用户名: 密码: 验证码:
木工圆锯机转子系统动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对木工圆锯机结构、支承轴承特性及工作过程的分析,以国产MJ-90精密裁板锯转子系统(锯片、塔轮、锯轴、夹持装置和支承轴承)为研究对象,首次将木工圆锯机旋转构件作为转子系统,运用美国Rotating Machinery Analysis公司开发的大型转子系统动力学商业软件包XLROTOR,建立了木工圆锯机转子系统动力学模型。
     该模型可以考虑木工圆锯机各旋转构件(如锯片、夹盘、紧固螺母、主轴、皮带塔轮等零部件)的结构和安装位置对圆锯机系统动力学性能影响,同时还能考虑支承轴承的结构参数、工作参数及其安装位置对该系统动力学性能的影响。对于木工圆锯机可以考虑上述因素的模型,到目前为止还未见诸相关文献。在此基础上通过大量的分析计算,本文对木工圆锯机的动力学性能进行了较为详细的研究,所得主要结论如下;
     1.木工圆锯机转子系统存在陀螺效应,且陀螺效应对木工圆锯机转子系统的临界转速有较大影响。并且,转子系统主要零部件的陀螺效应与转子系统临界转速关系密切。例如,圆锯片直径大小对转子系统临界转速影响较大,在木工圆锯机的设计中,尤其要重视直径较大的薄圆盘零部件对木工圆锯机动态性能的影响。
     2.通过大量的计算分析得出,木工圆锯机的悬臂长度和支承跨距之比在0.349~0.52之间时,转子系统能够获得最高一阶临界转速。因此,从提高转子系统临界转速的角度出发,在设计支承跨距与悬臂长度时,应当遵循悬臂长度与支承跨距比的最佳动力学关系的原则。
     3.建立了转子系统主要零部件不平衡量与安装圆锯片处轴心不平衡响应关系曲线;并通过转子系统主要零部件不平衡量对圆锯片中心不平衡响应影响的研究,得出如下结论;在外夹盘、圆锯片、塔轮、锯轴各自不平衡量及其综合不平衡量(对称相位)对圆锯片中心不平衡响应的影响中,圆锯片和外夹盘的不平衡量是主要因素。并且,应当重点控制因主要零部件材质不均引起的不平衡量,这也是造成锯路过量损耗的主要因素之一。
     4.依据锯轴涡动现象建立了悬臂式木工圆锯机的锯路损失(ΔB)数学计算公式;AB=2(?)式中;θ=arctan[3Ia+2LI_a/a(Ia+LI_a)y_1],为设计提供参考依据。
     5.依据XLROTOR的不平衡响应振幅计算结果,对主要零部件不平衡量造成的锯路损失进行了分析后得出;为了减少锯路损失,总体上控制各主要零部件因材质不均造成的不平衡量,比提高它们的公差等级更为有效。
Through analyzing the structure of wood-working circular saw machine,the features of its bearing axletree and the working process and taking the homemade MJ-90 panel saw rotor system(saw, clamping device,step pulley,saw spindle,and the bearing system)as the research object,this paper, for the first time,take the wood-working circular saw as the rotor system and use XLROTOR,which is a business software package of big rotor system dynamics developed Rotating Machinery Analysis Ltd, to set up a dynamics model of wood-working circular saw rotor system.
     This model includes not only the effects on the dynamic capability of wood-working circular saw machine by the structure and installing position of each rotary components(such as saw,flange, fastening nut,principle axis,pulley,and so on)of wood-working circular saw machine,but also the effects by the structural parameter,working parameter,and the installing position of the bearing axletree. For the aforesaid model of which the wood-working circular saw machine could include the above-mentioned factors,we haven't seen it in any relevant published works so far.Based on it and with a number of analysis and calculations,this paper makes a relative detailed research and makes the main conclusions as following;
     1.The gyroscopic effect exists in the rotor system of wood-working circular saw machine,and seriously influences the critical speed of the rotor system.And there also is a close relation between the gyroscopic effect of the main parts of rotor system and the critical speed of the rotor system.For example,the diameter size of circular saw has a greater effect on the critical speed.When design the wood-working circular saw machine,it is especially important to considerate the effect of the dynamic capability of the wood-working circular saw machine by the bigger-size saw parts..
