用户名: 密码: 验证码:
高应力破碎软岩巷道棚—索协同支护围岩控制机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在煤矿软岩巷道中,高应力破碎软岩巷道占有相当大的比例。高应力破碎软岩巷道中支护结构性失稳是导致巷道失稳、破坏的重要原因。因此,如何提高支护承载结构稳定性及其承载能力,对解决高应力破碎软岩巷道支护难题至关重要。
     在高应力破碎软岩巷道中,许多情况下锚网支护难以形成可靠的承载结构,而高阻可缩U型钢支架又无法适应围岩的强烈变形。此时,采用棚-索协同支护往往能够有效地控制该类巷道围岩的强烈变形。
     棚-索协同支护将具备高阻可缩特性的U型钢支架作为基本支护,利用其提供的较高支护阻力提高巷道浅部破碎岩体的残余强度,并将U型钢支架作为小孔径预应力锚索的高强护表构件,发挥锚索的锚固性能,在充分发挥深部稳定岩体承载能力的同时,实现对U型钢支架的合理结构补偿,提高支架的结构稳定性及其承载能力,是解决高应力破碎软岩巷道支护难题的一条有效途径。
     支护结构补偿的目的是针对载荷作用下支护结构自身存在的危险截面,通过在合理位置施加一定大小的结构补偿力,能够大幅度降低支护结构危险截面承受的应力,同时降低支护结构整体承受的应力,使得支护体的承载性能得以充分发挥,提高支护结构的整体稳定性及其承载能力。研究表明,小孔径预应力锚索是目前较为理想的结结构补偿体,并从发挥结构补偿体承载性能和提高支护结构整体承载能力及其稳定性角度出发,提出支护结构补偿的基本原则。
     在上述研究基础上,针对煤矿常用的直墙半圆拱形巷道建立结构补偿力学模型,研究基本支护体与补偿支护体之间的相互作用关系,得出了不同载荷作用下,基本支护体内力和弯曲变形的计算公式。详细研究了均布载荷、肩部对称偏载和拱顶对称偏载三种载荷作用下,支护结构合理补偿位置的确定方法,同时分析了不同载荷作用下,支护结构的内力和弯曲变形分布特征,以及结构补偿对提高支护结构稳定性和承载能力的作用。
     与此同时,通过数值模拟手段研究了棚-索协同支护相互作用关系和控制巷道围岩变形的作用,并进一步通过棚-索协同支护1:1相似模拟实验,对U型钢支架实际承载过程以及棚-索协同支护的相互作用过程展开详细研究。此外,基于圆形巷道的弹塑性力学模型,分析了棚-索协同支护中结构补偿锚索的合理长度及补偿时机。
     最后,棚-索协同支护成功应用于典型的动压影响和构造、水体影响巷道工程实践。
     论文有图86幅,表16个,参考文献119篇。
The soft fragmentized surrounding rock roadway with high stress accounts for quite high proportion among soft roadways in coal mine. Losing stability of supporting structure is the main reason for destroy of soft fragmentized surrounding rock roadway with high stress. Improving the bearing capacity and stability of supporting structure is very important for resolving the supporting problem in those roadways.
     In soft fragmentized surrounding rock roadway with high stress, it is difficult to shape dependable bearing structure by bolt-mesh support. And the u-steel frame cannot fit strong deformation of surrounding rock. Here cooperating support of frame and anchor cable can effectively control surrounding rock strong deformation.
     In cooperating support of frame and anchor cable, the u-steel frame which has high resistance and contractible, is used as the basic support. The frame with higher supporting resistance can improving the residual strength of fragmentized surrounding rock and can also be used as high strength protection surface component of small diameter pre-stressed anchor cable, and take advantage of anchor capacity of cable. Meanwhile the u-steel frame is compensated by anchor cable set in rational location. This is effective method to solve support problem in soft fragmentized surrounding rock roadway.
