用户名: 密码: 验证码:
玉米ZmCIPK31基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙调磷酸酶B类蛋白(calcineurin B-like proteins, CBLs)是近年来鉴定出的一类植物中特有的Ca2+传感器,与其互作的蛋白CIPK(CBL-interacting protein kinase)一起在植物特定的生长发育和应答胁迫过程中起重要作用。对模式植物拟南芥和水稻的研究表明,CIPK广泛参与植物对高盐、低钾和干旱等非生物胁迫的应答反应。目前对于CIPK的研究主要集中在拟南芥和水稻上,其他植物上的研究相对较少。玉米作为世界上重要的粮食作物,干旱与土壤贫瘠等非生物胁迫是限制玉米生产的重要因素,挖掘玉米CIPK基因并进行功能研究,不但具有重要的理论意义,而且具有广泛的应用价值,可以为玉米抗逆转基因育种提供潜在的有效候选基因。本研究从玉米中克隆到一个新的CIPK基因ZmCIPK31,并对其生化属性、表达特性及功能等进行了分析。主要研究工作与结果如下:
     1、ZmCIPK31基因的克隆与序列分析利用RACE的方法,克隆得到ZmCIPK31全长cDNA,同时利用PCR方法得到了ZmCIPK31的基因组DNA序列和启动子序列。ZmCIPK31基因组含有14个外显子和13个内含子,蛋白结构上具有CIPK所共有的N端激酶结构域和C端NAF保守结构域。对ZmCIPK31启动子序列内的顺式作用元件进行预测分析,发现该基因启动子区域具有光应答、胁迫应答、发育相关、激素相关及其它功能未知的调控结构域。
     2、ZmCIPK31蛋白激酶活性分析构建原核表达重组载体pET-ZmCIPK31和pMAL-ZmCIPK31,通过原核表达分析,在大肠杆菌中成功的诱导表达了预期大小的目的蛋白。通过蛋白可溶性分析,发现His-tag-ZmCIPK31融合蛋白是不可溶性的,而MBP-ZmCIPK31融合蛋白是可溶性的。因此,将MBP-ZmCIPK31融合蛋白纯化并浓缩,用于蛋白激酶活性分析试验。蛋白自磷酸化试验表明ZmCIPK31具有激酶活性,且微量的Mn2+是有效的辅助因子。
     3、ZmCIPK31基因在玉米中的表达分析ZmCIPK31在正常生长条件的玉米的茎、根、幼胚、花丝、种子及叶中均有一定量的基础表达,且在花丝中的相对表达量最大。ZmCIPK31受盐、冷和PEG的诱导表达,而不受ABA和脱水处理诱导表达。
     4、ZmCIPK31亚细胞定位及与ZmCBLs的互作分析洋葱表皮及拟南芥原生质体中ZmCIPK31的亚细胞定位分析表明ZmCIPK31定位于细胞膜、细胞质和细胞核上。酵母双杂实验对ZmCIPK31s与ZmCBLs的互作分析及BiFC实验表明,ZmCIPK31与ZmCBL3和ZmCBL4互作,且NAF结构域是它们互作所必须的结构域;缺失了ZmCIPK31紧邻NAF结构域的C端区域的ZmCIPK31-337C除了与ZmCBL3和ZmCBL4互作外,还与ZmCBL2-1、2-2、5、6互作。
     5、ZmCIPK31基因转化野生型拟南芥在正常培养条件下的MS培养基、添加100mM NaCl的MS培养基以及冷处理条件下的MS培养基上,过表达ZmCIPK31的转基因拟南芥株系与野生型的种子萌发率、根长对比均没有显著差异,而在125mM和150mM NaCl的MS培养基上,转基因株系的种子萌发率显著高于野生型对照,根长与野生型没有显著差异。
The calcineurin B-like proteins (CBLs) are recently identified to be a kind of plant specific calcium sensors. CBL interacts with CIPK (CBL-interacting protein kinase). CBL and CIPK were proved to play important roles in responding to stresses and regulating certain developmental processes in plants. Based on studies on model plants Arabidopsis and rice, CIPKs perticipate in responsiveness of plants to abiotic stresses, such as high salinity, low potassium and drought. However, although researches on CIPKs have made much progress in Arabidopsis and rice in the recent years, only a few studies have been made and thus related information is limited in other plant species. Maize is one of the most important cereal crops in the world, its production is limited under abitotic stresses like drought and poor soil. Cloning CIPKs in maize not only shows theoretical meanings, but also benefits to practical application, providing potential candidate genes for improving stresses torlerance by genetic transformation in maize. Here, we isolated ZmCIPK31, a new CIPK in maize. Its biochemical property, expression profiles and fuctions have been analized. The main results were as follows.