     2.Through a number of calculations,this paper comes into a result that the rotor system can reach the top-degree critical speed when the ratio of the cantilever of wood-working circular saw machine and the bearing span is between 0.349 and 0.52.Therefore,to improve the critical speed of rotor system, when we design the bearing span and the cantilever length we should conform to the best dynamic relation between them.
     3.This paper sets up a curve for the relation between the imbalance size of the main parts of rotor system and the imbalance response of the circular saw center.The conclusions for the research on the imbalance influence of the imbalance amounts of rotor system main parts to the imbalance response of the circular saw center are;among the imbalance response of the circular saw center by respective imbalance amounts and their integrated imbalance amounts(symmetrical phase)of external flange, circular saw,step pulley,and saw axis,the one of extemal flange and circular saw is the main factor.In addition,we should control the imbalance amounts caused by the difference of materials which is also one of the main factors for the loss of saw kerfs.
     4.According to the phenomenon of the saw axis vortex motion,this paper establishes a calculation formula for the loss of saw kerf(ΔB)of cantilever wood-working circular saw machine to provide a reference for design;
     5.According to the calculation result of the imbalance response amplitude by XLROTOR,this paper analyzes and calculates the loss of saw kerf caused by the imbalanced amounts of main parts and makes this conclusion;To reduce the loss of saw kerf,it is more efficient to generally control the imbalance amounts cause by the different materials of main parts than to improve their tolerance.
引文
[1]A.C.克利宗,等[苏]著.董师予译.汪一麟校.转子动力学[M].北京;科学出版社,1987.
    [2]B、φ、安莫诺夫,等[苏]著.杨静榕译.新型圆锯片[J].木工机床,1996,(4);24-25.
    [3]奥斯特罗乌莫夫[苏]著.杨静榕译.圆锯机木材合理切削用量的选择[J].工艺与设备,1994.
    [4]蔡英,黄国庆,刘建清,等.机床高速主轴系统的动力学特性[J].江南大学学报(自然科学版),2003,Vol.2(3);287-292.
    [5]陈渝生,张天赐,林石.圆锯片齿间高度误差分析[J].西南林学院学报,1998,Vol.18(3);194-199.
    [6]崔文彬.开径向槽圆锯片的动态性能研究[D].北京林业大学研究生论文,1994.
    [7]戴大力,吴朝阳,等.我国木工机床产品质量的分析[J].林产工业,1999,Vol.26(4);12-14.
    [8]方莜萍译,卢镇华校.圆锯的齿数、径向槽对振动振幅和噪声的影响[M].木工机床,1994,40(2);148-157.
    [9]耿德旭,王向东,胡波,等.适张度的辊压加工及对圆锯片的动态性能影响[J].东北电力学院学报,2003,Vol.23(2);53-56.
    [10]花军,等编著.现代木工机床设计.哈尔滨;东北林业大学出版社,2004,P.87-109;P.118-120.
    [11]洪德纯.圆锯片平面度的评价及其平面修整[J].木工机床,2000,No.2;11-13.
    [12]洪德纯.国外的原木圆锯机[J].林业机械与木工设备,1999,Vol.27(9);30-32.
    [13]胡超,杜彦卫,黄文虎.单跨转子轴承系统非线性振动分析[J].哈尔滨工业大学学报,2002,Vol.34(6);731-734.
    [14]胡万明,齐英杰,等.精密裁板锯的结构和应用[J].人造板通讯,2004,No.6;25-27.
    [15]Jeanne.D.Daniclson,Gray.S.Schajer.卢镇华译.郑宗鉴校.多锯片圆锯机的锯片特性[J].木工机床,2002,No.3;16-17.
