用户名: 密码: 验证码:
基于等价输入干扰补偿的几类典型系统扰动抑制设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:在电力系统、机械系统等工业过程控制中,外界扰动普遍存在。这些扰动不仅使系统的工作点发生漂移,还会使系统的动态和稳态性能变差。为了抑制扰动对系统的影响,获得良好的鲁棒稳定性和控制性能,许多学者进行了大量的理论和应用研究。然而,现有扰动抑制方法仍存在一定的局限性,例如,控制性能与鲁棒稳定性的折中选择会限制扰动抑制效果;被控对象逆模型的使用易导致不稳定零极点的对消;系统内部耦合参数设计复杂,使控制方法难以实现等。因此,设计更为简便、有效、实用的扰动抑制方法,具有重要的理论和实际意义。
     本文针对几类典型系统,基于等价输入干扰(EID)补偿的思想,综合运用极点配置、多参数优化和Lyapunov二次稳定等方法,对控制系统的扰动抑制设计进行深入的分析和研究,主要研究成果和创新点如下:
     (1)适合非最小相位系统的极点配置扰动抑制方法
     通过分析非最小相位系统的特性,提出一种基于极点配置的扰动抑制方法。建立包含扰动估计器、一般状态观测器(GSO)、状态反馈和内模的控制系统结构。采用GSO估计EID,对观测器与状态反馈增益进行分离设计,应用小增益定理得到系统稳定性条件,进而给出基于极点配置的控制器设计算法。实例仿真表明,该方法对最小相位和非最小相位系统都能获得良好的扰动抑制性能。
     (2)具有时变结构不确定性系统的鲁棒扰动抑制
     在基于EID的控制系统结构中,为了解决不确定性造成控制器参数耦合的问题,针对一类带时变结构不确定性的系统,提出基于EID的鲁棒扰动抑制方法。通过矩阵变换,建立闭环系统的状态空间模型。应用Lyapunov二次稳定方法,以线性矩阵不等式的形式给出系统的鲁棒稳定条件,并进一步得到多参数耦合的控制器设计算法。通过与滑模控制等方法的对比仿真以及电机转速实验,证实该方法在处理不确定性的同时,有效地抑制匹配及不匹配扰动。
     (3)基于参数优化的状态时滞系统扰动抑制方法
     针对一类含有状态时滞的对象,提出基于参数优化的扰动抑制方法。采用时滞观测器重构时滞对象的状态并估计扰动。推导出状态时滞系统稳定化问题的标准模型,进而利用已知的稳定性准则给出系统稳定性条件及多参数优化控制器设计算法。通过与已有方法的仿真对比,显示出所提方法能够处理时滞并有效地抑制任意形式的外界扰动。
     (4)不确定重复控制系统的非周期鲁棒扰动抑制
     重复控制系统常会受到周期及非周期扰动同时作用的影响。针对带时变不确定性的严真对象,提出重复控制系统非周期鲁棒扰动抑制方法。将基于EID的扰动估计器引入重复控制系统,建立改进型重复控制系统结构及状态空间模型,应用Lyapunov二次稳定方法推导出系统鲁棒稳定条件及多参数耦合控制器设计方法。该方法通过重复控制器跟踪周期参考输入,利用扰动估计器抑制未知的周期及非周期扰动。通过与现有方法的对比仿真验证方法优良的特性。
     (5)基于扰动补偿的多变量系统解耦控制方法
     针对带未知扰动的多变量系统,提出一种基于扰动补偿的解耦控制方法。将系统每个回路中不必要的耦合部分以及外部扰动均看作加在该回路的“扰动”,再利用基于EID的方法对这些扰动进行主动补偿。给出等效单回路的稳定性条件及控制器设计方法,使得各回路的参数可以分别独立设计。通过实例仿真验证方法良好的解耦控制效果及扰动抑制性能。
Abstract:External disturbances are often encountered in industrial process control, such as electric power systems and mechanical systems. These disturbances cause not only the movement of the working point, but also bad dynamic and steady-state performance of the system. In order to reject the disturbances and to achieve good control performance, researchers have made a great effort on the study of theories and applications. However, there are still some drawbacks in the existing methods. For example, the trade-off between the control performance and the robust stability restricts the disturbance rejection effect; the inverse model of the plant may cause cancelation of unstable zeros and poles; some methods are difficult to realize due to the complexity of the coupling parameters design in the system. So, it is significant to find a simple, effective and practical disturbance rejection method.
     This paper focuses on the disturbance rejection problem for some typical systems based on the idea of the equivalent-input-disturbance (EID). Some methods are applied in this study, such as the pole placement method, multi-parameter optimization and Lyapunov quadratic stability (LQS) method. The main results and the contributions are listed as follows.
     (1) A disturbance rejection method for non-minimum-phase plants based on the pole placement
     A disturbance rejection method is presented based on the pole placement by analyzing the characteristics of a non-minimum-phase plant. The configuration of the system contains a disturbance estimator, a generalized state observer (GSO), a state feedback and an internal model. The GSO is employed to estimate the EID. The gains of the state feedback and the observer are designed separately. The stability condition is derived using the small-gain theorem and a controller design algorithm is further developed based on the pole placement method. Simulation results demonstrate that the presented method achieves good disturbance rejection performance for both minimum-and non-minimum-phase plants.
