用户名: 密码: 验证码:
转抗辐射总体调控基因irrE大肠杆菌的耐盐性及转录谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
耐辐射异常球菌(Deinococcus radiodurans)R1具有超强的电离辐射抗性和干燥抗性。IrrE是该菌的DNA损伤修复的总开关蛋白,并且蛋白组学研究显示该蛋白还具有总体调控胁迫响应、能量代谢、转录调控、信号传递等作用。除了IrrE能有效提高大肠杆菌的辐射抗性和氧化抗性外,我们发现IrrE还能够增强大肠杆菌的抗逆性能以及植物的耐盐能力。本研究以模式生物大肠杆菌(Escherichia coli)作为研究对象,分析IrrE异源表达对提高E. coli非生物逆境耐受性的作用,利用E. coli全基因组芯片分析IrrE对E. coli在正常生长及盐冲击条件下全基因组转录调控的影响。(1)IrrE能提高E. coli在UV辐射、氧化、高温、酸性pH、高渗透压胁迫,特别是高盐胁迫下的耐受性。在含有0.65M NaCl的M9培养基和含1M NaCl的LB培养基中,携带空质粒的对照菌株不能生长,而携带irrE基因表达载体的菌株能良好生长;同时,电镜观察显示表达IrrE的菌株在盐胁迫和盐冲击下细胞结构基本完整,而对照菌株的细胞结构严重受损。Biolog结果显示,较对照菌株IrrE表达菌株的代谢谱发生明显变化。
     (2)利用全基因组芯片研究比较正常生长条件和盐冲击下IrrE表达菌株和对照菌株的表达谱。正常生长条件下,IrrE引起E. coli差异表达的基因有441个,其中307个基因表达上调,134个基因表达下调;另外,5个小分子RNA表达上调,1个小分子RNA表达下调。在1M NaCl冲击60min后,IrrE引起E. coli差异表达的基因有IrrE导致了654个基因表达上调,240个基因表达下调;9个小分子RNA表达上调,2个小分子RNA表达下调。这些差异表达基因主要分为如下几类:代谢相关(如serA、aidB、aceAB等),转运和膜相关(如proP、slp、mscL等),调控(如evgA、yhiE、yedO等),胁迫响应(如bfr、dps、katE等),DNA重组及修复(如recE、uvrC、mutL等)。其中,DNA重组及修复相关表达上调的基因如uvrC和mutL在UV辐射中保护E. coli起重要作用。胁迫响应基因katE在氧化胁迫中发挥保护作用。正常条件下参与谷氨酸型抗酸支路的调控和功能基因yhiO、evgA、yhiE和gadABC表达均上调,可能与IrrE增强E. coli的抗酸性有关。正常生长条件下,受IrrE诱导上调基因中有为71个RpoS依赖型基因,这些基因包括了海藻糖合成酶基因otsAB和谷氨酸型抗酸体系基因gadABC和yhiO以及其他胁迫响应基因bfr、dps、katE和osmBC,这些基因编码的蛋白通常在E. coli胁迫反应中发挥重要的生理作用,推测与IrrE提高E. coli对多种胁迫抗性有关。
     (3)IrrE的表达不仅导致高盐诱导的海藻糖合成相关基因otsAB表达上调还促进了海藻糖降解相关基因treBC表达下调,暗示在IrrE的作用下细胞内海藻糖积累,盐冲击下甘油降解支路的相关基因表达下调,可能导致细胞内渗透性保护物质甘油的积累。此外,相对于对照菌株中在高盐条件下受抑制的代谢、膜转运系统的基因(如purN、fliO、flgH等),受IrrE诱导表达上调。上述结果表明IrrE可能作为一个全局性调控蛋白增强E. coli的耐盐性。
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. IrrE, a general DNA repair switch responsible for the extraordinary radioresistance of D. randiodurans, regulates stress response, energy metabolism, transcriptional regulation, signal transduction, protein turn-over and chaperoning pathways after irradiation. IrrE can increase the radioresistance and oxidation resistance of Escherichia coli. In addition, we found that IrrE enhanced multiple abotic resistance in E. coli and salt tolerance in plant. E. coli, as a model organism is well-suited to investigating regulation by IrrE. In this work, we investigate that IrrE can be utilized to improve tolerance to various abiotic stresses. Global transcriptome analysis showed that IrrE confers significantly enhanced salt tolerance and IrrE played a global regulatory role in gene expression in E. coli.
     We constructed plasmid pMG1-IrrE for expression of IrrE under control of a GroESL promoter in E. coli JM109. IrrE-expressing strain showed that IrrE significantly exhanced the tolerance to heat stress, acid stress, oxidative stress, osmotic stress, especially salt stress. Comparing with the control strain, the strain could normally grow in M9 medium supplemented with 0.65 M NaCl or in LB medium supplemented with 1 M NaCl. The ultrastructual changes of the cells observed by the transmission electron microscope (TEM) showed that the IrrE-expressing strain had normal cell morphology upon salt shock, whereas the control cells were largely plasmolysed: large periplasmic spaces and adhesion zones between the plasma membrane and the murein wall/outer membrane.
     To understand the effect of IrrE regulator on gene expression in E. coli, we used oligonucleotide arrays to delineate the transcriptiome difference between IrrE-expressing strain and control strain under control conditions and following 1M NaCl shock for 60min. The results showed that 307 genes and 5 small RNAs were up-regulated at least two-fold, while 134 genes and 1 small RNA were down-regulated more than two-fold under control condition in IrrE expressing strain comparing to control starin. And 654 genes and 9 small RNAs were up-regulated at least two-fold, while 240 genes and 2 small RNAs were down-regulated more than two-fold following salt shock. Among these differentially expressed genes, five major groups might contribute in various ways to the enhanced stress resistance:⑴Metabolism and growth related genes.⑵Transport and membrane related genes such as mscL encoding the large conductance mechanosensitive channel of the E. coli inner membrane that protects bacteria from lysis upon osmotic shock.⑶Regulation genes, including evgA, yhiE and yedO involoved in regulation of glutamate-dependent acid resistance.⑷Stress response genes such as the katE gene for the antioxidant defense mechanism.⑸DNA recombination and repair genes, including uvrC and mutL which protect cells from UV irradiation. Before salt shock, 71 of the IrrE-upregulated genes were also RpoS-dependent genes. Those genes include trehalose biosythesis genes otsAB, glutamate-dependent acid-resistance system genes gadABC and yhiO, as well as stress response genes bfr, dps, katE and osmBC. And the regulatory genes yhiO and functional genes gadABC of glutamate-dependent acid-resistance pathway were up-regulated in IrrE-expressing strains, which may contributes to acid resistance conferred by IrrE.
