用户名: 密码: 验证码:
岩溶区隐伏空洞对路桥工程稳定性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶灾害是也是交通建设主要工程地质问题之一。而空洞是岩土工程稳定性影响中的一个重要因素,其表现形式以溶洞、巷道最为常见。
     岩溶区含空洞路(桥)基础和隧道在外部载荷和环境作用下会造成自身岩体强度的弱化,最终可能导致工程失稳破坏。空洞在其破坏过程中的作用和影响是一个及其复杂又具有挑战的研究课题。而这类研究所面对的对象尺度都比较大,如果采用常规的物理试验需要耗费大量的人力和财力,并且实验过程中也可能会受到其它因素的干扰而导致实验失败。而采用理论计算研究的话,又常常需要对模型进行大量的简化处理,计算结果与实际情况有时存在较大偏差。强度折减法已被广泛运用于岩土工程稳定性的研究分析,既能较为真实的反映实际情况,又更经济、有效。本文在路桥工程稳定性分析过程中首次采用距跨比代替距离作为稳定性分析评价的指标之一,使分析结果更加客观;而非均匀性是岩石的一个重要特性,本文在强度折减分析过程中引入了岩石的非均匀性,使分析结果更能反应实际情况;本文还将拉伸破坏准则引入模型的稳定性分析,采用带有拉伸破坏的修正摩尔-库伦准则作为临界强度判据,使所得安全系数为考虑了压剪和拉伸的一个综合安全储备系数。
     目前,工程中空洞影响的研究主要集中在具体工程实例中的分析以及处理方法的讨论上,对空洞影响进行系统性研究的不多。本文在前人的基础上,总结了岩溶地区路桥工程稳定性的影响因素以及评价方法,详细介绍了RFPA有限元强度折减方法的基本原理、强度准则、本构关系以及失稳判据和安全系数的定义。采用RFPA强度折减版对路桥工程中空洞对围岩稳定性的影响进行了研究。论文的主要从以下几个方面分析了空洞对稳定性的影响:(1)不同围岩均质度条件下,空洞对路、桥基以及隧道围岩稳定性影响的规律性;(2)不同空洞断面形式下(水平椭圆、圆形、竖直椭圆),空洞对路、桥基以及隧道围岩稳定性影响的规律性;(3)空洞不同洞径大小及分布情况(对于路、桥基来说不同的埋深,对于隧道来说包括不同远近以及分布位置)对路桥工程围岩稳定性响的规律性;(4)以崇遵高速公路建设中所遇到的路、桥基础及隧道岩溶问题为工程依托,对实际工程中空洞的影响进行分析,研究隐伏空洞对围岩应力、位移的影响特性。
     通过以上四个方面的研究发现:
     1.岩石的非均匀性对路桥工程的稳定性影响较大。对于岩性较差,风化程度较高,比较破碎的岩体而言,岩体的安全储备系数对均匀性的变化更加敏感。在相同岩性条件下,随着岩体均匀性的增大,安全系数增大,岩体的稳定性也相应提高。路基下应变拱和路、桥基下弱应力区的监测对于判断其稳定性具有重要的意义。隧道顶板的稳定性受均匀性影响较小。
     2.对于不同空洞的断面形式,路桥工程的稳定性不同。横向近椭圆(长轴方向与最大主应力方向垂直)空洞对围岩稳定性的影响最大,竖向近椭圆空洞的影响次之,圆形空洞的影响最小。空洞跨度对于工程稳定性的影响要远大于空洞深度的影响。路基顶板的塌陷是由于顶板两侧的拉应力过大而产生的拉破坏,桥基的塌陷则是由于顶板上方的载荷过大,超过顶板抗压、抗剪力而产生的压剪破坏。
     3.空洞洞径大小和距跨比对隧道稳定性有显著影响。随着空洞洞径的增大和距跨比的增加,隧道的安全系数随之增大。当空洞洞径小于隧道洞径的时候,一般都是隧道先发生破坏。随着洞径的增大,破坏逐渐向空洞转移,特别是在空洞位于隧道底部时,甚至会发生孔洞将隧道破坏完全屏蔽,这时主要应注意隧道底部的变形。
     4.对路(桥)基础而言,随着空洞埋深的增大,安全系数逐渐增大,基础稳定性增强;在相同距跨比下,随着空洞洞径的增大,安全系数明显下降,基础稳定性减弱。
     5.对于隧道而言,空洞与隧道距离对稳定性的影响要大于洞径大小的影响;对于路(桥)基而言,空洞洞径的变化对稳定性的影响要大于空洞到路(桥)基距离变化的影响。
Disaster caused by the cave is one of the primary matter for the road project at Karst area. At the Karst area, rock strength of wall rock of tunnel and bedrock of the road and bridge could be weakened by the effect of the environment and load. The weakening of the rock could make the project failure. The influence of the cave on the project during the failure process is a complex and challenged problem. Because the scale of research object is great, the routine physical experiment need much resource and manpower, the experimental result can be disturbed by many reasons, the experiment also would be unsuccessful sometimes. The rock considered as the homogeneous medium and calculation model need too much predigest when we used the academic calculation. But the inhomogeneous is a important character of the rock, the calculation result may be different with the real fact. The strength reduce method is used widely for stability analysis in rock project now. The analysis result accord with the reality. It is cheaper and more effective too. Because the distance and diameter are variable, the rule got by them is unsure. So the distance diameter ratio (DDR) is used to replace the distance as one of estimate standard of the stability analysis in this thesis. The result will be more impersonal. The rock is considered as the homogeneous medium in the past stability analysis, but the inhomogeneous is a very important character for the rock. Inhomogeneous of rock is considered in thesis to make the result more fit for the fact. The tension rule is considered in the stability model too. The results got in the thesis is a integrative safety factor consider the shear stress, compressive stress and tension stress.