     (2) Robust disturbance rejection for a system with time-varying structured uncertainties
     To solve the problem of parameters coupling in the configuration of the control system, an EID-based robust disturbance rejection method is presented for a system with time-varying structured uncertainties. A state-space model of the closed-loop system is derived using matrix transformation. The robust stability condition is presented in the form of an LMI using the LQS method. A parameter coupling design algorithm is further given for the controller design. Simulations and an experiment of a rotational-speed control system demonstrate that the method handles modeling uncertainties and rejects both matched and unmatched disturbances effectively.
     (3) Disturbance rejection for state time-delay systems based on the parameter optimization
     A disturbance rejection method is presented for a state time-delay plant based on the parameter optimization. The time-delay observer is employed to reconstruct the state of the plant and to actively estimate the disturbances. A standard model for the stability problem of the time-delay system is derived. Then a stability condition and a parameter optimal design algorithm are given using a known stability criterion. Comparison simulations to the sliding-mode method demonstrate that the method handles time-delay and rejects any external disturbance effectively.
     (4) Aperiodic robust disturbance rejection for uncertain repetitive control systems
     A repetitive control system (RCS) is often affected by both periodic and aperiodic disturbances. For an RCS that contains a strictly proper plant with time-varying uncertainties, an aperiodic robust disturbance rejection method is presented. An EID-based estimator is introduced into the RCS to yield a modified RCS. A robust stability condition for the system and a parameter coupling design for the controller are presented using the LQS method. In this system, the repetitive controller ensures tracking of a periodic reference input, and the disturbance estimator enables rejection of both unknown periodic and aperiodic disturbances. Simulation results demonstrate good performance of the method.
     (5) Decoupling control for multivariable systems based on the disturbance compensation
     A decoupling control method is presented for multivariable systems with disturbances based on the disturbance compensation. In this method, the undesirable coupling part in one loop is treated as the "disturbance" imposed on this loop. Then the "disturbance" and external disturbances are actively compensated for using the EID approach. The stability condition and controller design are given for each equivalent single loop. The control parameters in each loop can be designed independently. A practical example demonstrates good performance for both the decoupling control and the disturbance rejection.
引文
[1]A. J. Hamer, G. Z. Angelis, N. B. Roozen. Broad-band active vibration suppression using PPF focused on industrial application [J]. IEEE/ASME Transactions on Mechatronics.2005,10 (2):146-153.
    [2]S. S. Mulgund, R. F. Stengel. Optimal nonlinear estimation for aircraft flight control in wind shear [J]. Automatica,1996,32 (1):3-13.
    [3]K-H Shin, S-O Kwon, S-H Kim, S-H Song, Feedforward control of the lateral position of a moving web using system identification [J]. IEEE Transactions on Industry Applications,2004,40 (6):1637-1643.
    [4]S. Bittanti, F. A. Cuzzola. Periodic active control of vibrations in helicopters:a gain-scheduled multi-objective approach [J]. Control Engineering Practice, 2002,10(10):1043-1057.
    [5]W. Wang, G.-Y. Tang. Feedback and feedforward optimal control for offshore jacket platforms [J]. China Ocean Engineering,2004,18 (4):515-526.
    [6]K. Chang, I. Shim, G. Park. Adaptive repetitive control for an eccentricity compensation of optical disk drives [J]. IEEE Transactions on Consumer Electronics,2006,52 (2):445-450.
    [7]周克敏,J. C. Doyle, K. Glover著,毛剑琴,钟宜生,林岩等译.鲁棒与最优控制[M].北京:国防工业出版社,2002.
    [8]F. Blanchini, M. Sznaier. Persistent disturbance rejection via static-state feedback [J]. IEEE Transactions on Automatic Control.1995,40 (6):1127-1131.
    [9]L. Chisci, J. A. Rossiter, G. Zappa. Systems with persistent disturbances: predictive control with restricted constraints [J]. Automatica,2001,37 (7):1019-1028.
    [10]Y. X. Su, B. Y. Duan. Disturbance-rejection high-precision motion control of a stewart platform [J]. IEEE Transactions on Control Systems Technology,2004, 12 (3):364-374.
    [11]胡寿松.自动控制原理[M].第四版.北京:科学出版社,2000.
    [12]W. H. Bode, Network analysis and feedback amplifier design [M]. New York: Van Nostrand,1945.
    [13]G. Zames. Feedback and optimal sensitivity:Model reference transform-actions, multiple plicative semi norms and approximate inverses [J]. IEEE Transactions on Automatic Control,1981,26 (4):301-320.
    [14]J. Doyle, Analysis of feedback systems with structured uncertainties [C]. IEE Proceedings, Part D,1982,133,45-56.
