用户名: 密码: 验证码:
水稻氮代谢基础研究:谷氨酸脱氢酶作用的分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮是植物生长发育必所需的矿质营养元素中需求量最大的一种,是氨基酸、蛋白质、核酸、叶绿素、激素等的组成成分。植物体内氮循环是一个复杂的过程,涉及到许多酶。其中根吸收的NH_4~+或NO_3~-还原产生的NH_4~+首先通过谷氨酰胺合成酶(glutamine synthetase,GS;EC 6.3.1.2)催化产生谷氨酰胺(glutamine,Gln),此反应需要消耗一分子ATP。GS常与谷氨酸合酶(glutamate synthase,GOGAT;Fd-GOGAT:EC1.4.7.1和NADH-GOGAT:EC 1.4.1.14)协同作用,组成GS/GOGAT循环。在这一循环中GS催化NH_4~+与谷氨酸(Glutamate,Glu)生成Gln,GOGAT则催化Gln将其酰胺基转移至α—酮戊二酸(α-OG)形成两分子Glu。另外,NH+4~+也可通过谷氨酸脱氢酶(glutamate dehydrogenase,GDH;1.4.1.2~4)催化直接与α-OG反应产生Glu,这是一可逆反应。GS和GOGAT一起构成的循环是高等植物NH_4~+同化的主要途径,而GDH功能还不太清楚。从能量消耗来看,提高植物中GDH效率是一条提高氮肥利用效率途径。水稻(Oryza sativa L.)是重要的粮食作物,也是禾谷类作物功能基因组研究的模式植物。本研究以寻求水稻氮高效利用的可能途径为目标,通过用CaMV35S和Ubiquitin启动子超量表达小球藻(Chlorella sorokiniana)gdh基因,对转基因植株进行了分子生物学研究和表型观察。同时通过超量、抑制以及启动子启动绿色荧光蛋白EGFP基因表达,来研究水稻gdh功能,主要指OsGDH1和OsGDH4基因。另外还通过水稻gdh基因结构及表达谱来研究水稻GDH分子特性,探讨它在植物生长和发育过程中作用的分子机理。主要结果如下:
     1.在水稻中存在4种GDH基因(OsGDH1~4)。水稻和其它物种GDH可分为两类即Ⅰ及Ⅱ。水稻有一个类似Ⅰ型GDH基因,三个Ⅱ型GDH基因(OsGDH1~3)。Ⅰ型比Ⅱ型GDH亚基因家族扩展速率要慢,其中植物Ⅱ型GDH亚基因家族在进化演变时具有物种偏爱性。
     2.基因表达分析表明OsGDH1、OsGDH2和OsGDH4在所检测的大部分组织或器官中都表达,而OsGDH3只在谷壳和雄蕊中特异表达。
     3.在无氮(N~-)或无磷(P~-)条件下OsGDH基因家族各成员的表达谱变化互不相同,表明其在这些胁迫条件下的功能也可能各不相同。
     4.层次聚类分析(HCA)表明只有OsGDH2和OsGDH4这两个基因才与GS和GOGAT这些已知氮代谢过程中基因聚集到一起。通过HCA我们还是不能确定GDH在水稻氮代谢中反应方向,不过从HCA分析中我们可看出OsGDH家族各成员功能是非冗余的。
     5.以载体p1301S为基础,构建了3个超量表达载体,以CaMV35S启动子启动基因OsGDH1、OsGDH4和gdhANC在水稻中进行组成型超量表达。通过Southern和Northern杂交,对转基因植株进行转基因拷贝数和表达量的检测,来获得超量表达的单拷贝转基因植株。超量表达这些基因的转基因植株,与野生型植株相比其生长表型没有明显差异,生物产量也没有显著提高。但是生理生化指标的测定结果表明,转基因植株与野生型植株相比表现为更高的代谢水平,包括:叶片中GDH活性和籽粒中氮含量。将CaMV35S启动子换成Ubiquitin启动子启动gdhANC在水稻中进行组成型超量表达,所获得转基因植株也得到类似结果。
     6.非生物胁迫试验结果表明,超量表达上述gdh的转基因植株在抽穗期对高浓度NaCl(200 mmol/L)表现为明显的抗性。
Nitrogen is a crucial plant macronutrient and is needed in the greatest amount of all mineral elements required by plants.It is a constituent of numerous important compounds, including amino acids,proteins,nucleic acids,chlorophyll and several plant hormones. Nitrogen cycle is a complex cycle in the plant system,involving many enzymes.And the ammonium taken up by plant root or produced by reduction of nitrate is first assimilated by glutamine synthetase(GS;EC 6.3.1.2) to yield the amino group of glutamine(Gln) in an ATP-dependent reaction.GS is coupled with glutamate synthase(GOGAT; Fd-GOGAT:EC 1.4.7.1 and NADH-GOGAT:EC 1.4.1.14) in a so-called GS/GOGAT cycle.GS produces Gln from ammonium and glutamate(Glu),and GOGAT transfers the amino group of Gln toα-oxoglutarate(α-OG) to generate two molecules of Glu in the cycle.Alternatively,ammonium is incorporated into Glu by the reversible reductive amination ofα-OG,which is catalyzed by glutamate dehydrogenase(GDH;1.4.1.2~4). The GS/GOGAT pathway is regarded as the primary pathway for ammonium assimilation, while the function of GDH pathway remains obscure.Assimilation of NH_4~+ via GDH confers a saving in energy compared with the GS/GOGAT cycle.Thus,increasing the efficiency of GDH is one of the better ways to increase the nitrogen use efficiency of the plant system according