    [16]卡尔布利恩[美].卢镇华译.郑宗鉴校.纵剖多锯片圆锯机锯轴设计[J].Wood and Wood Product,1993.No.2;113-118
    [17]柯达生.木工圆锯机安全技术要求[J].林业劳动安全,1997,No.3;37-40
    [18]李传信,耿德旭.普通圆锯片固有频率的理论探讨[J];吉林林学院学报,1996,Vol.12(3);160-163.
    [19]李传信.细缝低噪声硬质合金圆锯片的研究[J].吉林林学院学报,1996,Vol.12(4);218-223.
    [20]李东旭.高等结构动力学[M].长沙;国防科技大学出版社,1997.
    [21]李景涌.有限元法[M].北京;北京邮电大学出版社,1999.
    [22]李黎.温度场对圆锯片动态稳定性影响的理论与实验研究[D].北京林业大学博士论文,2003.
    [23]李黎,习宝田.圆锯片振动动态稳定性及其控制技术的研究[J].木工机床,2002,No.2.
    [24]李文彬,习宝田,李黎,赵广杰,殷宁.木材工程研究进展[M].中国环境科学出版社,2005;140-141
    [25]李延军,杜春贵,沈哲红.木工圆锯机噪声及控制[J].浙江林业科技,2002;Vol.22(4);35-37.
    [26]李志刚,张直明.不平衡质量的大小和分布对柔性转子-轴承系统稳定性的影响[J].振动与冲击,1997,Vol.16(1);15-18.
    [27]李志仁,戴大力,黄文波.木工机床振动质量的评价[J].林业机械与木工设,2001,Vol.29(6);35-37.
    [28]李志仁,朱国玺,齐英杰等.木工圆盘类锯机动态性能研究概况[J].林业机械与木工设备,2000.No.1;4-9.
    [29]刘诚,陈健,花军.木工机床振动薄弱环节的模糊识别方法[J].林业机械与木工设备,2001,Vol.210-12(9);9.
    [30]刘西瑞,李文彬,闫民,等.木工圆锯机转子系统动力学研究的进展[J]木材加工机械.2006, Vol.17(4);28-31.
    [31]刘西瑞,闫民,李文彬,等.木工圆锯的陀螺效应[J]木材加工机械.,2007,Vol.29(4);67-71.
    [32]刘宗禹.摩尔定理和有限差分法在摇臂式万能木工圆锯机刚度设计中的应用[J].木工机床,1996,No.2;1-9.
    [33]路鹏程,陈欣,习宝田.浮动导向木工圆锯的研究[J].林产工业,1995,Vol.22(4);19-20
    [34]人造板通讯[J].1995,Vol.17(8);8.
    [35]卢镇华.精密推台圆锯机的结构特点[J].工艺与设备,2002,No.11;32-34.
    [36]吕良清.圆锯机设计的主要技术参数选择原则初探[J].木工机床,2002,No.11;42.
    [37]罗熙淳,马岩,等.国外制材工业发展趋势及我国制材工业未来发展模式初探[J].林业机械与木工设备,1997,Vol.25(5).
    [38]马岩.国际木工机械设计理论研究的发展[J].林业机械与木工设备,1998,Vol.26(8);4-8.
    [39]马岩.从价格角度看我国木工机械走向国际市场的开发方向[J].林业机械与木工设备,2005,Vol.33(4);4-8.
    [40]马岩.国际木工机械新技术的最新进展[J].林业机械与木工设备,2006,Vol.34(1);4.
    [41]马建敏,黄协清,陈天宁.圆盘锯片振动特性的计算分析[J].机械科学与技术,1999,Vol.18(3);366-368.
    [42]马建敏,黄协清,陈天宁.旋转与非旋转体间接触摩擦诱发振动的理论分析[J].西安交通大学学报,1999,Vol.33(1);102-106.
    [43]马建敏,吕景林,黄协清,等.在冷锯机夹盘减振降噪中应用粉体阻尼技术的实验研究[J].重型机械,2004,No.4;28-30.