    [15]J. Doyle, K. Glover, P. P. Khargonekar, B. A. Francis. State-space solutions to standard H2 and H∞ control problems [J]. IEEE Transactions on Automatic Control,1989,34 (8):831-847.
    [16]T. Iwasaki, R. E. Skelton. All controllers for the general H∞, control problem: existence conditions and state space formula [J]. Automatica,1994,30 (8): 1307-1317.
    [17]J. Doyle. Analysis of feedback systems with structured uncertainties [J]. IEE Control Theory and Applications,1982,129 (6):242-250.
    [18]B. A. Francis, W. M. Wonham. Internal model principle of control theory [J]. Automatica,1976,12 (5):457-465
    [19]傅勤,曲文波,杨成梧.带有界扰动的一类非线性系统的鲁棒控制[J].自动化学报,2007,33(11):1209-1210.
    [20]T. Liu, F. Gao. New insight into internal model control filter design for load disturbance rejection [J]. IET Control Theory and Applications,2010,4 (3), 448-460.
    [21]J. Huang, W. J. Rugh. On a nonlinear multi-variable servomechanism problem [J], Automatica.1990,26(6):963-972.
    [22]唐功友,张勇.一类不确定性非线性网络控制系统的扰动抑制[J]..控制与决策,2008,23(9):1055-1060.
    [23]C. I. Bymes, A. Isidori. Output regulation for nonlinear systems:all overview [J]. International Journal of Robust and Nonlinear Control,2000,10 (5):323-337.
    [24]A. Isidori, C. I. Bymes Output regulation of nonlinear systems [J]. IEEE Transactions on Automatic Control,1990,35 (2):131-140.
    [25]A. Isidori. A remark on the problem of semiglobal nonlinear output regulation [J]. IEEE Transactions on Automatic Control,1997,42(12):1734-1738.
    [26]M. Yasuda, T. Osaka, M. Ikeda. Feedforward control of a vibration isolation system for disturbance suppression [C]. Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan,1996:1229-1233.
    [27]A. Pawlowski, J. L. Guzman, J. E. Normey-Rico, M. Berenguel. Improving feedforward disturbance compensation capabilities in generalized predictive control [J]. Journal of Process Control,2012,22 (3):527-539.
    [28]G. M. Clayton, S. Tien, K. K. Leang, Q. Zou, S. Devasia. A review of feedforward control approaches in nanopositioning for high-speed SPM [J]. Journal of Dynamic Systems, Measurement, and Control,2009,131 (1):1-19.
    [29]A. Lindquist, V. A. Yakubovich. Optimal damping of forced oscillations in discrete-time systems [J]. IEEE Transactions on Automatic Control,1997,42 (6): 786-802.
    [30]P. Krishnamurthy, F. Khorrami, Feedforward systems with ISS appended dynamics:adaptive output-feedback stabilization and disturbance attenuation [J]. IEEE Transactions on Automatic Control,2008,5(1):405-412.
    [31]G. Y. Tang. Feedback and feedforward optimal control for linear systems with sinusoidal disturbance [J]. High Technology Letters,2001,7 (4):16-19.
    [32]李超,时滞系统的最优跟踪与无静差扰动抑制研究[D],青岛,中国海洋大学,2007.
    [33]G. Y. Tang, D. X. Gao. Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances [J]. Nonlinear Analysis, Theory, Methods and Applications,2007,66 (2):403-414.
    [34]K. D. Young, V. I. Utkin, D. Ozgiiner. A control engineer's guide to sliding mode control [J]. IEEE Transactions on Control Systems Technology,1999,7 (3):328-342.
    [35]K. C. Veluvolu, Y. C. Soh, W. Gao. Robust discrete-time nonlinear sliding mode state estimation of uncertain systems [J]. International Journal of Robust Nonlinear Control,2007,17 (9):803-828.
    [36]X. D. Li, Tommy W. S. Chow, John K. L. Ho. Quasi-sliding mode based repetitive control for nonlinear continuous-time systems with rejection of periodic disturbances [J]. Automatica,2009,45 (1):103-108.
    [37]V. Utkin, L. Hoon. Chattering problem in sliding mode control systems [C]. International Workshop on Variable Structure Systems, Alghero, Sardinia,2006: 346-350.
    [38]Y. Xia, M. Fu, P. Shi, M. Wang. Robust sliding mode control for uncertain discrete-time systems with time delay [J]. IET Control Theory and Applications, 2010,4(4):613-624.
    [39]J. Yang, S. Li, X. Yu. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer [J]. IEEE Transactions on Industrial Electronics,2013,60 (1):160-169.
    [40]金鸿章,罗延明,肖真.滑模抖振的新型饱和函数法研究[J].哈尔滨工程大学学报,2007,28(3):288-291.
    [41]C. C. Cheng, M. H. Lin, J. M. Hsiao. Sliding mode controllers design for linear discrete-time systems with matching perturbations [J]. Automatica,2000,36 (11):1205-1211.
    [42]B. S. Park, S. J. Yoo, J. B. Park, Y. H. Choi, Adaptive neural sliding mode control of non-holonomic wheeled mobile robots with model uncertainty [J]. IEEE Transactions on Control Systems Technology,2009,17(1):207-214.