     Two osmotregulated trehalose synthesis genes, otsAB, were up-regulated while two trehalose dissimilation genes, treBC, were down-regulated, which may lead to trehalose accumulation in IrrE-expressing E. coli cells. After NaCl shock, the glycerol-degrading genes glpABC were down-regulated, which may result in osmoprotectants glycerol accumulation. In addition, some genes involved in metabolism and transport such as purN, flgH, fliO were repressed in control strains, which were up-regulated in IrrE-expressing strains under salt shock. Those results indicated IrrE may play a global regulator role in salt tolerance in E. coli.
引文
1. Adams R. L.,Kogut M., Russell N.J. The effect of salinity on growth and lipid composition of a moderately halophilic Gram-negative bacterium HX. Biochem. Cll. Biol. 1989, 68:249-254
    2. Alani E., Thresher R., Griffith J.D., Kolodner R.D. Characterization of DNA-binding and strand-exchange stimulation properties of y-RPA, a yeast single-strand-DNA-binding protein. J Mol Biol. 1992, 227:54–71
    3. Albertyn J., Hohmann S., Thevelein J.M.,et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the highosmolarity glycerol response pathway. Mol Cell Biol.1994, 14:4135-4144.
    4. Almirón M., Link A., Furlong D., et al. A novel DNA binding protein with regulatory and protective roles in staved Eschcerichia coli. Genes. Dev. 196: 2646-2654
    5. Anderson A. W., Nordan. H. C. et al. Taxonomy of a newly-isolated radiation-resistant micrococcus . Bacteriol. Proc. 1961, P.56.
    6. Appukuttan D., Rao A. S., Apte S. K. Enginering of Deinococccus radiodurans R1 for Biopreciptitation of Uranium from Bilute Nuclear Waste. Appl. Environ. Microbiol. 2006, 72: 7873-7878
    7. Asker D., Awad T. S., Beppu T., Ueda K. Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int. J. Syst. Evol. Microbiol., 2009, 59: 144-149.
    8. Asker D., Awad T.S., Beppu T., Ueda K. Deinococcus misasensis and Deinococcus roseus. novel members of the genus Deinococcus. isolated from a radioactive site in Japan. Syst. Appl. Microbiol. 2008, 31: 43-49
    9. Bagnasco S., Balaban R., Fales H.M.,et al.Predominant osmotically active organic solutes in rat and rabbit renal medullas. J. Biol. Chem.1986, 261: 5872-5877.
    10. Baker N., Sept D., Joseph S., Holst M., McCammon,J. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. 2001, 98:10037–10041.
    11. Bartels D., Sunkar R. Drought and Salt Tolerance in Plants. Crit Rev Plant Sci.2005, 24: 23–58
    12. Battista J. R. Against all odds: the survival strategies of Deinococcus radiodurans. Annu.Rev. Microbiol. 1997, 51:203-224.
    13. Battista J. R., Earl A. M., Park M. J., Why is Deinococcus radiodurans so resistant to ionizing radiation? Trends Microbiol. 1999, 7:362–365.
    14. Battista J. R., Rainey F. A. The Deinococcaceae. I. In G. M. Garrity (ed.). Bergey's Manual of Systematic Bacteriology. 2001, vol. 1, p395-403.
    15. Bellinger Y., Larher F. A 13C comparative nuclear magnetic resonance study of organic solute production and excretion by the yeasts Hansenula anomala and Saccharomyces cerevisiae in saline media. Can. J. Microbiol. 1988,35: 605-612.
    16. Blattner F.R., Plunkett G.III, Bloch C.A., et al.The complete genome sequence of Escherichia coli K-12 Science. 1997, 277: 453–1462
    17. Boling. M. E., Setlow J. K., The resistance of Micrococcus radiodurans to ultraviolet radiation. III. A repair mechanism. Biochim. Biophys. Acta. 1966, 123: 26-33.
    18. Bonacossa de Almeida C. et al., Quantification of RecA protein in Deinococcus radiodurans reveals involvement of RecA, but not LexA, in its regulation, Mol. Genet. Genomics 2002,268:28–41.
    19. Boos W., U. Ehmann, H. Forkl,et al.Trehalose transport and metabolism in Escherichia coli. J. Bacteriol. 1990,172:3450–3461.
    20. Booth I. R., and Higgins C. F. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress? FEMS Microbiol. Rev. 1990, 6: 239-246
    21. Brady R.A., Csonka L.N. Transcriptional regulation of the proC gene in Salmonella typhimurium. J. Bacteriol. 1988,170: 2379-2382
    22. Breed R. S. Micrococcus rubens Migula 1900. J. Bactriol. 1943, 45(5): 455-457
    23. Brim H., McFarlan S. C., Fredrickson J. K. et al. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nature Biotechnol. 2000, 18:85–90.
    24. Brooks B. W., Murray R. G. E. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol. 1981, 31: 353–360
    25. Brooks B. W., Murray R. G. E., Johnson J. et al. Red-pigmented micrococci: a basis for taxonomy. Int J Syst Bacteriol. 1980, 30: 627-646.
    26. Brown A.D. Microbial water stress. Bacteriol. Rev. 1976, 40: 803-846
    27. Cairney J., Booth I.R. and Higgins C.F. Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant betaine. J. Bacteriol.1985, 164: 1218-1223.
    28. Callegan R.P., Nobre M.F. et al. Description of four novel psychrophilic. ionizing radiation-sensitive Deinococcus species from alpine environments. Int. J. Syst. Evol. Microbiol., 2008, 58: 1252-1258.
    29. Castanie-Cornet M. P., Penfound T. A., Smith D., et al. Control of acid Resistance in Escherichia coli.J. Biochemistry.1999,181:3525-3535
    30. Cayley S., Lewis B.A. Record Jr. M.T. Origins of the osmoprotective properties of betaine and proline in Escherichia coli K-12. J. Bacteriol. 1992,174: 1586-1595.
    31. Cheung K. J., Badarinarayana V., Selinger D. W., et al. A Microarray-Based Antibiotic Screen Identifies a Regulatory Role for Supercoiling in the Osmotic Stress Response of Escherichia coli. Genome Research. 2003, 13: 206-215
    32. Christian J.H.B. The water relations of growth and respiration of Salmonella oranienburg at 30℃. Austr. J. Biol. Sci.1955, 8: 490-497
    33. Christian J.H.B. The in£uence of nutrition on the water relations of Salmonella oranienburg. Austr. J. Biol. Sci. 1955, 8: 75-82.