    [44]马建敏,吕景林,黄协清等.夹盘对锯片静动态特性的影响[J].重型机械,1998,No.3;20-24
    [45]马建敏,吕景林,黄协清等.周期脉冲激励引起锯片振动的研究[J].噪声与振动控制,1999,No.1;21-21
    [46]马建敏,张文,郑铁生.转子系统瞬时撞击刚度的定量计算方法[J].应用力学学报,2003,Vol.20(2);68-71
    [47]母德强,陈塑寰.圆锯片最佳辊压适张度处理位置的分析[J].林业科学,2001,Vol.37(2);84-89.
    [48]齐英杰,陈守谦,朱国玺等.精密裁板锯动态特性的研究[J].林业机械与木工设备,2000,Vol.28(3);20-21.
    [49]齐英杰,马岩,等.我国木工机械动态特性的理论研究概况[J].林业科技,2000,第01期.
    [50]齐英杰,张兆好,齐晓杰.精密裁板锯试验模态分析[J].林业科学,2003,Vol.39(3);125-128.
    [51]邱金波,丁汉.旋转圆盘振动主动控制理论及实验研究的发展[J].机电工程技术,2003,Vol.32(2);18-20.
    [52]宋宝发.圆盘锯机及锯片对加工质量的影响[J].加工技术,2001,No.11;15-21.
    [53]孙道炎,崔文彬.应制订圆锯片动态质量标准[C].第一届木工机床科技论文报告会,北京.1995.
    [54]孙道炎,崔文彬.圆锯片动态性能研究的概况.木工机床,1994,No.2;13-16.
    [55]万长森编著.滚动轴承的分析方法[M],北京;机械工业出版社,1987.
    [56]王玲,刘培锷.圆盘锯锯片应力分布实验研究[J].重型机械,2000,No.2;18-20.
    [57]王国才,等.圆锯片适张度的计算[J].木材加工机械,1992,No.3;21-25.
    [58]王杨,撒潮,陈永光.微机控制圆锯片应力检测系统的设计[J].木材加工机械,2004,No.2;6-9.
    [59]闻邦椿,顾家柳,夏松波,等主编.高等转子动力学--理论、技术与应用[M].北京;机械工业出版 社,2000.
    [60]吴厚钰.透平零件结构和强度计算[M].西安交通大学出版社,1980;207-209.
    [61]习宝田,撒潮.圆锯片适张应力分布状况及锯片平整性量化分析方法的研究[J].木材工业,1995,No.5;13-16.
    [62]习宝田,撒潮.圆锯片适张状态检测方法研究[J].北京林业大学学报(增刊),1995,NO.2;18-24.
    [63]习宝田.圆锯片适张和平整状态光隙检测法的理论与实践[J].木工机床,1994,No.1;16-24.
    [64]习宝田.制约圆锯片极限转速的几个重要因素[J].木工机床,1991,No.3;1-5.
    [65]徐龙祥.高速旋转机械轴系动力学设计[M].长沙;国防工业出版社,1994.
    [66]叶良明.国外圆锯适张度研究概况[J].木工机床,1989,No.2;6-12.
    [67]虞烈,刘恒.轴承--转子系统动力学[M].西安;西安交通大学出版社,2001.
    [68]袁小阳.轴系的稳定性裕度、非线性振动和动力性能优化.西安交通大学博士论文,1994.5.
    [69]张大卫,等.圆锯片受辊压适张度作用时固有频率的变化规律[J].机械工程学报,1997,Vol.33(5);1-6.
    [70]张奇.MJ-3精密圆锯机的研制与使用[J].木材加工机械,1998,No.4;20-21.
    [71]张奇,黄南,崔志敏.MJ-3小型精密圆锯机研制的设计特色[J].林业科技,1995,Vol.20(1);39-44.
    [72]张占宽,习宝田.圆锯片局部受轴向压力作用下的塑性变形及强化[J].木材加工机械,2003,No.2
    [73]张占宽,夹盘直径对圆锯片固有频率的影响[J].林业机械与木工设备,2005,Vol.33(6);13-15.