     The purpose of structure compensation is to decrease the bend stress in dangerous section by applying some compensation force in rational location of supporting structure. At the same time, the whole bend stress in supporting structure also to be decreased. The bearing capacity of supports can be fully played. The baring capacity and stability of supporting structure is also improved. That shows the small diameter pre-stressed anchor cable is ideal compensation instrument. The basic principle of structure compensation is proposed aiming at fully take advantage of the compensation instrument bearing capability and improving the stability of supporting structure.
     Based on the study mentioned above, the numerical model which revel the interaction mechanism between basic support and compensation instrument, is founded for semicircle shape roadway common used. The calculation formula of internal force and bend deformation of basic support is given in different load condition. And the rational compensation location, internal force, bend deformation are analyzed in detail for uniform load, symmetric bias load in humeral and vault. The effect of improving the structure stability and bearing capacity by structure compensation is also analyzed.
     At the same time, the mechanism of cooperating support of frame and anchor cable is studied by numerical simulation. The real bearing process of u-steel frame and interaction process between the frame and cable are studied in detail by the 1:1 similarity simulation experiment of cooperating support of frame and anchor cable. In addition, based on the circular roadway elastic-plastic mechanical model, the rational length of anchor cable for structure compensation and compensation opportunity are derived theoretically for cooperating support of frame and anchor cable.
     At last, the cooperating support of frame and anchor cable technique was successfully applied in two type of roadways effected by dynamic pressure or geological pressure and water.
     There are 86 figures, 16 tables and 119 references
引文
[1]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [2]何满潮,袁和生,靖洪文,王方荣等.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004:1-2.
    [3]陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[M].北京:煤炭工业出版社,1998.
    [4]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [5]勾攀峰.巷道锚杆支护提高围岩强度和稳定性研究[D].徐州:中国矿业大学,1998.
    [6]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [7]康红普,王金华等.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [8]候朝炯,巷道金属支架[M].北京:煤炭工业出版社,1989.
    [9] K.Hurt.New developments in rock bolting [J].Colliery Guardian.1994,7:133-143.
    [10] Syd S.Peng. Coal Mine Ground Control, John Wiley and Sons Inc.1978.
    [11]张益东.巷道金属支架实际承载能力的计算和断面参数合理性的研究[D].徐州:中国矿业大学,1989.
    [12]陆士良,王悦汉.软岩巷道支架壁后充填与围岩关系的研究[J].岩石力学与工程学报,1999,18(2):180-183.
    [13]王悦汉,陆士良.壁后充填对提高巷道支护阻力的研究[J].中国矿业大学学报,1997,4:1-3.
    [14]王彩根.软岩巷道壁后充填支护机理与技术研究[D].徐州:中国矿业大学,1995.
    [15]王彩根,王悦汉.整体壁后充填对提高拱形金属支架支护阻力的影响[J].中国矿业大学学报,1994,1:1-5.
    [16]王悦汉,王彩根,周华强.巷道支架壁后充填技术[M].北京:煤炭工业出版社,1995.
    [17]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [18]何满潮.软岩工程技术现状与展望,世纪之交软岩工程技术现状与展望[M].北京:煤炭工业出版社,1999.
    [19]孙晓明,何满潮.深部开采软岩巷道耦合支护数值模拟研究[J].中国矿业大学学报,2005,34(3):166-169.
    [20]何满潮,高尔新.软岩巷道耦合支护力学原理及应用[J].水文地质工程,1998(2):1-4.
    [21]孙晓明,何满潮等.深部软岩巷道锚网索耦合支护非线性设计方法研究[J].岩土力学,2006,26(7):1061-1065.
    [22]孙晓明.煤矿软岩巷道耦合支护理论研究及其设计系统开发[D].北京:中国矿业大学(北京校区),2002.
    [23]孙晓明,杨军,曹伍富.深部回采巷道锚网索耦合支护时空作用规律研究[J].岩石力学与工程学报,2007,26(5):895-899.
    [24]李大伟.深井、软岩巷道二次支护围岩稳定原理与控制研究[D].徐州:中国矿业大学,2006.
    [25]柏建彪,王襄禹,姚喆.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4):421-425.
