[J].哈尔滨工程大学硕士学位论文.2013
    [127]万磊,崔士鹏等.欠驱动水下机器人航迹跟踪控制[J].电机与控制学报.2013(02)
    [128]王一云,严卫生等.基于滑模变结构控制滤波的水下机器人水平面轨迹跟踪控制[J].计算机测量与控制.2013(02)
    [129]寇贤聪.前视声纳图像目标跟踪系统研究[J].哈尔滨工程大学硕士学位论文.2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700