    [74]赵之钦.偏心圆锯锯割竹材胶合板的初步试验[J].南京林业大学学报,1997,Vol.21(3);91-93.
    [75]赵杨,虞和济.圆锯机空气动力噪声.应用声学,1997,No.4.
    [76]曾明贤.精密裁割技术在木材工业中的应用[J].林业科技开发,1995,No.3;18-19.
    [77]郑宗鉴.浅谈欧洲标准EN1870-1;1999《木工机床安全圆锯机 第1部分;手动进给圆锯机(带或不带移动工作台)和带移动工作台锯板机》[J].木工机床,2003,No.2;23-31.
    [78]邹家祥,沈祥芬,熊华.圆锯片的动态特性[J].北京科技大学学报,1994,Vol.16(增刊);95.
    [79]朱国玺,王华滨,等.现代制材生产线的研究[M].东北林业大学出版社,1989.
    [80]张可村.工程优化的算法与分析[M].西安;西安交通大学出版社,1986.
    [81]赵凤治,尉继项.约束最优化计算方法[M].北京;科学出版社,1991.
    [82]佟晓平,孟庆军.浅谈木工机床工作速度的选定原则[J].林业机械与木工设备,1997,Vol.25(9);20-22.
    [83]西尾 悟,丸井悦男.Deformation behaviors of circular saw blades in the circular rotational speed region during sawing[J].木材学会志,1997;vol.42,No.6;546-746.
    [84]The Concepts of Spindle著.晓林译.有关主轴的一些基本概念[J].Products & Technology,2002,No.3;48-49.
    [85]Wolfgang Schmutzler.郑宗鉴译.卢镇华校.刀具主轴的运转探索[J].木工机床,2002,No.1;24-28
    [86]Ahn T.K.,Mote C.D.Jr.,Mode Identification of a Rotating Disk,Experimental Mechanics[J],1998,Vol.38,(4).
    [87]Berolzheimer C.P,Best C.H.Improvements through research on thin circlar saw blades[J].forest Products J.,1959.Vol.9(11);404-412.
    [88]Carlin J.F.et al.Effexts of tensioning on buckling and vibration of circlar saw blades[J].J.Eng.IND.1975(2);37-38.
    [89]C-S Kim,C-W Lee,Traveling Wave Control of Rotating Discs and Analysis of Its Spillover Effect[J],Proc Instn Mech Engrs,1988,Vol.202,No.C2.
    [90] C. Y. Kuo, C. C. Huang, Active Control of Mechanical Vibrations in a Circular Disc [J], Transactions of The ASME, Journal of Dynamic Systems, Measurement, and Control, 1992, Vol.114.
    
    [91] Dugdale D.S.1966 Stiffness ofa spinning disc clamed atitscenter[J]. J.Mech.Phys.Solids,11:4147.
    [92] Dugdale D.S.,Squirs B.A.,1965.Effects of radial load on the flexural stiffness of a thin disc,J.Mech. Phys.Solids,13:237-245.
    [93] Ellis R.W.,Mote C.D. Jr.. A feedback vibration controller for circular saws[J].ASME Journal of Dynamic Systems, Measurement,AndControl, 1979,Vol. 101 ,pp.4449.
    [94] Gosiewski Z.Rotor vibration control. ASME,RotatingMachiery Dynamics, 1987,237.
    [95] Hutton S.G. 1991. The dynamics of circular saw blades[J].Holzals Roh-und Werkstoff,49:105-110.
    [96] H.LAMB,R.V.SOUTHWELL,The vibration of spinning disk [J],Proceedings of the Royal Sociely,1921,99:272-280.
    [97] Huang taiping, Lund J W. The transfer matrix component mode synthesis for eigensolution of rotor systems,Journal of Nanjing Aeroonauical Institute, 5/1,1988,143-155.
    [98] Li Li,Sa Chao, Xi Baotian.The Restricting Factors on the Li miting Rotary Speed of the Circular Saw[J].Forestry Studies in China,2000,Vol.2(2):85-90.
