用户名: 密码: 验证码:
高速轮胎试验机的机构特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮胎试验技术对轮胎工业的发展起着至关重要的作用。轮胎试验机模拟轮胎在路面行驶效果与轮胎实际工况的近似程度是轮胎试验技术发展的关键。轮胎工作时的受载情况较为复杂,试验机上的轮胎悬挂机构应能实现对轮胎各种运动姿态的模拟,同时要接近实际工况。汽车高速轮胎动态特性试验机是测试汽车轮胎在高速(小于250km/h)状态下各种性能参数的实验设备。本文综述了轮胎试验技术的发展状况,介绍了多体系统动力学理论,基于ADAMS软件对轮胎的接触运动过程进行仿真模拟,确定较为合适的机构方案进行控制规律优化。
     首先,提出两种应用于高速轮胎试验机的轮胎悬挂机构,分别分析两种机构的特点,并对两种机构间的运动形式差别进行分析。两种方案在侧倾运动和侧偏运动中,在保持一定的侧倾或侧偏角度时,轮胎摆动的旋转轴线位置不同。因此两种机构下轮胎的运动姿态可能存在差别,何种机构的运动形式能够使轮胎的运动姿态更接近实际工况,是要进一步解决的问题。
     其次,采用ADAMS软件分别将悬架机构和两种机构进行运动仿真。得到有参考价值的接触轨迹曲线。轮胎与车辆之间是通过悬架机构相连接的,选用又横臂悬架机构作为参考,将两种方案在单侧倾运动、单侧偏运动和侧倾侧偏混合运动下的轮胎接触轨迹与悬架机构相比较。通过对接触轨迹的比较,确定方案2的模拟效果优于方案1。
     最后,方案2机构加载轮胎所形成的接触轨迹与悬架机构下的轨迹近似程度有待提高,对方案2机构的运动规律进行优化。以侧倾、侧偏混合运动为例,将悬架机构下轮胎的运动规律曲线提取成样条函数,作为驱动加入方案2机构仿真模型,仿真后的接确轨迹与悬架机构下的接触轨迹较为近似。此时侧倾、侧偏油缸的伸缩量、伸缩速度规律曲线可生成函数在实际机构中驱动伺服油缸,使方案2机构的模拟效果与悬架机构近似,优化效果较为理想。
Tire experiment technology to tire industry development very important function. The tire testing machine simulation tire in the road surface travel effect and the tire actual operating mode's approximate degree is the tire experiment technological development key. The tire works the time standing under load situation to be more complex, on testing machine's tire is hanging the organization to be able realize to the tire each kind of movement posture simulation, simultaneously must approach the actual operating mode. The automobile high speed tire dynamic characteristic testing machine tests the automobile tire, in high speed (is smaller than 250km/h) under the condition each performance parameter test installation. This article summarized the tire experiment technology development condition, introduced the multimode system kinetic theory, carries on the simulation simulation based on the ADAMS software to tire's contact rate process, determined that the more appropriate organization plan carries on the control rule optimization.
     First, proposed that two kinds apply in the high speed tire testing machine's tire are hanging the organization, analyzes two kind of organizations separately the characteristics, and carries on the analysis to movement form differences between two kind of organization's. Two kind of plans in the side lurch movement and the side leaning movement, when maintains certain side lurch or the side leaning angle, the tire swinging centerline position is different. Therefore under two kind of organizations tire's movement posture possibly has the difference, what kind of organization's movement form can cause tire's movement posture to be closer the actual operating mode, is question which must further solve.
     Next, uses the ADAMS software separately carries on the suspension fork organization and two kinds of organizations the movement simulation. Obtains has the reference value contact path curve. Between the tire and the vehicles is connects through the suspension fork organization, selects the cross arm suspension fork organization to take the reference, two kind of plans, in the single side lurch movement, the one-sided leaning movement and the side mix under the movement at an angle the tire contact path and the suspension fork organization compare. Through to contacts path's comparison, the definite plan 2 simulation effects surpass the plan 1.
     Finally, the plan 2 organization load tire forms the contact path and under the suspension fork organization's path approximate degree waits for enhancing, carries on the optimization to the plan 2 organization's laws of motion. Take the side lurch, the side mix the movement as examples, tire's law of motion curve withdraws the splice function the suspension fork organization, joins the plan 2 organization simulation models as the actuation, after the simulation meets the true path and under the suspension fork organization contact path is more approximate. This time the side lurch, the side leaning cylinder's expansion quantity, the expansion speed rule curve may the generating function actuate the servo cylinder in the actual organization, causes the plan 2 organizations the simulation effects and the suspension fork organization is approximate, the optimized effect is more ideal.
引文
[1]朱余清.汽车轮胎“突爆”原因及预防措施.农机使用与维修,2004,(3).
    [2]Bolarinwa,E.O.;Olatunbosun,O.A.Finite element simulation of the tire burst test,2004,(6):51-58.
    [3]祁贵珍.汽车轮胎的损坏形式及原因分析.城市车辆,2004,(4).
    [4]陶柯,郭丹,毕树国.基于ANSYS的轮胎试验机A型架的运动数值仿真.机械工程师,2005,(11):118-119.
    [5]陶柯,毕树国,郭丹.基于模态分析法的汽车高速轮胎试验机机架研究.机械研究与应用,2005,(10):36-37.
    [6]陶柯,钱建徐,蒋佩岩,李丹.高速轮胎试验机轮毂动态特性分析.机械研究与应用,2006,(10):38-39.