    [26]肖锋.软弱围岩巷道U型钢可缩性支架联合支护机理研究[D].成都:西南交通大学,2007.
    [27]王德勇,吴继鲁.U形拱棚配锚索在盘区巷道支护中的应用[J].华北科技学院学报2007.4(1)8-11.
    [28]徐锋.用联合支护技术修复高应力软岩巷道[J].煤矿支护,2007,1.
    [29]荆升国,谢文兵等.重复跨采条件下巷道耦合支护技术研究[J].煤炭工程,2008,(12):69-71.
    [30]荆升国,谢文兵等.动压软岩巷道U型钢-锚索协同支护技术研究与应用[J].中国煤炭,2009(01):42-44.
    [31]荆升国,谢文兵等.孤岛煤柱下软岩硐室加固技术研究[J].中国矿业,2009,18(2):70-77.
    [32]陈金宇.采动影响下28变电所高强稳定型结构耦合加固技术研究[D].徐州:中国矿业大学,2008.
    [33]何满潮,高尔新.软岩巷道耦合支护力学-21世纪学科生长点[J].煤炭学报,1997,22:1-4.
    [34]何满潮.煤矿软岩变形力学机制与支护对策[J].水文地质工程地质.1997,2(2):12-16.
    [35]王海东,张永吉.软岩巷道的支护机理及应用[J].辽宁工程技术大学学报,2005,24(4):25-28
    [36] L.V.Rabcewicz. The New Austrian tunneling method [J].Water Power, 1965 (4):19-24.
    [37] L.V.Rabcewicz. Stability of tunnels under rock load [J].Water Power,1969 (1):225-273.
    [38]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987.
    [39]方祖烈.拉压域特征及主次承载区的维护理论,世纪之交软岩工程技术现状与展望[M].北京:煤炭工业出版社,1999.
    [40]冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,1990,2.
    [41]陆家梁.软岩巷道支护原则与支护方法[J].软岩工程,1990,1.
    [42]郑颖人.地下工程锚喷支护设计指南[M].北京:中国铁道出版社,1988.
    [43]李世平.岩石力学简明教程[M].徐州:中国矿业大学出版社,1986.
    [44]何满潮.软岩工程力学的理论与实践[M].徐州:中国矿业大学出版社,1996.
    [45]何满潮.软岩工程技术现状与展望,世纪之交软岩工程技术现状与展望[M].北京:煤炭工业出版社,1999.
    [46] He Manchao, XU Nengxiong, Yao Aijun, Theory of SCSTKP in soft rock roadway[J], Journal of China University of Mining & Technology, Dec.2000, Vol.10, No.2:P107-111.
    [47] He Manchao, New theory in tunnel stability control of soft rock-mechanics of soft rock engineering[J], Journal of Coal Science & Engineering, June 1996, Vol.2, No.1:P39-44
    [48]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [49]靖洪文.软岩巷道围岩松动圈变形机理及控制技术研究[J].中国矿业大学学报,1999,28(6):560-564.
    [50] Jing Hong-wen , XU Guo-an , Ma Shi-zhi . Numerical analysis on displacement law of discontinus rock mass in broken rock zone for deep roadway [J] . Journal of China University of Mining & Technology, Dec.2001, Vol.11, No.2:P132-137.
    [51]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32.
    [52]宋宏伟,郭志宏,周荣章等.围岩松动圈巷道支护理论的基本观点[J].建井技术,1994,4:3-9.
    [53]樊克恭,翟德元.巷道围岩弱结构破坏失稳分析与非均称控制机理[M].北京:煤炭工业出版社,2004.
    [54]樊克恭.巷道围岩弱结构损伤破坏效应与非均称控制机理研究[D].泰安:山东科技大学,2003.
    [55]樊克恭,翟德元,刘锋珍.岩性弱结构巷道顶底板弱结构体破坏失稳分析[J].山东科技大学学报,2004,23(2):11-14.
    [56]李桂臣.软弱夹层顶板巷道围岩稳定与安全控制研究[D].徐州:中国矿业大学,2008.