    [99] Kim Y.B.,Noah S.T.,Quasi- periodic response and stability analysis for a non-liner jeffcott rotor[J].Journal of Sound and Vibration, 1996, 190(2):239-253.
    
    [100] Mote C.D. Jr. 1965.Free vibration of initially stress circular discs[J].Trans.ASME 87B(2):258-264.
    [101] Mote C.D. Jr. 1970.Stability of circular plates subjected to moving loads[J].J.Frinklin inst.290(4):329-344.
    [102] Mote C.D. Jr.1970.Formulation of discrete element models for the stress and vibration analysis of plates[J]. Canlifornia University.Forest Products Lab.,Rep.No.35.01.77,January 1970
    [103] Mote C.D. Jr.1974.Edge load in rotating disc critical speed analysis[J]. Canlifornia University.Forest Products Lab. Rep.No.35.01.130,September, 1974.
    [104] Malcolm F.B. 1972.Expansionslots,symmetricallyplaced,solve problem of screming"saws[J]. World Wood(3): 10-11.
    
    [105] McLauchlan T.A.1972.Recent development in Circularripswing[J].ForestProd.J.22(6):42-48.
    [106] Mote C.D. Jr.,Nieh L.T.1971.Control of circular disk stability with membrane stresses[J].Exp.Mech. 11(11 ):490498.
    
    [107] Mote C.D. Jr., Circular Saw Vrbration Research [J], Shock and Vrbration Digest, 1978.
    [108] Mote C.D. Jr.,Nieh L.T. 1973.On the foundation of cirlular saw stability theoy[J].Wood and Fiber 5(2): 160-169.
    [109] Mote C.D. Jr.1964.Circular saw vibration control by induction of thermal membrane stresses [J].J.Engin.Ind.,1981,(103):81-89.
    [110] Pahlizsch G.,Rowibsk,B,1967.Uber das Schwingungsverhalten von Kerissageblattern. Mitteilung: Ermittlung und Auswirkungen der kritischen Drehzahlen und Eigenfrequenzen der Ssageblatter[J]. Holz Roh-Werkstoff24(8):341 -346.
    [111] Radcliff C. J.,Jr,.Identification and Control of Rotating Disk Vibration [J] .ASME Journal of Dynamic System, Measurement, And Control, 1983,Vol. 105:39-45.
    [112] Radcliff C. J., Mote C. D. Jr., Identification and Control of Rotating Disk Vibration [J]. ASME Journal of Dynamic System, Measurement, And Control, 1983,Vol.105:39-45.
    [113] Schajor G.S. 1984.Understanding Saws Tebsioning[J].Holz als Roh-undWerkstoff,42:425-430.
    [114] Stakhiev Y.M.,Lyzhin F.V.I 972. Stability of the circular sawblades[J].Lesn.Zh.15(1):163-168.
    [115] Stakhiev Y.M. 1972.Vibration in thin steek discs[J].Russian Eng.J.52(8): 14-17.
    [116] Schajor G.s.,Mote C.D.Jr.,Analysis of optimal roll tensioning for circular saw Stability [J] .Wood and Fiber.1984,16(3).323-338.
    [117]S. W. Byun, C. W. Lee, Pole assignment in rotating disk vibration control using complex modal statefeedback [J], Mechanical system and Signal processing, 1988, Vol.2,No.3.
    [118]Szymani R.,Anew method using electronic equipment for evaluation of circular saw tensioning[J]. Wood MachiningNews. 1984,1(2):24.
    [119]Yang B., Mote C. D. Jr., Frequency-Domain Vibration Control of Distributed Gyroscopic Systems [J], ASME Journal of Dynamic Systems, Measurement, And Control, 1991,Vol. 113:18-25.
    [120]Yanabe S., S.kaneko, Rotor vibration due to collision with annular guard during passage through critical speed[J],ASME Journal of Vibration and Acoustics, 1998,120(APRLL):544-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700