    [7]陶柯,李丹,钱建徐,蒋佩岩.轮胎试验机的运动机构选型及仿真.机械工程师,2006,(12):86-89.
    [8]吴桂忠.世界轮胎生产技术现状与发展趋势.轮胎工业,2006,26(8):451-456.
    [9]伍江涛,夏松茂.美国国家公路安全管理局(NHTSA)轮胎安全标准的制修订浅析(一).橡胶科技市场,2005,3(20):15-17.
    [10]伍江涛,夏松茂.美国国家公路安全管理局(NHTSA)轮胎安全标准的制修订浅析(二).橡胶科技市场,2005,3(21):17-18.
    [11]罗阳,黄锡朋,刘刚.汽车轮胎力学特性的试验研究.同济大学学报,1997,25(5):543.
    [12]彭旭东,郭孔辉,谢友波.干燥路而上轿车轮胎侧偏特性试验.上海交通人学学报,2006,40(1):148.
    [13]任礼行,刘青,张艾谦等.轮胎滚动阻力测量与分析.汽车工程,2000,22(5):316.
    [14]贺海留,贾石海.轿车轮胎的室内噪声测试.橡胶工业,1997,44(2):102.
    [15]董芹,关元洪.轮胎车外噪声测试与评价方法.轮胎工业,1999,19(5):259.
    [16]李福军,吴桂忠.轮胎花纹沟的发声模拟计算.轮胎工业,2006,26(4):203.
    [17]唐宏.湿滑路而上轮胎最小极限速度的有限元仿真.CAD/CAM与制造业信息化,2005,(12):48.
    [18]川彭旭东,孟祥凯,卢荡等.冰雪路而汽车轮胎摩擦特性研究进展.摩擦学学报,2003,23(5):451.
    [19]吴海燕.青岛高校软控轮胎动平衡试验机通过欧盟CE认证.轮胎工业,2006.
    [20]涂学忠.VMI推出万用轮胎试验机.轮胎工业,2000,(3):113.
    [21]谢立.日本住友公司研制成功轮胎试验新装置.橡塑技术与装备,2002,(1):98.
    [22]Ortiz,A.;Cabrera,J.A.;Castillo,J.;Simon,A.Analysis and evaluation of a tire model through test data obtained using the IMM tire test bench.2005,(3):241-252.
    [23]De Beer,M.;Sadzik,E.M.;Fisher,C.;Coetzee,C.H.Tire-pavement contact stress patterns from the test tires of the Gaitanis Heavy Vehicle Simulator.2005,(3):413-430.
    [24]Slavnich D.Plenty to prove.Tire Technology International,2005,(12):22.
    [25]Slavnich D.History makers.Tire Technology International,2005,(12):18
    [26]Adams,D.E.;Jaques,J.;Strus,M.Tire modal impact testing and forced-response analysis.Experimental Techniques,2006,30(2):61-69.
    [27]Yoo,Wan-Suk;Kim,Kee-Nam;Kim,Hyun-Woo.Developments of multibody system dynamics:Computer simulations and experiments.Multibody System Dynamics,2007,18(1):35-58.
    [28]李岩.多体运动学在双横臂独立悬架分析与设计中的应用:(硕士学何论文).合肥:合肥工业大学,2002.
    [29]饶剑.基于ADAMS的悬架系统动力学仿真分析与优化设计:(硕士学位论文).武汉:武汉理工大学,2005.
    [30]肖力军.基于ADAMSCAR的汽车悬架系统虚拟样机设计与性能分析:(硕士学位论文).长沙:湖南大学,2006.
    [31]张培培.汽车悬架系统的动力学分析与仿真试验:(硕士学位论文).西安:长安大学,2005.
    [32]孙义杰,巢凯年.ADAMSVIEW住汽车前悬架仿真应用及优化分析.西华大学学报,2005,24(6):13-17.
    [33]郑凯,胡仁喜,陈鹿民.ADAMS 2005机械没计高级应用实例.北京:机械工业出版社,2006.
    [34]郑建荣.ADAMS虚拟样机技术入门与提高.北京:机械工业出版社,2006.
    [35]李增刚.ADAMS入门详解与实例.北京:国防工业出版社,2006.
    [36]Rao,K.V.N;Kumar,R.K.Simulation of tire dynamic behavior using various finite element techniques.International Journal of Computational Methods in Engineering Science and Mechanics,2007,8(5):363-372.
    [37]Blundell,M.V.Intermediate tyre model for vehicle handling simulation.Proceedings of the Institution of Mechanical Engineers,Part K:Journal of Multi-body Dynamics,2007,221(1):41-62.
    [38]任卫群.车-路系统动力学中的虚拟样机.北京:电子工业出版社,2005.
    [39]鲍卫宁.基于ADAMS软件的轿车悬架动态模拟与仿真:(硕士学位论文).武汉:武汉理工大学,2002.
    [40]Chen,Liqing;Zheng,Quan;Chen,Wuwei.Study on active suspension system based on ADAMS and Simulink.Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery,2007,38(4):12-15.
    [41]刘虹,王其东.基于ADAMS双横臂独立悬架的运动学仿真分析.合肥工业大学学报,2007,30(1):57-59.
    [42]于海波,李幼德,门玉琢,邓庆阳.双横臂独立悬架ADAMS建模及运动特性分析.汽车技术,2007,(3):5-7.
    [43]朱学文,詹建军,何小新.基于Pro/E与ADAMS的汽车悬架仿真分析.机械电子,2005(8):70-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700