    [43]R. J. Wai, L. J. Chang. Adaptive stabilizing and tracking control for a nonlinear inverted pendulum system via sliding-mode technique [J]. IEEE Transactions on Industrial Electronics,2006,53 (2):674-692.
    [44]A. J. Koshkouei, A. S. I. Zinober, K. J. Burnham. Adaptive sliding mode backstepping control of nonlinear systems with unmatched uncertainty [J]. Asian Journal of Control,2004,6 (4):447-453.
    [45]T. Mita, M. Hirata, K. Murata, H. Zhang. H∞ control versus disturbance-observer based control [J]. IEEE Transactions on Industrial Electronics,1998, 45 (3):488-495.
    [46]S. Komada, N. Machii, T. Hori. Control of redundant manipulators considering order of disturbance observer [J]. IEEE Transactions on Industrial Electronics, 2000,47 (2):413-419.
    [47]S. P. Chan. A disturbance observer for robot manipulators with application to electronic components assembl [J]. IEEE Transactions on Industrial Electronics, 1995,42 (5):487-493.
    [48]Y. Oh, W. K. Chung. Disturbance-observer based motion control of redundant manipulators using intertially decoupled dynamic [J]. IEEE/ASME Transactions on Mechatronics,1999,4(2):133-146.
    [49]J. Yang, W. H. Chen, S. Li. Nonlinear disturbance observer based robust control for systems with mismatching disturbances/uncertainties [J]. IET Control Theory and Applications,2011,5 (18):2053-2062.
    [50]S. Li, J. Yang, W. H. Chen. X. Chen. Generalized extended state observer based control for systems with mismatched uncertainties [J]. IEEE Transactions on Industrial Electronics,2012,59 (12):4792-4802.
    [51]X. K. Chen, T. Fukuda, K. D. Young. A new nonlinear robust disturbance observer [J]. Systems & Control Letters,2000,41 (3):189-199.
    [52]W. H. Chen. Harmonic disturbance observer for nonlinear systems [J]. Journal of Dynamic Systems, Measurement and Control,2003,125 (1):114-117.
    [53]Y. Choi, K. Yang, W. K. Chung, H. R. Kim, I. H. Suh. On the robustness and performance of disturbance observers for second-order systems [J]. IEEE Transactions on Automatic Control,2003,48 (2):315-320.
    [54]K. J. Yang, Y. J. Choi, W. K. Chung. On the tracking performance improvement of optical disk drive servo systems using error-based disturbance observer [J]. IEEE Transactions on Industrial Electronics,2005,52 (1):270-278.
    [55]L. Ding, J. C. Fang, T. Wei. Disturbance-rejection method of magnetic suspension rotor based on disturbance observer [J]. Bearing,2009,8 (3):6-9.
    [56]W. H. Chen, D. J. Ballance, P. J. Gawthrop, J. O. Reilly. Nonlinear disturbance observer for robotic manipulators [J]. IEEE Transactions on Industrial Electronics,2000,47 (4):932-938.
    [57]B. K. Kim, W. K. Chung. Advanced disturbance observer design for mechanical positioning systems [J]. IEEE Transactions on Industrial Electronics,2003,50 (6):1207-1216.
    [58]S-H. Lee, H. J. Kang, C. C. Chung. Robust fast seek control of a servo track writer using state space disturbance observer [J]. IEEE Transactions on Control Systems Technology,2012,20 (2):346-355.
    [59]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策.1995,10(1):85-88.
    [60]韩京清.自抗扰控制器及其应用[J].控制与决策.1998,13(1):19-23.
    [61]J. Han. From PID to active disturbance rejection control [J]. IEEE Transactions on Industrial Electronics,2009,56 (3):900-906.
    [62]Y. Xia, P. Shi, G. P. Liu, D. Rees, J. Han. Active disturbance rejection control for uncertain multivariable systems with time-delay [J]. IET Control Theory and Applications,2007,1 (1):75-81.
    [63]李乔,吴捷.自抗扰控制器及其在DC-DC变换器中的应用[J].电工技术学报,2005,20(1):83-88
    [64]Q. Zheng, L. L. Dong, D. H. Lee, Z. Q. Gao. Active disturbance rejection control for MEMS gyroscopes [C]. Proceedings of the 2008 America Control Conference, Washington, USA,2008:4425-4430.
    [65]Y. X. Su, C. H. Zheng. Active disturbances rejection controller for precise motion control of permanent magnet synchronous motor [J]. IEEE Transactions on Industrial Electronics,2005,52 (3):133-139.
    [66]Y. Xia, B. Liu, M. Fu. Active disturbance rejection control for power plant with a single loop [J]. Asian Journal of Control,2012,14 (1):239-250.
    [67]Y. Xia, L. Dai, M. Fu, C. Li, C. Wang. Application of active disturbance rejection control in tank gun control system [J]. Journal of the Franklin Institute, 2014,351 (4):2299-2314.