     1. Cloning and sequence analysis of ZmCIPK31 gene
     The full length of ZmCIPK31 cDNA was obtained by using RACE method, while the genomic DNA of ZmCIPK31 with the promoter region, 2189bp upstream of ATG initiation codon, was obtained by PCR method. The genomic DNA was composed of 14 exons and 13 introns in its coding region. And it contained a serine/threonine kinase domain in N-terminal region and a NAF domain in C-terminal region. A promoter motif search of this region showed that there were motifs related to light, stress, development, auxin and others.
     2. Protein kinase activity of ZmCIPK31
     The recombinant plasmids pET-ZmCIPK31 and pMAL-ZmCIPK31 were constructed for prokaryotic expression analysis. The results showed that the predicted target protein could be induced in the recombinant plasmid transformed E. coli BL21 strain cells. Protein soluble analysis proved the fusion protein His-tag-ZmCIPK31 was not soluble, while MBP-ZmCIPK31 was soluble. Thus, the purified and concentrated soluble MBP-ZmCIPK31 fusion protein was obtained for protein kinase assay. The prtein autophosphorylation assay showed that ZmCIPK31 possessed protein kinase properties and millimolar range of Mn2+ was effective cofactor.
     3. Expression analysis of ZmCIPK31 gene in maize
     Certain ZmCIPK31 expression level in stem, root, embryo, filament, seed and leaf of maize were detected under normal growth conditions. And the relative expression level is the highest in filament. ZmCIPK31 was regulated by NaCl, cold and PEG, but not by ABA and dehydration.
     4. Subcellular localization of ZmCIPK31 and interation with ZmCBLs
     Subcellular localization analysis in onion epidermal cells and Arabidopsis mesophyll protoplasts showed that ZmCIPK31 expressed transiently in plasma membrane, cytoplasm and the nucleus. Yeast hybrid assay and BiFC assay showed that ZmCIPK31 interacted specifically with ZmCBL3 and ZmCBL4, and the NAF domain was necessary. ZmCIPK31-337C, however, exhibited more extensive affinities with ZmCBL2-1, 2-2, 5, 6 other than ZmCBL3 and ZmCBL4.
     5. Over-expression of ZmCIPK31 in Arabidopsis
     In MS medium with or without 4°C treatment and in MS medium with 100 mM NaCl, the seeds germination rate and root length of all five transgenic lines were just like that of the control wild-type. However, in the medium with 125 mM or 150 mM NaCl, all transgenic lines showed significantly higher germination rates than the wild-type Arabidopsis. On the contrary, there was no significant difference of the root length between transgenic lines and wild type.
引文
1.边鸣镝,吴忠义,赵久然,王永勤,张秀海,黄丛林,曹鸣庆.非生物胁迫诱导的玉米蛋白激酶基因ZmCIPK1的cDNA克隆和表达分析.农业生物技术学报,2008,16(6):965~97.
    2.冯永刚,孙广玉,王秋玉.论钙在植物细胞中盐胁迫信号转导中的作用.科技创新导报,2008,(4):153.
    3.李永祥.玉米耐旱性QTL定位及重要产量相关性状的遗传基础研究[博士学位论文].北京:中国农业科学院,2008.