    [57]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5):524-527.
    [58]康红普.煤巷锚杆支护成套技术研究与实践[J].中国矿业大学学报,2004,33(5):524-527.
    [59]煤炭工业部生产司.巷道金属支架系列[M].北京:煤炭工业出版社,1987,6.
    [60] A. J. Hyettf etc.,The Effect of Rock Mass Confinement on the Bond Strength of Fully Grouted Cable Bolts,Int. J. Rock Mech. Min Sci. & Geomech. Abstr, 1992,5.
    [61]侯朝炯,贺永年,何亚男.巷道围岩稳定的注浆加固技术[M].中国煤矿软岩巷道支护理论与实践,徐州:中国矿业大学出版社,1996.
    [62]张农.软岩巷道滞后注浆围岩控制研究[D].徐州:中国矿业大学,1999.
    [63]张农.巷道滞后注浆围岩控制理论与实践[M].北京:煤炭工业出版社,1998.
    [64]刘长武,褚秀生.软岩巷道锚注加固原理与应用[M].徐州:中国矿业大学出版社,2000.
    [65]陆士良,汤雷.巷道锚注支护机理的研究[J].中国矿业大学学报,1996,2:1-5.
    [66]葛家良.软岩巷道注浆加固机理及注浆技术若干问题的研究[D].徐州:中国矿业大学,1995.
    [67] Zhang Nong, Study on strata control by delay grouting in soft rock roadway [J]. Journal of CoalScience & Engineering , June,2003, Vol.9, No.1 P51-56.
    [68]葛家良,陆士良.注浆模拟试验及其应用的研究[J].岩土工程学报,1997,3:28-33.
    [69]李学华,杨宏敏等.动压软岩巷道锚注加固机理与应用研究[J].采矿与安全工程学报,2006.23(2):159-163.
    [70]王连国,李明远等.深部高应力极软岩巷道锚注支护技术研究[J].岩石力学与工程学报,2005,24(16):2889-2893.
    [71]赵庆彪.深井破碎围岩煤巷锚杆-锚索协同作用机理研究[D].北京:中国矿业大学(北京校区),2004.
    [72]李志强,唐建新,朱祥可等.锚网梁索喷联合支护在深井软岩巷道中的应用[J].矿业安全与环保,2007,1.
    [73]童义学.软岩巷道二次支护技术的应用[J].煤炭科学技术,2004,12.
    [74]武涛,岳远省,李强.深部复杂条件下煤巷的联合支护技术[J].煤炭科学技术,2006,4.
    [75]惠功领,胡殿明.深部高应力围岩碎裂巷道支护技术[J].煤矿支护,2006,2.
    [76]徐锋.用联合支护技术修复高应力软岩巷道[J].煤矿支护,2007,1.
    [77]康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12):1233-1237.
    [78]周恒.软岩巷道锚杆和锚注支护共同作用机理研究及应用[D].成都:西南交通大学,2006.
    [79]宋宏伟,牟彬善.破裂岩石锚固组合拱承载能力及其合理厚度探讨[J].中国矿业大学学报,1997,26(2):33-35.
    [80] Dong Fang-ting , Song Hong-Wei. The broken rock zone around tunnels and its support theory [C] . Peng.S.S proc of 7th international conference Morgantown WVU, 1988:336-343.
    [81] R. G.Siddall. Strata control a new science for old problem[J]. Mining Engineer. 1994.
    [82] K. Hurt. New developments in rock bolting[J]. Colliery Guardian. 1994, No.7:P133-143.
    [83] P. K. Kaiser etc.,Effect of Stress Change on the Bond Strength of Fully Grouted Cables,Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1992,3.
    [84] S. Yazici P.K,Kaiser. Bond Strength of Grouted Cable Bolts,Int. J. Rock Mech. Min. Sci. & Geomech. Abstr,1992,3.
    [85] Williams P . The Development of Rock Bolting in UK Coal Mining . Mining Engineer,1994,5.