    [68]S. Li, X. Yang, D. Yang. Active disturbance rejection control for high pointing accuracy and rotation speed [J]. Automatica,2009,45 (8):1854-1860.
    [69]Q. Zheng, Z. Gao. On practical applications of active disturbance rejection control [C]. Proceedings of the 29th Chinese Control Conference, Beijing, China, 2010:6095-6100.
    [70]Z. Gao. Active disturbance rejection control:a paradigm shift in feedback control system design [C]. Proceedings of the American Control Conference, Minneapolis, MN,2006:2399-2405.
    [71]S. F. Graebe. Robust and adaptive control of an unknown plant:A benchmark of new format [J]. Automatica,1994,30 (4):567-575.
    [72]A. Ilchmann, E. P. Ryan. On tracking and disturbance rejection by adaptive control [J]. Systems & Control Letters,2004,52 (2):137-147.
    [73]T. Yucelen, W. M. Haddad, A. J. Calise. Output feedback adaptive command following for nonminimum phase uncertain dynamical systems [C]. Proceedings of the American Control Conference, Baltimore, USA,2010:123-128.
    [74]王中生,廖晓昕.一类带时滞状态扰动系统的自适应鲁棒镇定[J].控制理论与应用,2004,21(5):809-811.
    [75]J. Levin, N. O. Perez Arancibia, P. A. Ioannou, T. C. Tsao. Adaptive disturbance rejection for disk drives using neural networks [C]. Proceedings of the American Control Conference, Washington, USA,2008:2993-2998.
    [76]B. K. Choi, C. H. Choi, H. Lim. Model-based disturbance attenuation for CNC machining centers in cutting process [J]. IEEE/ASME Transactions on Mechatronics,1999,4 (2):157-168.
    [77]G. Q. Liu, Q. D. Guo. Model-based disturbance attenuation for linear motor servo system [C]. IEEE 5th International Power Electronics and Motion Control Conference, Shanghai, China,2006:1-3.
    [78]C. H. Choi, N. Kwak. Robust control of robot manipulator by model-based disturbance attenuation [J]. IEEE/ASME Transactions on Mechatronics,2008,8 (4):511-513.
    [79]郭庆鼎,张凤,王飞.基于模型扰动抑制的直线伺服系统设计[J].电工技术学报,2008,16(5):83-86.
    [80]高兴泉,陈虹.基于T-S模型的轮式移动机器人轨迹跟踪控制[J].控制理论与应用,2007,24(6):873-878.
    [81]M. Sugeno, G. T. Kang. Fuzzy modeling and control of multilayer incinerator [J]. Fuzzy Sets and Systems,1986,18 (3):329-346.
    [82]钱俊磊,马晓峰,杨志刚.混沌系统基于T-S模糊模型的控制方法[J].系统仿真学报,2005,17(12):2987-2990.
    [83]F. Mei, Z. Man, T. Nguyen. Fuzzy modeling and tracking control of nonlinear systems [J]. Mathematical and Computer Modeling,2001,33 (6-7):759-770.
    [84]S. H. Tan, Y. Yu. Adaptive fuzzy modeling of nonlinear dynamical systems [J]. Automatica,1996,32 (4):637-643.
    [85]赖永波,屈百达.多时滞不确定系统的模糊保性能H∞控制[J].控制工程,2007,14(3):252-255.
    [86]G. Lietmann, S. Pandey, E. Ryan. Adaptive control of aircraft in wind shear [J]. International Journal of Robust and Nonlinear Control,1993,3 (2):133-153.
    [87]J. Yi, S. Chang, Y. Shen. Disturbance-observer-based hysteresis compensation for piezoelectric actuators [J]. IEEE/ASME Transactions on Mechatronics.2009, 14 (4):456-464.
    [88]H. Ma, G. Y. Tang, Y. D. Zhao. Feedforward and feedback optimal control for offshore structures subjected to irregular wave forces [J]. Ocean Engineering, 2006,33 (8-9):1105-1117.
    [89]M. T. White, M. Tomizuka. Increased disturbance rejection in magnetic disk drives by acceleration feedforward control and parameter adaptation [J]. Control Engineering Practice,1997,5 (6):741-751.
    [90]M. J. Grimble. LQG feedforward/feedback stochastic optimal control and marine application [J]. Transactions of the Institute of Measurement and Control, 1999,21 (1):30-48.
    [91]B. A. Francis, W. M. Wonham. Internal model principle for linear multivariable regulators [J]. Applied Mathematics and Optimization,1975,2 (2):170-194.
    [92]解学书.最优控制理论与应用[M].北京:清华大学出版社,1986.
    [93]C-H. Lien. Robust observer-based control of systems with state perturbations via LMI approach [J]. IEEE Transactions on Automatic Control,2004,49 (8):1365-1370.
    [94]C. S. Liu, H. Peng. Inverse-dynamics based state and disturbance observers for linear time-invariant system [J]. Journal of Dynamic Systems, Measurement, and Control,2002,124 (3):375-381.
    [95]V. I. Utkin, Sliding Modes in Control and Optimizations [M]. Springer-Verlag, Berlin, Germany,1992.