    4.李玉菊,李小方.植物中解密Ca2+信号转导特异性的机制.细胞生物学杂志,2005,27(4):414~416.
    5.刘宏涛,李冰,周人纲.钙-钙调素信号系统与环境刺激.植物学通报,2001,18(5):554~559.
    6.毛国红,宋林霞,孙大业.植物钙调素结合蛋白研究进展.植物生理与分子生物学报,2004,30(5):481~488.
    7.尚忠林,毛国红,孙大业.植物细胞内钙信号的特异性.植物生理学通讯,2003,39(2):93~100.
    8.孙大业,马力耕.细胞外钙调素-一种植物中的多肽信使?中国科学(C辑),2001,31(4):289~297.
    9.邰付菊,王伟,刘全军,李会云.CBL /CIPK信号系统在植物细胞中的研究进展.安徽农业科学,2008,36(32):13957~13958, 14035.
    10.汪耀富,杨天旭,刘国顺,赵春华,王佩,陈新建.渗透胁迫下烟草叶片基因的差异表达研究.作物学报,2007,33(6):914~920.
    11.王茅雁.玉米类钙调磷酸酶B蛋白ZmCBL1与ZmCBL4基因的克隆与功能分析[博士学位论文].北京:中国农业大学,2007.
    12.杨洪强,梁小娥.高等植物中的CDPK及其生理生化功能.山东农业大学学报,2003,34(2):284~288.
    13.张和臣,尹伟伦,夏新莉.非生物逆境胁迫下植物钙信号转导的分子机制.植物学通报,2007,24(1):114~122.
    14.张俊文,魏建华,王宏芝,王彦珍,马荣才,李瑞芬.CBL-CIPK信号系统在植物应答逆境胁迫中的作用与机制.自然科学进展,2008,18(8):847~856.
    15.朱学海,宋燕春,赵治海,石云素,刘颖慧,黎裕,王天宇.用渗透剂胁迫鉴定谷子芽期耐旱性的方法研究.植物遗传资源学报,2008,9(1):62~67.
    16. Akaboshi M., Hashimoto H., Ishida H., Saijo S., Koizumi N., Sato M., Shimizu T.. The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14. J Mol Biol 2008, 377: 246~257.
    17. Albrecht V., Ritz O., Linder S., Harter K., Kudla J.. The NAF domain defines a novel protein-protein interaction module conserved in Ca2+–regulated kinases. EMBO J 2001, 20: 1051~1063.
    18. Babu Y.S., Bugg C.E., Cook W.J.. Structure of calmodulin refined at 2.2A resolution. J Mol Biol 1988, 204: 191~204.
    19. Batistic O., Kudla J. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 2004, 219: 915~924.
    20. Baum G., Long J.C., Jenkins G.I., Trewavas A.J.. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 1999, 96: 13554~13559.
    21. Boudsocq M., Laurière C.. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 2005, 138: 1185~1194.
    22. Braam J., Sistrunk M.L., Polisensky D.H., Xu W., Purugganan M.M., Antosiewicz D.M., Campbell P., Johnson K.A.. Plant responses to environmental stresses: regulation and functions of the Arabidopsis TCH genes. Planta 1997, 203: S35~S41.
    23. Burgoyne R.D., Weiss J.L.. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001, 353: 1~12.
    24. Bush D.S.. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 1995, 46: 95~122.
    25. Bush D.S.. Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells. Planta 1996, 199: 89~99.
    26. Cheong Y.H., Kim K.N., Pandey G.K., Gupta R., Grant J.J., Luan S.. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 2003, 15: 1833~1845.
    27. Cheong Y.H., Pandey G.K., Grant J.J., Batistic O., Li L.G., Kim B.G., Lee S.C., Kudla J., Luan S.. Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root. Plant J 2007, 52: 223~239.