to energy penalty.Rice(Oryza sativa L.) is an important and model cereal crop for functional genomics research.In this study,a Chlorella sorokiniana gdhANC gene was overexpressed by CaMV35S and Ubiquitin promoter in rice plants,the phenotypes were analysed in transgenic plants by molecular biology and physiology methods,in order to find the transgenic rice plant which exhibited high nitrogen use efficiency.At the same time,gdh genes in the rice,including OsGDH1 and OsGDH4, were studied for their function in the nitrogen by overexpressing,silencing or derivative of the gene promoter EGFP.In addition,a molecular approach is needed to characterize GDHs in the rice species by analyzing the structure and expression of this gene family.It is expected that such a comprehensive analysis may provide a framework for future functional dissection of the GDH gene family in plant growth and development.The main results are as follows:
     1.There are four putative GDH genes(OsGDH1~4) in the rice genome.The GDH sequences from rice and other species can be classified into two types(ⅠandⅡ). OsGDH1~3 belonged to typeⅡgenes whereas OsGDH4 belonged to typeⅠlike gene. Our data implied that the expansion rate of typeⅠgenes was much slower than that of typeⅡgenes and species-specific expansion contributed to the evolution of typeⅡgenes in plants.
     2.Gene expression patterns revealed that OsGDH1,OsGDH2 and OsGDH4 are expressed ubiquitously in various tissues/organs,whereas OsGDH3 expression is glumes and stamens specific.
     3.The expression of the OsGDH family members responded differentially to nitrogen and phosphorus deprivation,indicating their roles under such stress conditions.
     4.The results of hierarchical cluster analysis(HCA) indicate only two GDH genes (OsGDH2 and OsGDH4) are clustered with GS and GOGAT genes.Although we can yet not determine the in vivo direction of individual GDH genes based on the HCA,results from the HCA indicate non-redundant functions among OsGDH family members under the normal conditions.
     5.Based on the p1301S vector which contained CaMV35S promoter,three constructs overexpressed OsGDH1,OsGDH4 and gdhANC respectively,were transformed into rice plants.The copy numbers and expression level of transformed genes were also checked by Southern and Northern blot respectively.And the phenotype and biomass of these genes-overexpressed plants exhibited no significant changes when compared with wild type plants.However,the results of biochemical and physiological testing showed a higher metabolic level in the transgenic plants compared with wild type plants,including GDH activities in leaves and nitrogen content in seeds.Replacing CaMV35S promoter, we used Ubiquitin promoter to overexpress gdhANC in rice plants and similar results were obtained.
     6.The results of abiotic stress indicated gdh-overexpressed plants at heading stage showed a significantly high resistance to high concentration of NaCl(200 mmol/L) compared to the wild-type plants.