    34. Chuang S.,Daniels D., and Blattner F.R. Global regulation of gene expression in Escherichia coli. J. Bacteriol. 1993, 175: 2026-2036
    35. Conter A., Gangneux C., Suzanne M., et al. Survival of Escherichia coli during long-term starvation: Effects of aeration, NaCl and the rpoS and osmC gene products. Res. Microbiol.2001, 152: 17-26.
    36. Cowing D.W., Bardwell J.C., Craig E.A.,et al. Consensus sequence for Escherichia coli heat shock gene promoters. Proc. Natl. Acad. Sci.1985, 82: 2679–2683.
    37. Cox M. M.and Battista J. R. Deinococcus radiodurans the consummate survivor. Nature Review 2005,V3:382-392.
    38. Coyer J., Andersen J., Frost S.A.,et al. micF RNA in ompB mutants of Escherichia coli : different pathways regulate micF RNA levels in response to osmolarity and temperature change. J. Bacteriol. 1990,172: 41434150.
    39. Csonka L. N. and Epstein W. 1996. Osmoregulation, p. 1210-1223. In F. C. Neidhardt, R. Curtiss, J. L. Ingraham, E. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger (ed.), Escherichia and Salmonella: cellular and molecular biology. ASM Press, Washington, D.C
    40. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev.1989, 53: 121-147.
    41. Csonka L.N. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength.J.Bacteriol.1982,151:1433-1443.
    42. Csonka L.N. and Hanson A.D. Prokaryotic osmoregulation: genetics and physiology. Annu. Rev. Microbiol.1991, 45: 569-606.
    43. Csonka L.N. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet.1981, 182: 82-86
    44. Csonka L.N.Regulation of cytoplasmic proline levels in Salmonella typhimurium: effect of osmotic stress on synthesis, degradation,and cellular retention of proline. J. Bacteriol. 1988,170: 2374-2378
    45. Daly M. J. Engineering radiation-resistant bacteria for environmental biotehnology. Curr. Opin. Biotechnol. 2000, 11: 280-285
    46. Daly M. J., Ling O., Minton K. W., Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 1994, 176:7506–7515.
    47. Daly M.J., Minton K.W., Resistance to radiation. Science. 1995, 270(5240): 1318.
    48. Daniels D. L., Plunkett III G.,Burland V.,et al. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992, 257: 771-778.
    49. Davis N. S. et al. Radiationresistant. pigmented coccus isolated from haddock tissue. J. Bacteriol. 1963, 86: 294–298.
    50. Diedrich D. K. and Fralick J. A. Relationship between the OmpC and OmpF proteins of Escherichia coli and its influence on protein mass of the outer membrane. J. Bacteriol. 1982, 149: 156-160
    51. Dinnbier U., Limpinsel E., Schmid R., et al.Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol.1988, 150:348-357.
    52. Dose K. et al. Survival in extreme dryness and DNA-single strand breaks. Adv. Space Res. 1992, 12: 221-229
    53. Earl A. M. , Mohundro M. M., Mian I. S., Battista J. R.The IrrE Protein of Deionococcus radiodurans r1 Is a Novel Regulator of recA Expression. J. Bacteriol. 2002, 184: 6216-6224
    54. Ebskamp M.J.M., Vander Meer I.M., Spronk B.A. Accumulation of fructose polySLRs in transgenic tobacco. Biotechnology. 1994,12:272-275
    55. Eggington J. M., Haruta N., Wood E.A., Cox M.M. The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC Microbiol. 2004, 4: January 12. doi: 10.1186/1471-2180-4-2.
    56. Eguchi Y., Itou J., Yamane M., et al. B1500, a small membrane protein, connects the two component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. PNAS. 2007,104: 18712-18717
    57. Eisenberg H., Wachtel E. J. Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Annu. Rev. Biophys. Chem. 1987, 16: 69-92
    58. Epstein W. Kdp, a bacterial P-type ATPase whose expression and activity are regulated by turgor pressure. Acta Physiol.Scand.1992, 607: 193-199.
    59. Epstein W., and Schultz S. G. Cation transport in Escherichia coli. V. Regulation of cation content. J. Gen. Physiol. 1965, 49:221-234.
    60. Epstein W.Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol. Rev. 1986, 39: 73-78
    61. Evans D. M., Moseley B. E. B., Roles of the uvsC. uvsD. uvsE. and mtcA genes in the two pyrimidine diSLR excision repair pathways of Deinococcus radiodurans. J. Bacteriol. 1983, 156:576–583.
    62. Ferreira A. C., Nobre M. F. et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol. 1997, 47: 939–947
    63. Fraser K.R., Harvie D., Coote, P.J. and O'Byrne C.P. Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes. Appl. Environ. Microbiol.2000, 66:4696-4704.
    64. Fredrickson J. K., H. M. Kostandarithes, S. W. Li, A. E. Plymale, and M. J. Daly. Reduction of Fe(III), Cr(VI), U(VI) and Tc(VII) by Deinococcus radiodurans R1. Appl. Environ. Microbiol. 2000, 66:2006-2011.
    65. Fridovich I. The biology of oxygen radicals. Science. 1978, 201 :875– 880
    66. Galinski E.A. Osmoadaptation in bacteria. Adv. Microb. Physiol. 1995, 37: 273-328
    67. Galinski E.A., Tròper H.G.Microbial behaviour in salt stressed ecosystems. FEMS Microbiol. Rev. 1994, 15: 95-108
    68. Ganesh N., Muniyappa K. characterization of DNA strand transfer promoted by Mycobacterium smegmatis RecA reveals functional diversity with Mycobacterium tuberculosis RecA. Biochemistry. 2003, 42: 7216-7225
    69. Gao G. et al. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA repair. 2003, 2: 1419-1427
    70. Gao G., Le D., Huang L., et al. Internal promter characterization and expression of the Deinococcus radiodurans pprI-folP gene cluster. FEMS Microbiol. Lett. 2006, 257: 195-201
    71. GethinGething MJ, et al. 1997. Guidebook to Molecular Chaperones and Protein-Folding Catalysts. Oxford, UK: Oxford Univ. Pressg
    72. Giaever H. M., Styrvold O. B., Kaasen I. et al. Biochemical and genetic characterization of osmo-regulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 1988, 170: 2841-2849
    73. Gordia S. and Gutierrez C. Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12. Mol. Microbiol. 1996, 19: 729-736
    74. Gouesbet G., Jebbar M., Talibart R., et al. pipecolic acid is an osmoprotectant for Escherichia coli taken up by the general osmoporters ProU and ProP. Microbiology. 1994,140: 2415-2422
    75. Gowrishankar J. Identification of osmoprotective genes in Escherichia coli : evidence for participation of potassium and proline transport systems in osmoregulation. J. Bacteriol.1985, 164: 434-445
    76. Gowrishankar J.Identi¢cation of osmoprotective genes in Escherichia coli : evidence for participation of potassium and proline transport systems in osmoregulation. J. Bacteriol.1985, 164: 434-445.