    [96]X. S. Wang, C. Y. Su, H. Hong. Robust adaptive control of a class of nonlinear systems with unknown dead-zone [J]. Automatica,2004,40 (3):407-413.
    [97]T. V. Dang, W. J. Wang, L. Luoh, C. H. Sun. Adaptive observer design for the uncertain Takagi-Sugeno fuzzy system with output disturbance [J]. IET Control Theory and Applications,2012,6 (10):1351-1366.
    [98]俞立,鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002.
    [99]J. She, M. X. Fang, Y. Ohyama, H. Kobayashi, M. Wu. Improving disturbance-rejection performance based on an equivalent-input-disturbance approach [J]. IEEE Transactions on Industrial Electronics,2008,55 (1):380-389.
    [100]J. She, X. Xin, T. Yamaura. Analysis and design of control system with equivalent-input disturbance Estimation [C]. Proceedings of the 2006 IEEE International Conference on Control Applications, Germany, October,2006: 1463-1469.
    [101]J. She, X. Xin, Y. Pan. Equivalent-input-disturbance approach--Analysis and application to disturbance rejection in dual-stage feed drive control system [J]. IEEE/ASME Transactions on Mechatronics,2011,16 (2):330-340.
    [102]方明星,吴敏,佘锦华.基于等价输入干扰补偿的直流电机定位控制[J].仪器仪表学报,2009,30(9):1801-1810.
    [103]胡文金,周东华.基于输入等价干扰的DC-DC变换器自适应控制[C].第二十七届中国控制会议,2008,7:38-42.
    [104]L. R. Hunt, G. Meyer, R. Su. Noncausal inverses for linear systems [J]. IEEE Transactions on Automatic Control,1996,41 (4):608-611.
    [105]J. She, X. Xin, Y. Ohyama. Estimation of equivalent input disturbance improves vehicular steering control [J]. IEEE Transactions on Vehicular Technology,2007,56 (6):3722-3731.
    [106]纪志成,常军.基于等价输入干扰估计器的永磁同步电机无速度传感器控制水[J].仪器仪表学报,2009,30(10):2139-3143.
    [107]M. X. Fang, M. Wu, J. H. She. Active structural control based on the concept of equivalent input disturbance [J]. Recent advances in Control Systems, Robotics and Automation,2009,1 (2):84-89.
    [108]J. She, A. Zhang, X. Lai, M. Wu. Global stabilization of 2-DOF underactuated mechanical systems-An equivalent-input-disturbance approach [J]. Nonlinear Dynamics.2012,69 (1):495-509.
    [109]A. Zhang, J. She, X. Lai, M. Wu. Global stabilization control of Acrobot based on equivalent input disturbance approach [C]. Proceedings of the 18th IF AC World Congress,2011, Milano, Italy,14596-14601.
    [110]H. Y. Yue, J. M. Li. Adaptive fuzzy dynamic surface control for a class of perturbed nonlinear time-varying delay systems with unknown dead-zone [J]. International Journal of Automation and Computing,2012,9 (5):545-554.
    [111]S. Skoczowski, S. Domek, K. Pietrusewicz. A method for improving the robustness of PID control [J]. IEEE Transactions on Industrial Electronics, 2005,52(6):1669-1676.
    [112]J.-L. Chang. Applying discrete-time proportional integral observers for state and disturbance estimations [J]. IEEE Transactions on Automatic Control, 2006,51(5):814-818.
    [113]Q. H. Ngo, K. S. Hong. Sliding-mode antisway control of an offshore container crane [J]. IEEE/ASME Transactions on Mechatronics,2012,17 (2):201-209.
    [114]R-J. Liu, M. Wu, G-P. Liu, J. She. Active disturbance-rejection control based on an improved equivalent-input-disturbance approach [J]. IEEE/ASME Transactions on Mechatronics,2013,18 (4):1410-1413.
    [115]K-P. Lou, M. Wu, R-J. Liu, Y. He, J. She, Equivalent-input-disturbance controller design using a general structured state observer [C]. Proceedings of the 30th Chinese Control Conference,2011, Yantai, China,3814-3818.
    [116]郑大钟.线性系统理论(第二版)[M],北京:清华大学出版社,2003.
    [117]G. Zames. Functional analysis applied to nonlinear feedback systems [J]. IEEE Transactions on Circuits and Systems,1963,10 (3):392-404.
    [118]A. Wu, G. Duan, H. Yu. On solutions of the matrix equations XF-AX= C and XF-AX*=C [J]. Applied Mathematics and Computation.2006,183 (2):932-941.
    [119]B. D. O. Anderson, J. B. Moore. Optimal control:linear quadratic methods [M]. Englewood Cliffs, NJ:Prentice-Hall,1989.
    [120]J. Lin, B. Tho. Analysis and μ-Based Controller Design for an Electromagnetic Suspension System [J]. IEEE Transactions on Education,1998,41 (2):116-129.
    [121]吴敏,何勇,佘锦华.鲁棒控制理论[M],北京:高等教育出版社,2010.