引文
1.蔡红梅.超量表达谷氨酰胺合成酶、硝酸根转运蛋白和铵离子转运蛋白家族1基因对水稻氮代谢的功能研究.[博士学位论文].武汉:华中农业大学图书馆,2009
    2.胡红红.水稻逆境相关转录因子的分离和功能鉴定.[博士学位论文].武汉:华中农业大学图书馆,2006
    3.黄国存,田波.高等植物中的谷氨酸脱氢酶及其生理作用.植物学通报,2001,18:396-401
    4.黄维南.氮代谢.见:汤章城主编.现代植物生理学试验指南.北京:科学出版社,1999.p223
    5.练兴明.水稻氮胁迫基因表达谱研究及耐低氮特性数量性状分析.[博士学位论文].武汉:华中农业大学图书馆,2005
    6.林清华,李常键,彭进,张楚富.NaCl对水稻谷氨酸合酶和谷氨酸脱氢酶的胁迫作用.武汉植物学研究,2000,18:206-210
    7.马敬坤,袁永泽,欧吉权,欧阳敏,鲍世颖,张楚富.外源水杨酸对水稻(Oryza sativa L.)幼苗根的NaCl胁迫缓解效应.武汉大学学报(理学版),2006,52:471-474
    8.潘瑞炽,董愚得主编.植物生理学.北京:高等教育出版社,1995
    9.沈成国.一次结实植物衰老与氮再分配.见:沈成国等主编,植物衰老生理与分子.北京:中国农业出版社,2001,30-43
    10.王芳,田波.中间脉孢霉谷氨酸脱氢酶基因的克隆及在大肠杆菌和烟草中的表达.科学通报,2001,46:137-140
    11.魏国威,林清华,张楚富,袁永泽,王其海.南瓜种子萌发及子叶发育时谷氨酰胺合成酶和其安所同化酶的变化.武汉植物学研究,2002,20:236-240
    12.吴平,印莉萍,胡彬.植物氮素营养分子生理.见:吴平主编,植物营养分子生理学.北京:科学出版社,2001,1-98
    13.闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响,土壤学报,2005,42:440-446
    14.余叔文,汤章城主编.植物生理与分子生物学(第二版).北京:科学出版社,1998
    15.张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45:915-924
    16.张瑜芳,张蔚棒.农作物对氮肥吸收速率的研究现状.灌溉排水,1996,15:1-8
    17.邹长明,秦道珠,陈福兴,刘更另.水稻氮肥施用技术-氮肥施用的适用时期与用量.湖南农业大学学报(自然科学版),2000,26:467-470
    18.邹长明,秦道珠,徐明岗,申华平,王伯仁.水稻的氮磷钾养分吸收特性及其与产量的关系.南京农业大学学报,2002,25:6-10
    19.Abiko T,Obara M,Ushioda A,Hayakawa T,Hodges M,Yamaya T.Localization of NAD-isocitrate dehydrogenase and glutamate dehydrogenase in rice roots:candidates for providing carbon skeletons to NADH-glutamate synthase.Plant Cell Physiol,2005,46:1724-1734
    20.Altschul S F,Madden L,Schaffer A A,Zhang J,Zhang Z,Miller W,Lipman D J.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res,1997,25:3389-3402
    21.Anderson M P,Vance C P,Heichel G H,Miller S S.Purification and characterization of NADH-glutamate synthase from alfalfa root nodules.Plant Physiol,1989,90:351-358
    22.Aubert S,Bligny R,Douce R,Gout E,Ratcliffe R G,Roberts J K.Contribution of glutamate dehydrogenase to mitochondrial glutamate metabolism studied by(13) C and(31) P nuclear magnetic resonance.J Exp Bot,2001,52:37-45
    23.Bailey T L,Elkan C.Fitting a mixture model by expectation maximization to discover motifs in biopolymers.Proc Int Conf Intell Syst Mol Biol,1994,2:28-36
    24.Baker P J,Britton K L,Engel P C,Farrants G W,Lilley K S,Rice D W,Stillman T J.Subunit assembly and active site location in the structure of glutamate dehydrogenase.Proteins,1992,12:75-86
    25.Blackwell R D,Murray A J S,Lea P J,Joy K W.Potoresprratory amino donors,sucrose synthesis and the induction do CO_2 fixation in barley deficient in glutamine synthetase and/or glutamate synthase.J Exp Bot,1988,39:845-858
    26.Chen F L,Cullimore J V.Two isoenzymes of NADH-dependent glutamate synthase in root nodules of Phaseolus vulgaris L.Plant Physiol,1988,88:1411-1417
    27. Chen S J, Kao C H. Ammonium accumulation in relation to senescence of detached maize leaves. Bot Bull Acad Sin, 1996, 37:255-259
    28. Chien H, Kao C H. Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci, 2000,156:111 -115
    29. Chu Z H, Peng K M, Zhang L D, Zhou B, Wei J, Wang S P. Construction and characterization of a normalized whole-life-cycle cDNA library of rice. Chin Sci Bul, 2003,48:229-235
    30. Cock J M, Kim K D, Miller P W, Hutson R G, Schmidt R R. A nuclear gene with many introns encoding ammonium-inducible chloroplastic NADP-specific glutamate dehydrogenase(s) in Chlorella sorokiniana. Plant Mol Biol, 1991, 17:1023 — 1044
    31. Coruzzi G., Last R. Amino acids. In: Buchanan B B, Gruissem W, Jones R L eds., Biochemistry & Molecular Biology of Plants. USA: America Society of Plant Physiologist, Rockville, Maryland, 2000. 370-371