    77. Groot A., Chapon V. et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol. 2005, 55: 2441–2446
    78. Grossman A.D., Erickson J.W., and Gross C.A. 1984. The htpR gene product of E. coli is aσfactor for heat-shock promoters.Cell 38: 383–390.
    79. Grothe S., Krogsrud R. L., McClellan D. J., et al.Proline transport and osmotic stress response in Escherichia coli K-12. J. Bacteriol.1986,166:253-259
    80. Guillot A., Obis D. and Mistou M.-Y. Fatty acid membrane composition and activation of glycine betaine transport in Lactococcus lactis subjected to osmotic stress. Int. J. Food Microbiol.2000,55: 47-51.
    81. Gunasekera T.S., Csonka L. N., and Paliy O. Genome-wide transcriptional responses of Escherichia coli K-12 to continuus osmotic and heat stresses. J. Bacteriol. 2008, 190: 3712-3720
    82. Gutierrez C., and Devedjian J.C. Osmotic induction of gene osmC expression in Escherichia coli. J. Mol. Biol. 1991, 220: 959-973
    83. Gutierrez C., Ardourel M., BreSLR E. et al. Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalose of Escherichia coli K-12. Mol. Gen. Genet. 1989, 217: 347-354
    84. Gutierrez C., M. Ardourel, E. BreSLR,et al. Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli K12. Mol. Gen. Genet.1981,217:347–354.
    85. Gutman P.D. et al. Sequencing, targeted mutagenesis and expression of a recA gene required for the extreme radioresistance of Deinococcus radiodurans, Gene 1994,141: 31–37.
    86. Haardt M. and BreSLR E. Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J. Bacteriol.1996, 178:5370-5381.
    87. Haardt M., Kempf B., Faatz E., et al. The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12. Mol. Gen. Genet. 1995, 246: 783-786
    88. Hengge-Aronis R., Klein W., Lange R. et al. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary phase thermotolerance in Escherichia coli. J Bacteriol. 1991, 178: 7918-7924
    89. Hengge-Aronis, R. Signal transduction and regulatory mechanisms involved in control of the sigma (S) (RpoS) subunit of RNA polySLRase. Microbiol. Mol. Biol. Rev.2002, 66:373–395.
    90. Hersh B.M., Farooq F.T., Barstad D.N., et al. A glutamate-dependent acid resistance gene in Escherichia coli. J. Bacteriol.1996, 178: 3978
    91. Higgins C.F., Dorman C.J., Stirling D.A.,et al. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in Salmonella typhimurium and Escherichia coli. Cell 1988,52: 569-584.
    92. Hirsch P. et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating UV-resistant bacteria from continental Antarctica. Syst. Appl. Microbiol. 2004, 27: 636-645
    93. Ho Y. S., Burden L. M., Hurley J. H.Structure of the GAF domain, a ubiquitous signalingmotif and a new class of cyclic GMP receptor. EMBO J. 2000,19: 5288–5299.
    94. Hohmann, S. Shaping up: The responses of yeast to osmotic stress. In Yeast Stress Responses. Hohmann, S., and Mager, W.H. (eds). Lexington, TX: R.G. Landes Company,(1997) pp. 101-146.
    95. Holmstrom K. O,, Somersalo S,, Mandal A,, et al. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot. 2000, 51: 177–185
    96. Horlacher E., Uhland K., Klein W., et al. Characterization of a Cytoplasmic Trehalase of Escherichia coli. J. Bacteriol. 1996, 178: 6250-6257
    97. http://www.em.doe.gov/bemr96. The 1996 Baseline Environmental Management Report
    98. Hu H,, Dai M,, Yao J,, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice.. Proceedings of the National Academy of Sciences:2000, 12987–12992.
    99. Huang L. N., et al. Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill, FEMS Microbiology Letters.2005, 242: 297–303.
    100. Im W.T. et al. Deinococcus aquaticus sp. nov., isolated from fresh water. and Deinococcus caeni sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol., 2008, 58:2348-2353
    101. Imhoff J.F., Thiemann B. Influence of salt concentration and temperature on the fatty acid composition of Ectothiorhodospira and other halophilic phototrophic purple bacteria. Arch. Microbiol. 1991, 156: 370-375
    102. Ishihama, A. Functional modulation of Escherichia coli RNA polySLRase. Annu. Rev. Microbiol.2000, 54: 499–518.
    103. Iyer R., Williams C. and Miller C. Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol.2003, 185:6556-6561
    104. Izawa S., Sato M., Yokoigawa K.,et al. Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 66: 108–114.
    105. Jolivet E., Lecointe F., Coste G., et al. Limited concentration of RecA delays DNA double-strand break repair in Deinococcus radiodurans R1. Mol. Microbiol. 2006, 59: 338-349
    106. Joshi B., Schmid R., Altendorf K., and Apte S. K. Protein recycling is a major component of post-irradiation recovery in Deinococcus radiodurans strain R1.Biochem Biophys Res Commun. 2004, 320: 1112-1117.
    107. Jung J. U., Gutierrez C. and Villarejo M.R. sequence of an osmotically inducible lipoprotein gene. J. Bacteriol. 1989, 171:511-520
    108. Jung J. U., Gutierrez C., Martin F. et al. Transcription of osmB, a gene encoding an Escherichia coli lipoprotein, is regulated by dual signals. J. Biol. Chem. 1990,265:10574-10581
    109. Kaasen I., Falkenberg P., Styrvold O. B. et al. Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF(AppR). J. Bacteriol. 1992, 174: 889-898
    110. K?mpfer et al. Deinococcus aquatilis sp. Nov., isolated from water. Int J Syst Evol Microbiol. 2008, 58: 2803-2806
    111. K?mpfer P. Deinococcus mumbaiensis Shashidhar and Bandekar 2006 is a later heterotypic synonym of Deinococcus ficus. Lai et al. 2006. Int. J. Syst. Evol. Microbiol. 2009, 59:356-365
    112. Karaba A., Dixit S., Greco R., et al. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences. 2007: 15270–15275
    113. Kennedy E.P. Osmotic regulation and the biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc. Natl.Acad. Sci. USA 1986,79: 1092-1095.