    [122]Z-Y. Nie, Q-G. Wang, M. Wu, Y. He. Tuning of multi-loop PI controllers based on gain and phase margin specifications [J]. Journal of Process Control. 2011,21(9):1287-1295.
    [123]H. S. Sane, R. Venugopal, D. S. Bernstein. Disturbance rejection using self-fining AR-Markov adaptive control with simultaneous identification [C]. Proceedings of the American Control Conference, San Diego, CA,1999:2040-2044.
    [124]K. C. Veluvolu, D. Lee. Sliding mode high-gain observers for a class of uncertain nonlinear systems [J]. Applied Mathematics Letters,2011,24 (3): 329-334.
    [125]R-J. Liu, G-P. Liu, M. Wu, F-C. Xiao, J. She. Robust disturbance rejection based on the equivalent-input-disturbance approach [J]. IET Control Theory and Applications,2013,7 (9):1261-1268.
    [126]Y. C. Tian, F. Gao. Double-controller scheme for control of processes with dominant delay [J]. IEE Control Theory and Applications,1998,145 (5):479-484.
    [127]P. P. Khargonek, I. R. Petersen, K. Zhou. Robust stabilization of uncertain linear systems:quadratic stabilizability and H∞ control theory [J]. IEEE Transactions on Automatic Control,1990,35 (3):356-361.
    [128]D. W. C. Ho, G. Lu. Robust stabilization for a class of discrete-time nonlinear system via output feedback:the unified LMI approach [J]. International Journal of Control,2003,76 (7):105-115.
    [129]V. A. Yakubovich. S-procedure in nonlinear control theory [J]. Vestnik Leningrad University,1971,4:73-93.
    [130]Googoltech, GT400-SV User's Guide [EB/OL] Googol Technology Limited, 2009.
    [131]J. P. Richard. Time-delay system:an overview of some recent advances and open problems [J]. Automatica,2003,39 (10):1667-1694.
    [132]O. J. M. Smith. A controller to overcome dead time [J]. ISA Journal of Instrument Society of America,1959,6:28-33.
    [133]P. Garcia, P. Albertos. A new dead-time compensator to control stable and integrating processes with long time [J]. Automatica,2008,44 (4):1062-1071.
    [134]J. Hu, Z. Wang, H. Gao, L. K. Stergioulas. Robust H∞ sliding mode control for discrete time-delay systems with stochastic nonlinearities [J]. Journal of the Franklin Institute,2012,349 (4:1459-1479.
    [135]V. L. Kharitonov, A. P. Zhabko. Lyapunov-Krasovskii approachto the robust stability analysis of time-delay systems [J]. Automatica,2003,39 (1):15-20.
    [136]W. D. Zhang, Y. X. Sun, X. M. Xu. Two degree-of-freedom Smith predictor for processes with time delay [J]. Automatica,1998,34 (10):1279-1282.
    [137]Z. Li, Y. Xia, X. Cao. Adaptive control of bilateral teleoperation with unsymmetrical time-varying delays [J]. International Journal of Innovative Computing, Information and Control,2013,9 (2):753-767.
    [138]S. Zhao, Z. Gao. Modified active disturbance rejection control for time-delay systems [J]. ISA Transactions, (in press).
    [139]H. W. Gao, G. Y. Tang, C. Li. Optimal disturbance rejection with zero steady-state error for time-delay systems [C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China,2006:511-515.
    [140]J. Yang, S. Li, X. Chen, Q. Li. Disturbance rejection of dead-time processes using disturbance observer and model predictive control [J]. Chemical Engineering Research and Design,2011,89 (2):125-135.
    [141]J. Leyva-Ramos, A.E. Rearson. An asymptotic modal observer for linear autonomous time lag systems [J]. IEEE Transactions on Automatic Control, 1995,40(7):1291-1294.
    [142]R-J. Liu, G-P. Liu, M. Wu, Z-Y. Nie. Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach [J]. Journal of the Franklin Institute,2014,351 (6),3364-3377.
    [143]Y. Sun, A.G. Ulsoy, P.W. Nelson. Design of observer-based feedback control for time-delay systems with application to automotive powertrain control [J]. Journal of the Franklin Institute,2010,347 (1):358-376.
    [144]J. D. Chen. Robust H∞ output dynamic observer-based control of uncertain time-delay systems [J]. Chaos, Solitons and Fractals,2007,31 (2):391-403.
    [145]K. Gu, V. L. Kharitonov, J. Chen. Stability of time-delay systems (Control Engineering) [M]. New York:Springer-Verlag,2003.
    [146]M. Wu, Y. He, J. She, G. P. Liu. Delay-dependent criteria for robust stability of time-varying delay systems [J]. Automatica,2004,40 (8):1435-1439.
    [147]P. L. L. Delay-dependent robust stability analysis for recurrent neural networks with time-varying delay [J]. International Journal of Innovative Computing, Information and Control,2013,9 (8):3341-3355.
    [148]M. X. Sun, S. S. Ge, I. M. Mareels. Adapitive repetitive learning control of robotic manipulators without the requirement for initial repositioning [J]. IEEE Transactions on Robotics,2006,22 (3):563-569.