    [86]汤雷.锚固力作用机理及锚固技术研究[D].徐州:中国矿业大学,1998.
    [87]付国彬.锚杆与围岩相互作用关系及锚固力的研究[D].徐州:中国矿业大学,1999.
    [88]谢文兵,陈晓祥,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [89]陈晓祥.采矿过程中围岩力学行为数值模拟关键问题的研究[D].徐州:中国矿业大学,2003.
    [90]刘波,韩彦辉.FLAC原理、实例及工程应用[M].北京:人民交通出版社,2005.
    [91]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2008.
    [92] Itasca Consulting Group, Inc. FLAC User Manuals, version 5.0, Minneapolis, Minnesota, 2005, 5.
    [93] Itasca Consulting Group, Inc. UDEC User Manuals, version 4.0, Minneapolis, Minnesota, 2005, 5.
    [94]谢文兵.采动覆岩应力与变形的数值模拟研究[D].徐州:中国矿业大学,2006.
    [95]高富强.FLAC用于煤巷锚杆支护综合系统的研究[D].徐州:中国矿业大学,2006.
    [96]赵晨光.孤岛煤柱下软岩泵房高强稳定型耦合加固技术研究[D].徐州:中国矿业大学,2007.
    [97]郑百生.近距离跨采巷道围岩控制技术及其三维数值模拟[D].徐州:中国矿业大学,2006.
    [98]谢文兵.采动覆岩应力与变形的数值模拟研究[D].徐州:中国矿业大学,2006.
    [99] Cundall P A. Explicit fininte difference methods in geomechanics[C], Numerical methods in engineering, proceeding of the EF conference on numerical methods in geomechanics, Virginia, 1976, 1.
    [100] Cundall P A. Numerical experiments on location in friction material. Ingenieur-Archiv, 1989, 148-159.
    [101]钱鸣高,缪协兴,许家林.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [102]何国清等.矿山开采沉陷学[M].徐州:中国矿业大学出版社,1991.
    [103] Rocscience Consulting Group, Inc. RocLab User Manuals, version 1.0, 2002.
    [104]杨超.软岩巷道支护阻力与围岩变形关系的研究[D].徐州:中国矿业大学,2000.
    [105]陆士良,姜耀东.支护阻力对软岩巷道围岩控制的作用[J].岩土力学,1998,3(19):P1-5.
    [106]杨超,陆士良,姜耀东.支护阻力对不同岩性围岩变形的控制作用[J].中国矿业大学学报,2000,2(29):P170-173.
    [107]尤春安.U型钢可缩性支架的稳定性分析[J].岩石力学与工程学报,2002,21(11):P1672-1675.
    [108]尤春安.U型钢可缩性支架的缩动分析[J].煤炭学报,1994,19(13):P270-277.
    [109]包世华等.结构力学[M].武汉:武汉理工大学出版社,2000.
    [110]龙驭球,包世华.结构力学[M].北京:高等教育出版社,1996.
    [111]李廉锟.结构力学[M].北京:高等教育出版社,2002.
    [112]谢文兵.软岩硐室失稳和锚注加固机理的研究[D].徐州:中国矿业大学,1998.
    [113]刘鸿文.材料力学[M].北京:高等教育出版社,2002.
    [114]赵庆彪,马念杰.煤巷小孔径预应力锚索的工程特性分析[J].煤炭科学技术,2004,11.
    [115]姜耀东.巷道底鼓机理及其控制方法的研究[D].徐州:中国矿业大学,1993.
    [116] Wang weijun, Hou Chaojiong, Study of mechanical principle of floor heave of roadway driving along next golf in fully mechanized sub level caving face[J],Journal of Coal Science & Engineering, June 2001, Vol.7 No.1:P13-17.
    [117]蒋金泉,韩继胜,石永奎.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1998.
    [118]韩立军.岩石破坏后的结构效应及锚注加固特性研究[D].徐州:中国矿业大学,2004.
    [119]许兴亮.泥质巷道围岩遇水弱化机理及动态过程研究[D].徐州:中国矿业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700