     The stability research of the cave is focused on idiographic project for most researcher. Some research on how to deal with the cave. Only a little people research on the influence rule of the cave, near the rock project. The rule is important for the people to consult in other project. Based on the research in past, the thesis sum up the influence factor and analysis method of stability of the road project at Karst area first. The rationale, strength rule, constitutive law and failure criterion of the RFPA-SRM is introduced then. At last, RFPA-SRM is used to analyse the stability influence rule of the cave near the road project. To make the result reflect truer, inhomogeneous of the rock is considered in the model. The content of the thesis as follows:(1)Influence rule of the cave on stability of the wall rock of tunnel and bedrock of the road and bridge with different homogeneousness of the rock is studied in the thesis; (2)analyse the stability variety rule of road project when the section shape of the cave is different(circle, ellipse in horizontal, ellipse in vertical); (3)analyse the stability variety rule of road project when the diameter and location of the cave is different(for the road and bridge, location means the distant between floor and cave, for the tunnel, location means the distant between tunnel and cave); (4)based on the problem caused by the cave in chong-zun highway building process, studied the influence of the cave on stress and deformation of the wall rock in true project.
     By the research on the influence of the cave, the results shows that:
     1. Influence of the rock inhomogeneousness is obvious for the stability of road project. For rock of the bad lithology or high weathering, the safety factor of the rock is more impressible to the inhomogeneous of the rock. The stability and the safety factor of the project increase with the homogeneousness of the rock increase when other conditions are the same. It's very significative for the stability estimate to inspect the strain cove of the road and feebleness stress zone. For the tunnel, stability of the tunnel roof change less when the rock homogeneousness change.
     2. The stability of road project is different when the section shape is changed. For the stability of the project, the influence of cave with the section of ellipse in horizontal (long axis apeak the max. principal stress way) is the most, influence of the circle is the least. change of the cave's span is more influential than the change of the cave's depth. The bedrock of the road and bridge upon the cave will be damaged easily when the span is greater than the distance between cave and bedrock surface. The failure of the roadbed is caused by the big tension, the failure of the bridge bedrock is caused by the big compressive stress.
     3. The change of the cave's diameter and distance diameter ratio (DDR) is very influential for the stability of tunnel. The safety factor increase with the increase of the cave's diameter and DDR. For the stability of the tunnel, influence of the cave's location is not changeless. When the diameter of the cave less than the tunnel's span, tunnel failure at first. The damage transfers gradually to the rock near the cave when the diameter of the cave increase. Specially to the cave under the tunnel, there are little damage in the rock around tunnel while cave failure when the diameter of cave bigger than the tunnel's.
     4. For the road and bridge, the bedrock's safety factor and stability increase with the increase of cave's DDR when the diameter is changeless, the safety factor and stability of bedrock decrease with the increase of cave's diameter when DDR is changeless.
     5. For the wall rock of tunnel, distance between cave and tunnel is more influential to the stability of wall rock than diameter of the cave. For the bedrock of road and bridge, diameter of cave is more influential to the stability of bedrock than distance between cave and the bedrock surface.