    [149]T. Y. Doh, J. R. Ryoo, M. J. Chung. Repetitive controller design for track-following servo system of an optical disk drive [C]. Proceedings of the American Control Conference, USA,2002:176-181.
    [150]T. Inoue, M. Nakano, S. Iwai. High accuracy control of a proton synchrotron magnet power supply [C]. Proceedings of the 8th World Congress of IF AC, Kyoto, Japan,1981:3137-3142.
    [151]K. Srinivasan, F-R. Shaw. Analysis and design of repetitive control systems using regeneration spectrum [J]. Transactions ASME, Journal of Dynamic System, Measure Control,1991,113 (2):216-222.
    [152]K. K. Chew, M. Tomizuka, Digital control of repetitive errors in disk drive systems [J]. IEEE Control Systems Magazine,1990,10 (1):16-20.
    [153]P. Dabkowskia, K. Galkowski, O. Bachelier, E. Rogers. Control of discrete linear repetitive processes using strong practical stability and H∞ disturbance attenuation [J]. Systems & Control Letters,2012,61 (12):1138-1144.
    [154]S. Hara, Y. Yamamoto, T. Omata, M. Nakano. Repetitive control system:a new type servo system for periodic exogenous signals [J]. IEEE Transactions on Automatic Control,1988,33 (7):659-668.
    [155]M. Ikeda, M. Takano. Repetitive control for systems with nonzero relative degree [C]. Proceedings of the 29th Conference on Decision and Control. Honolulu, Hawali,1990:1667-1672.
    [156]G. Pipeleers, B. Demeulenaere, J-D. Schutter, J. Swevers, Generalised repetitive control:relaxing the period-delay-based structure [J]. IET Control Theory and Applications,2009,3 (11):1528-1536.
    [157]C-X. Hu, B. Yao, Z. Chen, Q-F. Wang. Adaptive robust repetitive control of an industrial biaxial precision gantry for contouring tasks [J]. IEEE Transactions on Control Systems Technology,2011,19 (6):1559-1568.
    [158]C-H. Chung, M-S. Chen, A robust adaptive feedforward control inrepetitive control design for linear systems [J]. Automatica,2012,48 (1):183-190.
    [159]L. Zhou, J. She, M. Wu, Y. He. Design of a robust observer-based modified repetitive-control system [J]. ISA Transactions,2013,52 (3):375-382.
    [160]T. Miyazaki, K. Ohishi, I. Shibutani, D. Koide, H. Tokumaru. Robust tracking control of optical disk recording system based on sudden disturbance observer [C]. The 32nd Annual Conference of the IEEE Industrial Electronics Society, Paris, France,2006:5215-5220.
    [161]G. Pipeleers, B. Demeulenaere, J-D. Schutter, J. Swevers. Robust high-Order repetitive control:optimal performance trade-offs [J]. Automatica,2008,44 (10):2628-2634.
    [162]R-J. Liu, G-P. Liu, M. Wu, J. She, Z-Y. Nie. Robust disturbance rejection in a modified repetitive control system. Systems & Control Letters, (in press).
    [163]T-Y. Doh, M. J. Chung, Repetitive control design for linear systems with time-varying uncertainties [J], IEE Control Theory and Applications,2003,150 (4): 427-432.
    [164]M. Wu, L. Zhou, J. She. Design of observer-based H∞ robust repetitive-control system [J]. IEEE Transactions on Automatic Control,2011,56 (6):1452-1457.
    [165]Z. Gao, Scaling and bandwidth-parameterization based controller tuning [C], Proceedings of the American Control Conference, USA,2003:4989-4996.
    [166]E. H. Bristol. On a new method measure of interaction for multivariable process control [J]. IEEE Transactions on Automatic Control,1966,11 (1): 133-134.
    [167]Q. G. Wang. Decoupling control [M]. Berlin:Springer.2003.
    [168]Q. G. Wang, T. H. Lee, J. B. He. Internal stability of interconnected systems [J]. IEEE Transactions on Automatic Control,1999,44 (3):593-597.
    [169]Q. G. Wang, B. Zou, Y. Zhang. Decoupling smith predictor design for multivariable system with multiple time delay [J]. Chemical Engineering Research & Design,2000,78 (4):565-572.
    [170]S. Kwon, W. K. Chung. A discrete-time design and analysis of perturbation observer for motion control applications [J]. IEEE Transactions on Control Systems Technology,2003,11 (3):399-407.
    [171]Q. Zheng, Z. Z. Chen, Z. Q. Gao. A practical approach to disturbance decoupling control [J]. Control engineering practice,2009,17 (9):1016-1025.
    [172]R-J. Liu, G-P. Liu, M. Wu. A novel decoupling control method for multivariable systems with disturbances [C]. UKACC International Conference on Control, Cardiff, UK,2012:76-80.
    [173]R. K. Wood, M. W. Berry. Terminal composition control of a binary distillation column [J]. Chemical Engineering Science,1973,28 (9):1707-1717.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700