    32. Coschigano K T , Melo-Oliveira R , Lim J , Coruzzi G M. Arabidopsis gls mutants and distinct Fd-GOGAT genes: Implications for photorespiration and primary nitrogen assimilation. Plant Cell, 1998,10:274-752
    33. Dong Q, Kroiss L, Oakley F D, Wang B B, Brendel V. Comparative EST analyses in plant systems. Methods Enzymol, 2005,395:400—418
    34. Dubois F T, Gonzalez-Moro M B, Estavillo J M, Sangwan R, Gallais A, Hirel B. Glutamate dehydrogenase in plants: is there a new story for an old enzyme? Plant Physiol Biochem, 2003,41:565-576
    35. Eddy S R. Profile hidden Markov models. Bioinformatics, 1998,14:755-763
    36. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998, 95:14863 —14868
    37. Felsenstein J. PHYLIP - phylogeny inference package (version 3.2). Cladistics, 1989, 5:164-166
    38. Ficarelli A, Tassi F, Restivo F M. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia. Plant Cell Physiol, 1999,40:339-342
    39. Forde B G, Lea P J. Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot, 2007, 58:2339-2358
    40. Forde B G. Nitrate transporters in plants: structure, function and regulation. Biochem Biophys Acta, 2000,1465:219-235
    41. Frink C R, Waggoner P E, Ausubel J H. Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci USA, 1999, 96:1175 -1180
    42. Galvan A, Fernandez E. Eukaryotic nitrate and nitrite transporters. Cell Mol Life Sci, 2001,58:225-233
    43. Gentleman R C, Carey V J, Bates D M, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A J, Sawitzki G et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol, 2004, 5:R80
    44. Gilbert W. The exon theory of genes. Cold Spring Harb Symp Quant Biol, 1987, 52:901-905
    45. Glass A D M, Brito D T, Kaiser B N, Kronzucker H J, Kumar A, Okamoto M, Rawat S R, Siddiqi M Y, Silim S M, Vidmar J J, Zhuo D. Nitrogen transport in plants, with an emphasis on the regulation of fluxes to match plant demand. J Plant Nutr Soil Sci, 2001,164:199-207
    46. Goff S A , Ricke D, Lan T H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange B M, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T et al. A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science, 2002, 296:92-100
    47. Granato T C, Raper C D. Proliferation of maize (Zea mays L.) roots in response to localized supply of nitrate. J Exp Bot, 1989,40:263—275
    48. Guiz C, Hirel B, Gadal P. Occurrence and influence of light on the relative proportions of two glutamine synthetases in rice leaves. Plant Sci Lett, 1979, 15:271 -277
    49. Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Yi Chuan, 2007, 29:1023 -1026
    50. Ha S B, An G H. Cis-acting regulatory elements controlling temporal and organ-specific activity of nopaline synthase promoter. Nucleic Acids Res, 1989, 17:215-223
    51. Hartl F, Smith B B, James C C. Structure and function of mitochondrial transit polypeptide sequences. Biochim Biophys Acta, 1989, 988:1—45
    52. Hecht U , Delmueller R , Schmidt S , Mohr H. Action of light , nitrate and ammonium on the levels of NADH and ferredoxin-dependent Glu synthase in the cotyledons of mustard seedlings. Planta, 1988,175:130—138
    53. Helling R B. Pathway choice in glutamate synthesis in Escherichia coli. J Bacteriol, 1998,180:4571-4575
    54. Hiei Y, Ohta S, Komari T, Kumashiro T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J, 1994, 6:271 -282
    55. Hirel B, Andrieu B, Valadier M H, Renard S, Quillere I, Chelle M, Pommel B, Fournier C, Drouet J. Physiology of maize II: identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiol Plant, 2005,124:178-188
    56. Inokuchi R, Kuma KI, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Plant Physiol, 2002, 116:1-11