    114. Kim J.I., Sharma A.K., Abbott SN, et al. Re cA protein from the extremely radioresistant bacterium Deinococcus radiodurans: Expression, purification, and characterization. J Bacteriol. 2002, 184: 1649–1660.
    115. Kinne R. K. H. The role of organic osmolytes in osmoregulation: from bacteria to mammals J. Exp. Zool. 1993, 265: 346-355
    116. Kitayama S., Asaka S., Totsuka K. DNA double-strand breakage and removal of cross-links in Deinococcus radiodurans. J Bacteriol. 1983, 155:1200-7
    117. Klein W., U Ehmann, and W Boos. Molecular analysis of treB encoding the Escherichia coli EnzymeⅡspecific for trehalose. J. Bacteriol. 1005, 177: 4043-4052
    118. Klein W., U Ehmann, and W Boos. The repression of trehalose transport and metabolism in Escherichia coli by high osmolarity is mediated by trehalose-6-phosphate phosphatase.Res. Microbiol.1991, 142:359-371.
    119. Knivett V. A., Cullen J., Jackson M. J. Odd-numbered fatty acids in Micrococcus radiodurans. Biochem. J. 1965, 96:2c-3c
    120. Kobatake M., Tanabe S., Hasegawa S.New Micrococcus radioresistant red pigment. isolated from Lama glama feces. and its use as microbiological indicator of radiosterilization. C. R. Seances Soc. Biol. Fil. 1973, 167:1506–1510.
    121. Kobayashi R., Suzuki T., Yoshida M. Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol. Microbiol. 2007: 66: 100-109
    122. Koo S.P., Higgins C.F. and Booth I.R. Regulation of compatible solute accumulation in Salmonella typhimurium. J. Gen.Microbiol. 1991,137: 2617-2625
    123. Kowalczykowski S.C., Krupp R.A. Effects of Escherichia coli SSB protein on the single-stranded DNA-dependent ATPase activity of Escherichia coli RecA protein. Evidence that SSB protein facilitates the binding of RecA protein to regions of secondary structure within single-stranded DNA. J Mol Biol. 1987, 193:97–113.
    124. Lai W. A., K?mpfer P. et al. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol. 2006, 56: 787–791
    125. Lancy P., Murray R. G. E., The Envelope of Micrococcus radiodurans: Isolation. purification. and preliminary analysis of the wall layers. Can. J. Microbiol. 1978, 24:162-176.
    126. Landfald B., Str?m A. R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J. Bacteriol. 1986, 165: 849-855
    127. Lange C. C. et al. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol. 1998, 16:929–933
    128. Lange R. and Hengge-Aronis R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol. Microbiol.1991, 5: 49-49
    129. Lange R., and Hengge-Aronis R. The cellular concentration of theσS subunit of RNA-polySLRase in Escherichia coli is controlled at the levels of transcription, translation and protein stability. Genes Dev.1994, 8: 1600–1612
    130. Lanyi J. K. Salt-dependent properties of proteins from extremely halophilic baveria. Bacteriol. Rev. 1974, 38: 272-290
    131. Larsen P. I., Sydnes L. K., Landfald B. et al. Osmoregulaiton in Escherichia coli by accumulation of organic osmolytes : betaines, glutamic acid, and trehalose. Arch. Microniol. 1987, 147: 1-7
    132. Lavery P.E., Kowalczykowski S.C.. A postsynaptic role for single-stranded DNA-binding protein in recA protein-promoted DNA strand exchange. J Biol Chem. 1992, 267:9315–9320.
    133. Lawrence G., Paul R., Caron .S. J. et al. Repair of DNA-containing pyrimidine dimSLRs. FASEB J. 1988, 2: 2696-2701.
    134. Le Rudulier D., Bouillard L. Glycine betaine, an osmotic e?ector in Klebsiella pneumoniae and other members of the Enterobacteriaceae. Appl. Environ. Microbiol.1983, 46: 152-159.
    135. Lee I. S., Lin J., Hall H. K., et al. The stationaryphase sigma factorσs (RpoS) is required for a sustained acid tolerance response in virulent Salmonella typhimurium. Molecular Microbiol,1995,17:155-167
    136. Lesniak J., Barton W. A., and Nikolov D. B. Structural and functional features of the Escherichia coli hydroperoxide resistance protein OsmC. Protein Sci. 2003,12: 2838-2843
    137. Lewis N. F. Studies on a radio-resistant coccus isolated from Bombay duck (Harpodon nehereus). J. Gen. Microbiol. 1971, 66: 29–35.
    138. Loewen P.C.Isolation of catalase-deficient Escherichia coli mutants and genetic mapping of katE, a locus that affects catalase activity.J. Bacteriol. 1984,157: 622-626.
    139. Lomovskaya O. L., Kidwell J. P., and Matin A. Characterization of theσ38-dependent expression of a core Escherichia coli starvation gene, pexB. J. Bacteriol. 1994, 176: 3928-3935
    140. Lu H., Gao G., Xu G., et al. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival network after radiation damage. Mol. Cell Proteomics. 2009, 8: 481-494
    141. Lucht J.H. and BreSLR E. Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affnity glycine betaine transport system ProU. FEMS Microbiol. Rev.1994, 14:3-20
    142. Luyten K., Albertyn J., Fourie Skibbe et al.Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J.1995,14: 1360-1371
    143. Macilwain, C. Science seeks weapons clean-up role. Nature 1996,383:375–379
    144. Makarova K. S., Aravind L., Wolf Y. I., et al.Genone of the extremely radation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbio. Mol. Biol. Rev. 2001, 65:44-79.
    145. Malki A., kern R., Abdallah J., et al. Characterization of the Escherichia coli YedU protein as a molecular chaperone. Biocherm. Biophys. Res. Commum. 2003, 301: 430-436
    146. Mare′chal L. R. Transport and metabolism of trehalose in Escherichia coli and Salmonella typhimurium. Arch. Microbiol.1984, 137:70–73.
    147. Masuda N. and Church G.M. Escherichia coli gene expression responsive to levels of response regulator EvgA. J. Bacteriol. 2002, 184: 6225–6234.