    28. Chinnusamy V., Schumaker K., Zhu J.K.. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 2004, 55: 225~236.
    29. Clough S.J., Bent A.F.. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998, 16: 735~743.
    30. Cong M., Li Y.J., Dai X., Tian M., Li Z.G.. Involvement of calcium and calmodulin in the acquisition of heat shock induced thermotolerance in maize. Plant Physiol 1997, 150: 615~621.
    31. Crosatti C., Soncini C., Stanca A.M., Cattivelli L.. The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta 1995, 196: 458~463.
    32. D’Angelo C., Weinl S., Batistic O., Pandey G.K., Cheong Y.H., Schultke S., Albrecht V., Ehlert B., Schulz B., Harter K., Luan S., Bock R., Kudla J.. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid dependent and independent stress responses in Arabidopsis. Plant J 2006, 48: 857~872.
    33. Depege N. , Thonat C. , Julien J.L., Boyer N.. Thigmomor-phogenesis: moifications of calmodulin mRNA and protein levels in tomato plants. J Plant Physiol 1999, 155: 561~567.
    34. Ehrhardt D.W., Wais R., Long S.R.. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 1996, 85: 673~681.
    35. Evans N.H., McAinsh M.R., Hetherington A.M.. Calcium oscillations in higher plants. Curr Opin Plant Biol 2001, 4: 415~420.
    36. Felle H.H., Hepler P.K.. The cytosolic Ca2+ concentration gradient of Sinapis alba root hairs as revealed by Ca2+-selective microelectrode tests and fura-dextran ratio imaging. Plant Physiol 1997, 114: 39~45.
    37. Felsenstein J.. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 1985, 39: 783~791.
    38. Fujita M., Fujita Y., Noutoshi Y., Takahashi F., Narusaka Y., Yamaguchi-Shinozaki K., Shinozaki K.. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 2006, 9: 436~442.
    39. Gao P., Zhao P.M., Wang J., Wang H.Y., Du X.M., Wang G.L., Xia G.X.. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. Plant Physiol Bioch 2008, 46: 935~940.
    40. Gao P., Zhao P.M., Wang J., Wang H.Y., Wu X.M., Xia G.X.. Identification of genes preferentially expressed in cotton fibers: a possible role of calcium signaling in cotton fiber elongation. Plant Science 2007, 173: 61~69.
    41. Gilroy S., Trewavas A.. Signal processing and transduction in plant cells: the end of the beginning? Nat Rev Mol Cell Biol 2001, 2: 307~314.
    42. Gomperts B.D., Tatham P.E.R., Kramer I.M.. Signal Transduction. Academic Press, San Diego, 2002, 424 pp.
    43. Gong D., Gong Z., Guo Y., Chen X., Zhu J.K.. Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase. J Biol Chem 2002a, 277: 28340~28350.
    44. Gong D., Gong Z., Guo Y., Zhu J.K.. Expression, activation, and biochemical properties of a novel Arabidopsis protein kinase. Plant Physiol 2002b, 129: 225~234.
    45. Gong D., Guo Y., Jagendorf A.T., Zhu J.K.. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 2002c, 130: 256~264.
    46. Gong D., Guo Y., Schumaker K.S., and Zhu J.K.. The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 2004, 134: 919~926.
    47. Gong D., Zhang C., Chen X., Gong Z., Zhu J.K.. Constitutive activation and transgenic evaluation of the function of an Arabidopsis PKS protein kinase. J Biol Chem 2002d, 277: 42088~42096.
    48. Gong M., ver dan Luit A.H., Knight M.R., Trewavas A.J.. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 1998, 116: 429~437.
    49. Guo Y., Halfter U., Ishitani M., Zhu J.K.. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 2001, 13: 1383~1400.
    50. Guo Y., Xiong L., Song C.P., Gong D., Halfter U., Zhu J.K.. A calcium sensor and its interactingprotein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell 2002, 3: 233~244.
    51. Haeseleer F., Imanishi Y., Sokal I., Filipek S., Palczewski K.. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Commun 2002, 290: 615~623.
    52. Halford N.G., Bouly J.P., Thomas M.. SNF1-related protein kinases (SnRKs): regulators at the heart of the control of carbon metabolism and partitioning. Adv Bot Res 2000, 32: 405~434.