    57. Ishiyama K, Kojima S, Takahashi H, Hayakawa T, Yamaya T. Cell type distinct accumulations of mRNA and protein for NADH-dependent glutamate synthase in rice roots in response to the supply of NH_4~+. Plant Physiol Biochem, 2003, 41:643 — 64
    58. Kumar R G, Shah K, Dubey R S. Salinity induced behavioral changes in maltase dehydrogenase and glutamate dehydrogenase activities in rice seedlings of differing salt tolerance. Plant Sci, 2000,156:23-34
    59. Lam H M, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiol and Plant Mol Bio, 1996,47:569-593
    60. Lancien M, Martin M, Hsieh M H, Leustek T, Goodman H, Coruzzi G M. Arabidopsis glt 1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Plant J, 2002, 29:347—358
    61. Lea P J, Blackwell R D, Joy K W. Ammonia assimilation in higher plants. In: Meng K and Pilbeam D J eds., Nitrogen Melabotism of Plant. New York: Oxford University Press, 1992. 153 -186
    62. Lea P J, Miflin B J. Alternative route for nitrogen assimilation in higher plants. Nature, 1974,251:614-616
    63. Lea P J, Miflin B J. Glutamate synthase and the synthesis of glutamate in plants. Plant Physiol Biochem, 2003,41:555-564
    64. Leegood R C, Lea P J, Adcock M D, Hausler R E. The regulation and control of photorespiration. J Exp Bot, 1995,46:1397—1414
    65. Lehmanna T, Ratajczak L. The pivotal role of glutamate dehydrogenase (GDH) in the mobilization of N and C from storage material to asparagines in germinating seeds of yellow lupine. J Plant Physiol, 2007,165:149—158
    66. Li M G, Villemur R, Hussey P J, Silflow C D, Gantt J S, Snustad D P. Differential expression of six synthetase genes in Zea Mays. Plant Mol Biol, 1993,23:401 —408
    67. Lian X M, Wang S P, Zhang J W, Feng Q, Zhang L D, Fan D L, Li X H, Yuan D J, Han B, Zhang Q F. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol, 2006, 60:617-631
    68. Lightfoot D A, Long L M, Vidal-Lightfood M E. Plants containing a bacterial gdhA gene and methods of use thereof. USA patent, 5998700. 1999-12-07
    69. Lin Y J, Zhang Q F. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep, 2005,23:540—547
    70. Loulakakis K A, Roubelakis-Angelakis K A, Kanellis A K. Regulation of glutamate dehydrogenase and glutamine synthetase in Avocado fruit during development and ripening. Plant Physiol, 1994, 106:217-222
    71. Loulakakis K A, Roubelakis-Angelakis K A. Plant NAD(H)-Glutamate dehydrogenase consists of two subunit polypeptides and their participation in the seven isoenzymes occurs in an ordered ratio. Plant Physiol, 1991, 97:104— 111
    72. Lu B B, Yuan Y Z, Zhang C F, Ou J Q, Zhou W, Lin Q H. Modulation of key enzymes involved in ammonium assimilation and carbon metabolism by low temperature in rice (Oryza sativa L.) roots. Plant Sci, 2005, 169:295—302
    73. Lu Q, Li X H, Guo D, Xu C G and Zhang Q. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol Genet Genomics, 2005,273:507-511
    74. Magalhaes J R, Ju G C, Rich P J, Rhodes D. Kinetics of ~(15)NH_4~+assimilation in Zea mays. Plant Physiol, 1990,94:647-656
    75. Maki H, Ushioda A, Abiko T, Hayakawa T, Ysmsys T. Cloning and expression analysis of NADH-glutamate dehydrogenase in rice plants. Plant Cell physiol, 2002, sl27
    76. Mann A F, Fenten P A, Stewart G R. Identification of two forms of glutamine synthetase in barley (Hordeum vulgare, L.). Biochem and Biophy Res Comm, 1979, 88:515-521
    77. Marquez A J, Avila C, Forde B G, Wallsgrove R M. Ferredoxin-glutamate synthase from barley leaves: Rapid purification and partial characterization. Plant Physiol Biochem, 1988,26:645-651
    78. Masclaux-Daubresse C, Valadier M-H, Carrayol E, Reisdorf-Cren M, Hirel B. Diurnal changes in the expression of glutamate dehydrogenase and nitrate reductase are involved in the C/N balance of tobacco source leaves. Plant Cell Environ, 2002, 25:1451-1462