    148. Mattimore V., Battista J. R. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 1996,178: 633-637.
    149. Mattimore V.,Udupa K. S.,Berne G. A., Battista J. R.Genetic characterization of forty ionizing radiation-sensitive strains of Deinococcus radiodurans: linkage information from transformation.J. Bacteriol.1995, 177:5232–5237.
    150. McCann M. P., Kidwell J. P. and Matin A. The putativeσfactor KatF has a central role in development of statvation-mediated general resistance in Escherichia coli. J Bacteriol. 1991, 173: 4188-4194
    151. McCullough J., Hazen T. C., Benson S. M.,Bioremediation of Metals and Radionuclides. Germantown, MD: US Department of Energy. Office of Biological and Environmental Research, 1999.
    152. McCullough, J., Hazen, T., Benson, S., Blaine-Metting, F. Palmisano, A. C. Bioremediation of metals and radionuclides, US Dept. of Energy, Office of Biological and Environmental Research, Germantown, MD 20874 (1999).
    153. McLaggan D., Naprstek J., Buurman E. T. et al. Interdependence of K+ and glutamate accumulation during osmotic adaption of Escherichia coli. J. Biol. Chem. 1994, 269: 1911-1917
    154. McLaggan D., Naprstek J., Buurman E. T.,et al.Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem.1994, 269:1911-1917
    155. Measures J.C. Role of amino acids in osmoregulation of nonhalophilic bacteria. Nature 1975, 257: 398-400.
    156. Meima R. , Lidstrom M.E. Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK Plasmid and development of versatile Escherichia coli–D. radiodurans shuttle vectors, Appl. Environ. Microbiol. 2000,66: 3856–386
    157. Mellies J., Wise A., and Villarejo M., Two different Escherichia coli promoters respond to osmotic and growth phase signals. J. Bacteriol. 1995, 177: 144-151
    158. Meury J., Robin A., and Monnier-Champeix P. Turgor-controlled K+ fluxes and their pathways in Escherichia coli. Eur. J. Biochem. 1985,151:613-619.
    159. Mevarech M., Eisenberg H., Neumann E. Malate dehydrogenaseisolated from extresely halophilic bacteria of the Dead Sea 1. Purification and molecular characterization. Biochemistry. 1977, 16: 3781-3785
    160. Miller K.J., Kennedy E.P. and Reinhold V.N. Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 1986, 231: 48-51.
    161. Milner J. L., Grothe S., and Wood J. M. Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K12. J. Biol. Chem.1988, 263:14900-14905
    162. Milner J.L., McClellan D.J. and Wood J.M. Factors reducing and promoting the e?ectiveness of proline as an osmoprotectant in Escherichia coli K-12. J. Gen. Microbiol. 1987,133:1851-1860.
    163. Minton. K. W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Microbiol. 1994, 13:9-15.
    164. Moseley B. E., Evans D. M. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine diSLRs from DNA: evidence for two excision pathways. J Gen Microbiol. 1983, 129 (Pt 8):2437-2445.
    165. Muffler A., Barth M., Marschall C., et al. Heat shock regulation ofσS turnover: a role for DnaK and relationship between stress responses mediated byσS andσ32 in Escherichia coli. J. Bacteriol.1997 179: 445–452.
    166. Muffler A., Traulsen D. D., Lange R. et al. Posttranscriptional osmotic regulationof theσS subunit of RNA polySLRase in Escherichia coli. J. Bacteriol. 1996, 178: 1607-1613
    167. Nair S. and Finkel S. E. Dps protects cells against multiple stresses during stationary phase. J. Bacteriol. 2004,186: 4192-4198
    168. Namsaraev E.A., Berg P. Rad51 uses one mechanism to drive DNA strand exchange in both directions. J Biol Chem. 2000, 275: 3970–3976
    169. Narumi I. et al.The LexA protein from Deinococcus radiodurans is not involved in RecA induction following c irradiation, J.Bacteriol. 2001, 183: 6951–6956.
    170. Neely M. N., Dell C. L. and Olson E. R. Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J. Bacteriol. 1994,176:3278-3285
    171. Nevoigt E., and Stahl U.Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Reviews.1997, 21: 231-241.
    172. NIèBhrIèan N., Dorman C.J. and Higgins, C.F. An overlap Higgins between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression.Mol. Microbiol.1989, 3: 933-942.
    173. Nikaido H. and Vaara M. Outermembrane. In: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology.1987, pp. 7-22. ASLRican Society for Microbiology, Washington, DC.
    174. Nonaka G., Blankschien M., Herman C. et al. Regulon and promoter analysis of the E.coli heat-shock factor,σS, reveals a multifaceted cellular response to heat stress.Genes﹠Dev.2006, 20: 1776-1789
    175. Ohba H., Satoh K., Sghaier H., et al. Identification of PprM: a modulator of the PprI-dependent DNA damage response in Deinococcus randiodurans. Extremophiles. 2009 in print
    176. Ohba H., Satoh K., Yanagisawa T., Narumi I. The radiation responsive promoter of the Deinococcus radiodurans pprA gene. Gene. 2005, 363:133-141
    177. Olsen G. J., Woese C. R. Ribosomal RNA: a key to phylogeny.FASEB J.1993, 7:113–123.
    178. Oren A. The genera Haloanerobium, Halobacteroides, and Sporohalobacter. In: The Prokaryotes,
    2nd edn,1991, pp, 1893-1900. Springer Verlag, New York, NY
    179. Padan E. and Schuldiner S. Molecular physiology of the Na+/H+ antiporter in Escherichia coli. J. exp. Biol. 1994, 196: 443-456
    180. Pan J, Wang J et al. IrrE, a Global Regulator of Extreme Radiation Resistance in Deinococcus radiodurans, Enhances Salt Tolerance in Escherichia coli and Brassica napus. PLoS ONE 20094(2): e4422. doi:10.1371/journal.pone.0004422
    181. Patridge E. V. and ferry J.G. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase. J. Bacteriol. 2006, 188: 3498-3506
    182. Patten C.L., Mirchhof M. G., Schertzberg M. R., et al. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol. Gen. Genmomics. 2004,272: 580-591
    183. Peng F., Zhang L., Luo X., et al. Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int. J. Evol. Microbiol. 2009, 59: 709-713
    184. Peter H., Burkovski A. and Kr?SLR R. Isolation, characterization,and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J. Bacteriol.1996, 178: 5229-5234.