    53. Halfter U., Ishitani M., Zhu J.K.. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci USA 2000, 97: 3735~3740.
    54. Hanks S.K., Hunter T.. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 1995, 9: 576~596.
    55. Harmon A.C., Gribskov M., Gubrium E., Harper J.F.. The CDPK superfamily of protein kinases. New Phytol 2001, 151: 175~183.
    56. Harmon A.C.. Calcium-regulated protein kinases of plants. Gravit Space Biol Bull 2003, 16: 83~90.
    57. Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J.. Plant cellular and molecular responses to high salinity. Annu Rev. Plant Physiol. Plant Mol Biol 2000, 51: 463~499.
    58. Heo W.D., Lee S.H., Kim M.C., Kim J.C., Chung W.S., Chun H.J., Lee K.J., Park C.Y., Park H.C., Choi J.Y., Cho M.J.. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA 1999, 96: 766~771.
    59. Hrabak E.M., Chan C.W., Gribskov M., Harper J.F., Choi J.H., Hal-ford N., Kudla J., Luan S., Nimmo H.G., Sussman M.R., Thomas M., Walker-Simmons K., Zhu J.K., Harmon A.C.. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 2003, 132: 666~680.
    60. Hrabak E.M.. Calcium-dependent protein kinases and their relatives. In M Kreis, JC Walker, eds, Advances in Botanical Sciences, Plant Protein Kinases 2000, 32: 185~223.
    61. Hurry V., Strand A., Furbank R., Stitt M.. The role of inorganic phosphate in the development of freezing tolerance and the acclimatization of photosynthesis to low temperature is revealed by the pho mutants of Arabidpsis thaliana. Plant J 2000, 24: 383~396.
    62. Hwang Y.S., Bethke P.C., Cheong Y.H., Chang H.S., Zhu T., Jones R.L.. A gibberellin-regulated calcineurin B in rice localizes to the tonoplast and is implicated in vacuole function. Plant Physiol 2005, 138: 1347~1358.
    63. Ishitani M., Liu J., Halfter U., Kim C.S., Shi W., Zhu J.K.. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 2000, 12: 1667~1678.
    64. Jang H.J., Pih K.T., Kang S.G., Lim J.H., Jin J.B., Pia H.L., Hwang I. Molecular cloning of a novel Ca2+-binding protein that is induced by NaCl stress. Plant Mol Biol 1998, 37: 839~847.
    65. Jeong H.J., Jwa N.S., Kim K.N.. Identification and characterization of protein kinases that interact with the CBL3 calcium sensor in Arabidopsis. Plant Science 2005, 169: 1125~1135.
    66. Johnson C.H., Knight M.R., Kondo T., Masson P., Sedbrook J., Haley A., Trewawas A.. Circadianoscillations of cytosolic and chloroplastic free calcium in plants. Science 1995, 269: 1863~1865.
    67. Kiegle E., Moore C.A., Haseloff J., Tester M.A., Knight M.R.. Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 2000, 23: 267~278.
    68. Kim B.G., Waadt R., Cheong Y.H., Pandey G.K., Dominguez-Solis J.R., Schültke S., Lee S.C., Kudla J., Luan S.. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 2007, 52: 473~484.
    69. Kim H.J., Kin Y.K., Park J.Y., Kim J.. Light signaling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana. Plant J 2002, 29: 693~704.
    70. Kim K.N., Cheong Y.H., Grant J.J., Pandey G.K., Luan S.. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 2003a, 15: 411~423.
    71. Kim K.N., Cheong Y.H., Gupta R., Luan S.. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 2000, 124: 1844~1853.
    72. Kim K.N., Lee J.S., Han H., Choi S.A., Go S.J., Yoon I.S.. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol Biol 2003b, 52: 1191~1202.