    79. Matoh T, Takahashi E. Changes in the activities of ferredoxin and NADH-glutamate synthase during seedling development of Peas. Planta, 1982,154:289—294
    80. Melo-Oliveira R, Oliveira I C, Coruzzi GM. Arabidopsis mutant analysis and gene regulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation. Proc Natl Acad Sci USA, 1996,93:4718-4723
    81. Miflin B J, Habash D Z. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot, 2002, 53:979—987
    82. Miller P W, Dunn W I, Schmidt R R. Alternative splicing of a precursor-mRNA encoded by the Chlorella sorokiniana NADP-specific glutamate dehydrogenase gene yields mRNAs for precursor proteins of isozyme subunits with different ammonium affinities. Plant Mol Biol, 1998, 37:243-263
    83. Miyashita Y, Good A G. NAD(H)-dependent glutamate dehydrogenase is essential for the survival of Arabidopsis thaliana during dark-induced carbon starvation. J Exp Bot, 2008, 59:667-680
    84. Montgomery R A, Dallman M J. Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression during thymic ontogeny. Cytokine, 1997,97:17-26
    85. Osuji G O, Braithwaite C. Signaling by glutamate dehydrogenase in response to pesticide treatment and nitrogen fertilization of peanut (Arachis hypogaea L.). J Agric Food Chem, 1999,47:3332-3344
    86. Patthy L. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett, 1987,214:1-7
    87. Pavesi A, Ficarelli A, Tassi F, Restivo F M. Cloning of two glutamate dehydrogenase cDNAs from Asparagus officinalis: sequence analysis and evolutionary implications. Genome, 2000,43:306-316
    88. Peng M, Bi Y M, Zhu T, Rothstein S J. Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Mol Biol, 2007,65:775-797
    89. Peng S B, Cassman K G, Kropff M J. Relationship between leaf photosynthesis and nitrogen content of field-grown rice in the tropics. Crop Sci, 1995, 35:1627—1630
    90. Peng S B, Cassman K G. Upper thresholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice. Agronomy J, 1998,90:178 — 185
    91. Perez C M., Cagampang G B, Esmama B V, Monserrate R U, Juliano B O. Protein metabolism in leaves and developing grains of rices differing in grain protein content. Plant Physiol, 1973, 51:537-542
    92. Purnell M P, Botella J R. Tobacco isoenzyme 1 of NAD(H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo. Plant Physiol, 2007,143:530—539
    93. Purnell M P, Skopelitis D S, Roubelakis-Angelakis K A, Botella J R. Modulation of higher-plant NAD(H)-dependent glutamate dehydrogenase activity in transgenic tobacco via alteration of beta subunit levels. Planta, 2005,222:167—180
    94. Purnell M P, Stewart G R, Botella J R. Cloning and characterisation of a glutamate dehydrogenase cDNA from tomato (Lycopersicon esculentum L.). Gene, 1997, 186:249-254
    95. Reyes J C, Muro-Pastor M I, Florencio F J. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol, 134:1718 — 1732
    96. Roth C M. Quantifying gene expression. Curr Issues Mol Biol, 2002,4:93 — 100 97. Sakakibara H, Fuji K, Sugiyama T. Isolation and characterization of a cDNA that encodes maize glutamate dehydrogenase. Plant Cell Physiol, 1995, 36:789—797
    98. Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1989
    99. Schena M, Heller R A, Theriault T P, Konrad K, Lachenmeier E, Davis R W. Microarrays: biotechnology's discovery platform for functional genomics. Trends Biotechno, 1998,16:301-306
    100.Schena M, Shalon D, Davis RW, Brown P O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. 1995, 270:467—470
    101.Schmidt R R, Miller P. Polypeptides and polynucleotides relating to the alaph and beta subunits of a glutamate dehydrogenase and methods of use. USA patent, 5879941. 1999-05-09