    185. Peter H., Burkovski A. and Kr?SLR, R. Osmo-sensing by N- and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J. Biol. Chem.1998, 273: 2567-2574
    186. Pilon-Smits E.A. H., Ebskamp M. J. M., Paul M.J.Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 1995,107:125-130
    187. Polarek J.W., Williams G. and Epstein W. The products of the kdpDE operon are required for expression of the Kdp ATPase of Escherichia coli. J. Bacteriol.1992, 174:2145-2151.
    188. Poolman B. and Glaasker E. Regulation of compatible solute accumulation in bacteria. Microbiol. Mol. Biol. Rev. 1998, 29:397-407.
    189. Pratt L.A., Hsing W., Gibson K.E., et al. From acids to osmZ: multiple factors in£uence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol. Microbiol.1994, 20: 911-917.
    190. Purvis J. E., Yomano L. P., and Ingram L. O.Enhanced trehalose production improves growth of Escherichia coli under osmotic stress. Applied and Environmental Microbiology 2005, 71: 3761-3769
    191. Rainey F.A. et al. Deinococcus peraridilitoris sp. nov., isolated from a coastal desert. Int. J. Syst. Evol. Microbiol., 2007, 57:1408-1412
    192. Rainey F.A. et al. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl. Environ. Microbiol., 2005, 55:2235-2238
    193. Rajeshwar P. Sinha Donat-P. H?der. UV-induced DNA damage and repair: a review. Photochem. Photobiol. Sci., 2002, 1: 225–236.
    194. Ravindranath S., Jayant R. B. Deinococcus mumbaiensis sp.nov.,a radiation-resistant pleomorphic bacteriumisolated fromMumbai, India, FEMS Microbiol. Lett. 2006, 254:275–280.
    195. Record M. T., Jr.Courtenay E. S., Cayley D. S., et al.Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. Trends Biochem. Sci. 1998, 23:143-148.
    196. Rengpipat S., Lowe S.E., Zeikus, J.G. Effect of extreme salt concentrations on the physiology and biochemistry of Halobacteroides acetoethylicus. J. Bacteriol.1988, 170:3065-3071.
    197. Repoila F. and Gutierrez C. Osmotic induction of the periplasmic trehalase in Escherichia coli K-12: characterization of the treA promoter. Mol. Microbiol. 1991, 5:747-755
    198. Rhoads D.B., Waters F.B. and Epstein W. Cation transport in Escherichia coli. VIII. Potassium transport mutants. J. Gen. Physiol.1976,67: 325-341.
    199. Riley M., Abe T., Arnaud M. B.,et al. Escherichia coli K-12: a cooperatively developed annotation snapshot—2005. Nucleic Acids Research. 2006, 34: 1-9
    200. Rimmele M., and W. Boos. Trehalose-6-phosphate hydrolase of Escherichia coli. J. Bacteriol.1994, 176:5654–5664.
    201. Rozen Y., LaRossa R. A., Templeton L. J., et al. Gene expression analysis of the response by Escherichia coli to seawater. Antonie van Leevwwenhock. 2002, 81: 15-25
    202. Rübenhagen R., Ronsch H., Jung H., Kr?SLR R. et al.Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes.J. Biol. Chem. 2000,275: 735-741.
    203. Rus A. M,, Estan M. T,, Gisbert C., et al. Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant, Cell&Environment. 2001,24: 875–880.
    204. Russel N. J. Adaptive motifications in membranes of halotolerant and halophilic microorganisms. J. Bioenerg. Biomembr. 1989, 21: 93-113
    205. Sanforda L., Bill G., Paloma L. A cluster of four genes encoding enzymes for five steps in the folate biosynthetic pathway of Strptococcus pneumoniae. J. Bacteriol. 1995,177: 66-74
    206. Sayed A. K., Odom C., and Foster J. W. The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiolgy. 2007, 153: 2584-2592
    207. Schleifer K. H., Kandler O. Peptidoglycan types of bacteria cell walls and their taxonomic implications. Bacteriol.Rev. 1972, 36:407-477.
    208. Schultz J. et al. SMART. a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA. 1998, 95:5857–5864.
    209. Setlow. J. K., Duggan D. The resistance of Micrococcus radiodurans to ultraviolet radiation. 1. Ultraviolet-induced lesions in the cell's DNA. Biochim. Biophys. Acta. 1964, 87: 664-668.
    210. Shashidhar R., Banderkar J. R. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai. India. FEMS Microbiol. Lett., 2006, 254:275- 280.
    211. Shen B., Jensen R. G., Bohnert H. J. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol.1997, 113:1177-1183
    212. Shi H,lshitani M,Kim C,et a1. The Arabidopsis Thaliana Salt Tolerance Gene SOS1 Encodes A Putative Na+ /H+ Antiporter.Pro:Nail Acad Sci. 2000, 97:6896-6901
    213. Sleator R. D., Gahan C. G. M., O'Driscoll B. et al. Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Int. J. Food Microbiol.2000,60: 261-268.
    214. Sleator R. D., Hill C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. 2001, 26: 50-71
    215. Sleytr U. B., Kocour M., Glauer A. M. et al. A study by freezeetching of the fine structure of Micrococcus radiodurans. Arch. Microbiol. 1973, 94: 77-87.
    216. Small P.L.C., and Waterman S.R. Acid stress, anaerobiosis,and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol.1998, 6: 214–216.
    217. Smith D.K., Kassam T., Singh B., et al. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J. Bacteriol.1992, 174:5820–5826.
    218. Smith K. C., Martignoni K. D., Protection of Escherichia coli cells against the lethal effects of ultraviolet and x irradiation by prior x irradiation: a genetic and physiological study. Photochem. Photobiol. 1976, 24: 515–523.
    219. Str?m A. R., Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol.Microbiol. 1993, 8:205–210
    220. Suresh K., Reddy G. S. N., Sengupta S. & Shivaji S. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal. India. Int J Syst Evol Microbiol . 2004, 54: 457–461.
    221. Sutton G.C. Russel N. J., Quinn P.J. The effect of salinity on the phase behaviour of total lipid extracts and binary mixtures of the major phospholipids isolated from a moderately haophilic eubacterium.Biochim. Biophys.Acta. 1991, 1061: 235-246
    222. Sweet D. M. Accurate repair of ultraviolet-induced damage in Micrococcus radiodurans. Mutat. Res. 1974,23:311-318.
    223. Sweet D. M. and Moseley B. E. Accurate repair of ultraviolet-induced damage in Micrococcus radiodurans. Mutat. Res. 1974, 23:311-318
    224. Sweet D. M. The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA. Murat. Res. 1976. 34: 175-186.
    225. Taiz L. Plant cell expanison: regulation of cell wall mechanical properies. Annu Plant Physiol. 1984, 35: 585-657
    226. Tama?s M.J., Luyten K., Sutherland F.C.W., et al. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol.1999, 31: 1087-1104.