    73. Knight H., Knight M.R.. Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 2001, 6: 262~267.
    74. Knight H., Trewavas A.J., Kight M.R.. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 1996, 8: 489~503.
    75. Kolukisaoglu U., Weinl S., Blazevic D., Batistic O., Kudla J.. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol 2004, 134: 43~58.
    76. Kuboniwa H., Tjandra N., Grzesiek S., Ren H., Klee C.B., Bax A.. Solution structure of calcium-free calmodulin. Nat Struct Biol 1995, 2: 768~776.
    77. Kudla J., Xu Q., Harter K., Gruissem W., Luan S.. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci USA 1999, 96: 4718~4723.
    78. Lescot M., Déhais P., Thijs G., Marchal K., Moreau Y., Van de Peer Y., RouzéP., Rombauts S.. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 2002, 30: 325~327.
    79. Lewit-Bentley A., Rety S.. EF-hand calcium-binding proteins. Curr Opin Struct Biol 2000, 10: 637~643.
    80. Li L.G., Kim B.G., Cheong Y.H., Pandey G.K., Luan S.. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci USA 2006, 103: 12625~12630.
    81. Ling V., Zielinski R.E. Isolation of an Arabidopsis cDNA sequence encoding a 22 kDa calcium-binding protein (CaBP22) related to calmodulin. Plant Mol Biol 1993, 22: 207~214.
    82. Liu H.T., Li B., Shang Z.L., Mu R.L., Sun D.Y., Zhou R.G.. Calmodulin is involved in heat shock signal transduction in wheat. Plant Physiol 2003, 132: 1186~1195.
    83. Liu J., Blaylock L.A., Endre G., Cho J., Town C.D., VandenBosch KA, Harrison MJ. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 2003, 15: 2106~2123.
    84. Liu J., Zhu J.K.. A calcium sensor homolog required for plant salt tolerance. Science 1998, 280: 1943~1945.
    85. Livak K.J., Schmittgen T.D.. Analysis of relative gene expression data using real-time quantitative PCR and the 2– CT method. Methods 2001, 25: 402~408.
    86. Luan S., Kudla J., Rodriguez-Concepcion M., Yalovsky S., Gruissem W.. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell 2002, 14 (suppl.): S389~S400.
    87. Luan S.. The CBL–CIPK network in plant calcium signaling. Trends in Plant Science 2009, 14: 37~42.
    88. Mahajan S., Sopory S.K., Tuteja N.. Cloning and characterization of CBL-CIPK signaling components from a legume (Pisum sativum). FEBS J 2006, 273: 907~925.
    89. MalhóR., Moutinho A., van der Luit A., Trewavas A.J.. Spatial characteristics to calcium signalling; the calcium wave as a basic unit in plant cell calcium signalling. Philos Trans R Soc Lond B Biol Sci 1998, 353: 1463~1473.
    90. Martínez-Atienza J., Jiang X.Y., Garciadeblas B., Mendoza I., Zhu J.K., Pardo J.M., Quintero F.J.. Conservation of the salt overly sensitive pathway in rice. Plant Phys 2007, 143: 1001~1012.
    91. McAinsh M.R., Brownlee C., Hetherington A.M.. Calcium ions as second messengers in guard cell signal transduction. Physiol Plant 1997, 100: 16~29.
    92. McCarty D.R., Chory J.. Conservation and innovation in plant signaling pathways. Cell 2000, 103: 201~209.
    93. Muranaka T., Banno H., and Machida Y.. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol 1994, 14: 2958~2965.
    94. Nelson M.R., Chazin W.J.. Calmodulin as a calcium sensor, in calmodulin and signal transduction. Van Eldik L.J. and Watterman D.M., eds. Academic Press, San Diego, 1998, 17~64.
    95. Nozawa A., Koizumi N., Sano H.. An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light. Plant Cell Physiol 2001, 42: 976~981.
    96. Ohba H., Steward N., Kawasaki S., Berberich T., Ikeda Y., Koizumi N., Kusano T., Sano H.. Diverse response of rice and maize genes encoding homologs of WPK4, an SNF1-related protein kinase from wheat, to light, nutrients, low temperature and cytokinins. Mol Gen Genet 2000, 263: 359~366.