    102.Schmittgen T D. Real-time quantitative PCR. Methods, 2001, 25:383—385
    103.Sechley K, Yamaya T, Oaks A. Compartmentation of nitrogen assimilation in higher plants. Int Rev Cytol, 1992,134:85-163
    104.Sharp PA. Speculations on RNA splicing. Cell, 1981, 23:643-646
    105.Singh P. Srivastava H. Increase in glutamate synthase (NADH) activity in maize seedlings in response to nitrate and ammonium nitrogen. Plant Physiol, 1986, 66:413 -416
    106.Skopelitis D S, Paranychianakis N V, Kouvarakis A, Spyros A, Stephanou E G, Roubelakis-Angelakis K A. The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo. Plant Physiol, 2007, 145:1726-1734
    107.Skopelitis D S, Paranychianakis N V, Paschalidis K A, Pliakonis E D, Delis I D, Yakoumakis D I, Kouvarakis A, Papadakis A K, Stephanou E G, Roubelakis-Angelakis K A. Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell, 2006, 18:2767-2781
    108.Stewart A J, W. Chapman W, Jenkins G I, Graham I, Martin T, Crozier A. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ, 2002, 24:1189-1197
    109.Stewart G R, Shatilov V R, Turnbull M H, Robinson S A, Goodall R. Evidence that glutamate-dehydrogenase plays a role in the oxidative deamination of glutamate in seedlings of Zea mays. Australian J of Plant Physiol, 1995, 22:805-809
    110.Suzuki A, Gadel P. Intracellular distribution of enzymes associated with nitrogen assimilation in roots. Planta, 1981,151:457—461
    111.Syntichaki K M, Loulakakis K A, Roubelakis-Angelakis K A. The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene, 1996, 168:87—92
    112.Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.) J Exp Bot, 2007, 58:2319-2327
    113.Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Bio Evol, 2007,24:1596-1599
    114.The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796—815
    115.Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25:D4876-D4882
    116.Turano F J, Thakkar S S, Fang T, Weisemann J M. Characterization and expression of NAD (H)-dependent glutamate dehydrogenase gene in Arabidopsis. Plant Physiol, 1997,113:1329-1341
    117.Vandepoele K, Simillion C, Van de Peer Y. Evidence that rice and other cereals are ancient aneuploids. Plant Cell, 2003,15:2192-2202
    118.Wall S J, Edward D R. Quantitative reverse transcription-polymerase chain reaction (RT-PCR): A comparison of prime-dropping, competitive, and real-time RT-PCRs. Anal Biochem, 2002, 300:269-273
    119.Wang B B, Brendel V. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA, 2006, 103:7175-7180
    120.Windass J D, Worsey M J, Pioli E M, Pioli D, Barth P T, Atherton K T, Dart E C, Byrom D, Powell K, Senior P J. Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus. Nature, 1980, 287:396—401
    121.Wu C Y, Li X J, Yuan W Y, Chen G X, Kilian A, Li J, Xu C G, Li X H, Zhou D X, Wang S P, Zhang Q F. Development of enhancer trap lines for functional analysis of the rice genome. Plant J, 2003, 35:418-427
    122.Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T. A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell, 2002,14:525—535
    123.Yamaya T, Oaks A. Characteristics of glutamate dehydrogenase in mitochondria prepared from corn shoots. Plant Physiol, 1984,76:1009—1013
    124.Yoshida S, Forno D A, Cook J H, Gomez K A. Laboratory Manual for Physiological Studies of Rice, 3rd Edn. International Rice Research Institute, Manila. 1976
    125.Zimmermann P, Hirsch-Hoffrnann M, Hennig L, Gruissem W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol, 2004, 136:2621-2632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700