    227. Tanaka A., Hirano H., Kikuchi M., Kitayama S., and Watanabe H. Changes in cellular proteins of Deinococcus radiodurans following gamma-irradiation.Radiat Environ Biophys.1996, 35: 95-99.
    228. Tanaka M. Analysis of Deinococcus radiodurans’s transcriptional response to ionizing radiation and desticcation reveals novel proteins that contribute to extreme radioresistance. Genetics 2004, 168: 21-33
    229. Tarczynski M.C.,Jensen R. G.,Bohnert H.J. Stress Protection of Transgenic Tobacco by Production of the Osmolyte Mannitol. Science. 1993,259:508– 510
    230. Taylor W.E., Straus D.B., Grossman A.D., et al. Transcription from a heat-inducible promoter causes heat shock regulation of theσsubunit of E. coli RNA polySLRase. Cell.1984. 38: 371–381.
    231. Tempest D.W., Meers J.L. Brown C.M. In£uence of environment on the content and composition of microbial free amino acid pools. J. Gen. Microbiol.1970, 64, 171185.
    232. Thieme D. and Grass G. The Dps protein of Escherichia coli is involved in copper homeostasis. Microbiol. Res. 2009, (Epub ahead of print)
    233. Thomas J. C., Sepahi M., Arendall B. Enhancement of seed germination in high salinity by engineering mannitol expression in Ara2 bidopsis thaliana. Plant Cell and Environment.1995, 18:801~806
    234. Thornley M .J., Horne R. W., Glauert A.M. The fine structure of Micrococcus radiodurans. Arch. Microbiol. 1965, 51:267-289.
    235. Tramonti A., De Canio M., Delany I., et al. Mechanisms of Transcription Activation Exerted by GadX and GadW at the gadA and gadBC Gene Promoters of the Glutamate-Based Acid Resistance System in Escherichia coli. J. Bacteriol. 2006, 188: 8118-8127
    236. van der Heide T. and Poolman B. Osmoregulated ABCtransport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. USA 2000,97: 7102-7106.
    237. Varghese A. J., Day R. S., Excision of cytosine-thymine adduct from the DNA of ultraviolet-irradiated Micrococcus radiodurans. Photochem. Photobiol. 1970, 11:511-517.
    238. Verheul A., Glaasker E., Poolman B. et al.Betaine and L-carnitine transport by Listeria monocytogenes ScottA in response to osmotic signals. J. Bacteriol.1997, 179: 16979-16985.
    239. Voelkner P., Puppe W. and Altendorf K. Characterization of the KdpD protein, the sensor kinase of the K?-translocating Kdp system of Escherichia coli. Eur. J. Biochem. 1993,217:1019-1026.
    240. Vuji?i?-?agar A. et al., Crystal Structure of the IrrE Protein, a Central Regulator of DNA Damage Repair in Deinococcaceae, J. Mol. Biol. 2009, doi:10.1016/j.jmb.2008.12.062
    241. Waditee R,, Hibino T,, Nakamura T,,et al.Overexpression of a Na +/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci. 2002, 99: 4109–4114
    242. Wang P., Schellhorn H. E Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can J Microbiol . 1995,41:170-6.
    243. Weber H., Polen T., Heuveling J., et al. Genome-Wild Analysis of the General Stress Response Network in Escherichia coli:σs-Dependent Genes, Promoters, and Sigma Facter Selectivity. J. Bacteriol. 2005, 187: 1591-1603
    244. Weichart D., Lange R., Hennerberg N. et al. identification and characterization of stationary phase-inducible genes in Eschericia coli. Mol. Microbiol. 1993,10: 407-420
    245. Weon H.Y.et al. Deinococcus cellulosilyticus sp. nov., isolated from air. Int. J. Syst. Evol. Microbiol., 2007, 57: 1685-1688
    246. Whatmore A. M., Chuedk J. A., Reed R. H. The effects of osmotic upshock on the intracellular solute pools of Bactllus subtilis. J.Gen. Microbiol. 1990, 136: 2527-2535
    247. White O., Eisen J.A., et al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999, 286: 1517-1577
    248. Witte G., Urbanke C., Curth. Single-stranded DNA-bing protein of Deinococcus radiodurans: a biophysical characterization. Nucleic Acids Research. 2005, 33:1662-1670
    249. Wood J.M. Proline porters e?ect the utilization of proline as a nutrient or osmoprotectant for bacteria. J. Membr. Biol.1988, 106: 183-202
    250. Xiao B.Z, Chen X, Xiang C. B., et al. Evaluation of Seven Function-Known Candidate Genes for their Effects on Improving Drought Resistance of Transgenic Rice under Field Conditions Mol Plant,2009, 2(1): 73– 83
    251. Yancey P. H., Clark M. E., Hand S. C., et al. Living with water stress: evolution of osmolyte systems .Science. 1982, 217: 1214-1222
    252. Zhang Y. Q., et al. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China.Int. J. Syst. Evol. Microbiol. 2007, 57: 70-75
    253.曾永辉,陈喜涵,苗丽霞,曹军卫.枯草芽孢突变株proBA基因植物表达载体的构建及转基因拟南芥的耐盐性能初探.安徽农业大学学报,2005,32:
    254.戴秀玉,王忆琴等.大肠杆菌海藻糖合成酶基因对提高烟草抗逆性能的研究.微生物学报,2001,41(4): 427-431
    255.李南羿,郭泽建.转录因子OPB P1和OsiWRKY基因的超表达提高水稻的耐盐及抗病能力.中国水稻科学( Chinese J Rice Sci),2006, 20 (1) :13~18
    256.苏金,陈丕铃,吴瑞.甘露醇-1- P脱氢酶转基因表达对转基因水稻幼苗抗盐性的影响.中国农业科学,1999,32 :101~103
    257.田兵,张韶文,许镇坚. PprI和RecX蛋白对耐辐射奇球菌抗氧化作用的影响.微生物学报,2006,46:238~242
    258.吴关庭,郎春秀,胡张华等.转CBF1基因增强水稻的耐逆性.核农学报,2006,20(3):169-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700