    97. Ohta M., Guo Y., Halfter U., Zhu J.K.. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci USA 2003, 100: 11771~11776.
    98. Pandey G.K., Cheong Y.H., Kim K.N., Grant J.J., Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 2004, 16: 1912~1924.
    99. Piao H.L., Lim J.H., Kim S.J., Cheong G.W., Hwang I.. Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J 2001, 27: 305~314.
    100. Pooviah A.S., Ready A.S.N.. Calcium and signal transduction in plants. Crit Rev Plant Sci 1993, 12: 185~211.
    101. Qiu Q.S., Barkla B.J., Vera-Estrella .R, Zhu J.K., Schumaker KS. Na+/H+ exchange activity in the plasma membrane of Arabidopsis. Plant Physiol 2003, 132: 1041~1052.
    102. Qiu Q.S., Guo Y., Dietrich M.A., Schumaker K.S., Zhu J.K.. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 2002, 99: 8436~8441.
    103. Quan R.D., Lin H.X., Mendoza I., Zhang Y.G., Cao W.H., Yang Y.Q., Shang M., Chen S.Y., Pardo J.M., Guo Y.. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 2007, 19: 1415~1431.
    104. Quintero F.J., Ohta M., Shi H., Zhu J.K., Pardo J.M.. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 2002, 99: 9061~9066.
    105. Reddy A.S.N.. Calcium: silver bullet in signaling. Plant Sci 2001, 160: 381~404.
    106. Reddy V.S., Reddy A.S.N.. Proteomics of calcium-signaling components in plants. Phytochemistry 2004, 65: 1745~1776.
    107. Resh M.D.. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999, 1451: 1~16
    108. Roberts D.M., Harmon A.C.. Calcium2modulated proteins: Targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 1992, 43: 375~414.
    109. Rodrigurez Milla M.., Uno Y., Chang I.F., Townsend J., Maher E.A., Quilici D., Cushman J.C.. A novel yeast two-hybrid approach to identify CDPK substrates: characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Lett 2006, 580: 904~911.
    110. Rudd J.J., Franklin-Tong V.E.. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 2001, 151: 7~33.
    111. Saghai-Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W.. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 1984, 81: 8014~8019.
    112. Saijo Y., Hata S., Kyozuka J., Shimamoto K., Izui K.. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plant. Plant J 2000, 23: 319~327.
    113. Sánchez-Barrena M.J., Fujii H., Angulo I., Martínez-Ripoll M., Zhu J.K., Albert A.. The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 2007, 26: 427~435.
    114. Sanders D., Brownlee C., Harper J.F.. Communicating with calcium. Plant Cell 1999, 11: 691~706.
    115. Schinkmann K., and Blenis J.. Cloning and characterization of a human STE20-like protein kinase with unusual cofactor requirements. J Biol Chem 1997, 272: 28695~28703.
    116. Shi H., Quintero F.J., Pardo J.M., Zhu J.K.. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 2002, 14: 465~477.
    117. Shi J., Kim K.N., Ritz O., Albrecht V., Gupta R., Harter K., Luan S., Kudla J.. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 1999, 11: 2393~2405.
    118. Stocchetto S., Marin O., Carignani G., Pinna L.A.. Biochemical evidence that the Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser-Thr–specific protein kinase. FEBS Lett 1997, 414: 171~175.
    119. Su J.Y., Erikson E., and Maller J.L.. Cloning and characterization of a novel serine–threonine protein kinase expressed in early Xenopus embryos. J Biol Chem 1996, 271: 14430~14437.
    120. Sun X.L., Li B., Zhou G., Tang W., Bai J., Sun D.Y., Zhou R.G.. Binding of the maize cytosolic Hsp70 to calmodulin, and identification of calmodulin-binding site in Hsp70. Plant Cell Physiol 2000, 41: 804~810.
    121. Tamura K., Dudley J., Nei M., Kumar S.. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24: 1596~1599.
    122. Townley H.E., Knight M.R.. Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol 2000, 128: 1169~1172.
    123. Trewavas A.J., Knight M.R..Mechanical signalling, calcium and plant form. Plant Mol Biol 1994, 26: 1329~1341.
    124. Trewavas A.J., Malho R.. Signal perception and transduction: the origin of the phenotype. Plant Cell 1997, 9: 1181~1195.
    125. Tripathi V., Parasuraman B., Laxmi A., Chattopadhyay D.. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plant. Plant J 2009, doi: 10.1111/j.1365-313X.2009.03812.x.
    126. Urao T., Katagiri T., Mizoguchi T.. Two gene that encode Ca2+-dependent protein kinase are induced by drought and high salt stress in Arabidopsis thaliana. Mol Gen Genet 1994, 244: 331~340.
    127. Verslues P.E., Batelli G., Grillo S., Agius F., Kim Y.S., Zhu J., Agarwal M., Katiyar-Agarwal S., Zhu J.K.. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Molecular and Cellular Biology 2007, 27(22): 7771~7780.
    128. VranováE., Atichartpongkul S., Villarroel R., Montagu M.V., InzéD., Camp W.V.. Comprehensiveanalysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proc Natl Acad Sci USA 2002, 99: 10870~10875.
    129. Waadt R., Kudla J.. In planta visualization of protein interactions using bimolecular ?uorescence complementation (BiFC). 2008, CSH Protocols doi:10.1101/pdb.prot4995.
    130. Walter M., Chaban C., Schutze K., Batistic O., Weckermann K., Nake C., Blazevic D., Grefen C., Schumacher K., Oecking C., Harter K., Kudla J.. Visualization of protein interactions in living plant cells using bimolecular ?uorescence complementation. Plant J 2004, 40: 428~438.
    131. Wang M.Y., Gu D., Liu T.S., Wang Z.Q., Guo X.Y., Hou W., Bai Y.F., Chen X.P., Wang G.Y.. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 2007, 65: 733~746.
    132. White P.J., Broadley M.R.. Calcium in plants. Ann Bot 2003, 92: 487~511.
    133. Wymer C.L., Bibikova T.N., Gilory S.. Cytoplasmic free calcium distributions during the developments of root hairs of Arabidopsis thaliana. Plant J 1997, 12: 427~439.
    134. Xiang Y., Huang Y.M., Xiong L.Z.. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Phys 2007, 144: 1416~1428.
    135. Xiong L., Schumaker K.S., Zhu J.K.. Cell signalling during cold, drought , and salt stress. Plant Cell 2002, 14 Suppl: S165~S183.
    136. Xu J., Li H.D., Chen L.Q., Wang Y., Liu L.L., He L., Wu W.H.. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 2006, 125: 1347~1360.
    137. Yang W.Q., Kong Z.S., Omo-Ikerodah E., Xu W.Y., Li Q., Xue Y.B.. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.). J Genet Genomics 2008, 35: 531~543.
    138. Zhang J., Jiao Y.H., Lu H.F., Li Y.Z.. Construction of EST library of mixed tissues from maize and analysis of sequences of partial ESTs. J Guangxi Agric Biol Sci 2004, 23: 243~248.
    139. Zhang M., Tanaka T., Ikura M.. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat Struct Biol 1995, 2: 758~767.
    140. Zhang M., Yuan T.. Molecular mechanisms of calmodulin’s functional versatility. Biochem Biol 1998, 76: 313~323.
    141. Zhao J.F., Sun Z.F., Zheng J., Guo X.J., Dong Z.G., Huai J.L., Gou M.Y., He J.G., Jin Y.S., Wang J.H., Wang G.Y.. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol Biol 2009, 69: 661~674.
    142. Zhu J.K.. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 2003, 6: 441~445.
    143. Zielinski R.E.. Calmodulin and calmodulin-binding proteins. Annu Rev Plant Physiol Plant Mol Biol 1998, 49: 697~725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700