引文
1.傅鹤林.隧道衬砌荷载计算理论及岩溶处治技术[M],长沙:中南大学出版社,2005
    2.邹成杰.水利水电岩溶工程地质[M],北京:水利电力出版社,1994
    3.徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M],成都:西南交通大学出版社,2000
    4.于学馥,郑颖人,刘怀恒.地下工程围岩稳定分析[M],北京:煤炭工业出版社,1983
    5.孙钧.地下工程设计理论与实践[M],上海:上海科学技术出版社,1996
    6.周维垣.高等岩石力学[M],北京:水利电力出版社,1990
    7.蒋树屏.我国公路隧道工程技术的现状及展望[J],中国公路学会学术交流论文集,2001,353-362
    8.廖如松.应用逐步判别法预测岩溶塌陷探讨—以桂林岩溶区为例[J],中国岩溶,1987,6(1):11-12
    9.陈国亮.岩溶地面塌陷的成因与防治[M],北京:中国铁道出版社,1994
    10.王建秀,杨立中等.覆盖型无充填溶洞薄顶板塌陷稳定研究[J],中国岩溶,2000,19(1):65-72
    11.雷明堂,蒋小珍.岩溶塌陷研究现状、发展趋势及其支撑技术方法[J],中国地质灾害与防治学报,1998,9(3):22-25
    12.蒋小珍,雷明堂,李瑜等.岩溶水作用下填石路基稳定性模型试验研究[J],中国岩溶,2005,24(2):96-102
    13.崔承禹,邓明德,耿乃光.在不同压力下岩石光谱辐射特性的研究[J],科学通报,1993,38(6):538-541
    14.吴立新.遥感岩石力学及其新近进展与未来发展,岩土力学与工程学报[J],2001,20(2):139-146
    15.王建秀,杨立中,刘丹,何静.岩溶中低山区岩石路堑填土路基塌陷危险性判识研究[J],中国地质灾害与防治学报,2000,11(1):60-65
    16.刘辉.铁路施工中处理岩溶塌陷的几点认识[J],地质灾害与环境保护,1998,9(3):62-64
    17.谢忠球,万志清,钱海涛.抽水引起岩溶区路基塌陷的机理分析及其控制[J],公路,2006,(7):25-28
    18.李勇锋,刘玉山,颜廷舟,岳敏.高速公路互通岩溶塌陷评价及处治[J],交通科技,2007,(2):45-47
    19.李勇锋,刘玉山,颜廷舟,岳敏.某高速公路湖北南段大冶互通岩溶塌陷形成机理的分析[J],西部探矿工程,2007,(9):199-201
    20.曾经道,张举贤.津浦铁路泰安地面塌陷成因与整治[J],铁路工程学报,1996,(2):169-175
    21.丁新红,郭建湖.京广铁路K1241路基岩溶塌陷成因分析[J],西部探矿工程,2005,(4):214-216
    22.张云明.高速公路下伏采空区稳定性评价方法探讨[J],铁路勘测与设计,2007,(3):58-62
    23.谢春艳.铁路岩溶路基稳定性分析及其处理方法[J],铁道勘测与设计,2006,(5):39-44
    24.向贤礼,曾祥忠.岩溶地区路基溶洞顶板的稳定性评价及应用[J],西部探矿工程,2007,(6):164-167
    25.袁腾方,曹文贵,赵明华,程晔.岩溶区高速公路路基下岩溶顶板稳定性的模糊评价方法[J],中南公路工程,2003,28(1):8-11
    26.訾剑华,连伟.徐州市岩溶地质灾害于岩土工程问题[J].地球与环境,2005,33(增):325-330
    27.刘之葵,梁金城,朱寿增,张桂林.岩溶区含溶洞岩石地基稳定性分析[J],岩土工程学报,2003,25(5):629-633
    28.刘之葵,周健红,朱增涛.公路路基中溶洞及土洞顶板安全厚度和距离的确定[J],路基工程,2006,(1):119-121
    29.钱国玉,王靖涛.宜万裸露型岩溶路基稳定性评价方法及实例[J],土工基础,2003,17(1):12-15
    30. Chung-In Lee, Jae-Joon Song. Rock engineering in underground energy storage in Korea[J], Tunnelling and Underground Space Technology,2003,18:467-483
    31.程跃辉:周基,崔颖超,芮勇勤.地下岩溶暗河诱因路堤塌陷失稳机理模拟分析[J],中外公路,2007,27(4): 178-181
    32.廖春芳,彭衡和,曹文贵,刘晓明.岩溶及采空区路基岩层顶板安全厚度确定方法研究[J],公路,2003,(1):2-4
    33.丁春林,甘百先,钟辉虹,周顺华.含土洞、溶洞的机场滑行道路基稳定性评估[J],岩石力学与工程学报,2003,22(8):1329-1333
    34.刘悟辉,刘伟.溶洞对路基稳定性影响分析—以常张高速公路K122+200路基为例[J],中国岩溶,2006,25(4):347-351
    35.黎斌,范秋雁,秦风荣.岩溶地区溶洞顶板稳定性分析[J],岩石力学与工程学报,2002,21(4):532-536
    36.陈尚桥,黄润秋.基础下浅埋洞室安全顶板厚度研究[J],岩石力学与工程学报,2000,19(增):961-966
    37.李健.地下溶洞路床路堑失稳强度折减反分析[J],地下空间与工程学报,2005,11(6):932-935
    38. M. Karakus, R.J. Fowell. Effects of different tunnel face advance excavation on the settlement by FEM[J], Tunnelling and Underground Space Technology,2003,18:513-523
    39. A. Nour, A. Slimani, N. Laouami. Foundation settlement statistics via.finite element analysis[J], Computers and Geotechnics,2002,29:641-672
    40.何文君,张兵.高速公路路基岩溶病害调查方法总结[J],西部探矿工程,2007,(6):155-157
    41.何文君,张兵.某高速公路岩溶路基病害勘察[J],西部探矿工程,2007,(7):176-178
    42.宗宁,付开隆,马建军.黔桂铁路扩容改造工程主要岩溶问题及对策[J],路基工程,2007,(2):152-154
    43.袁红庆,王再喜,汪海生,严冬.高速公路岩溶路基处理措施研究[J],华东交通大学学报,2007,24(2):33-36
    44.王新桥.高速铁路岩溶地基加固试验与施工[J],山西建筑,2007,33(13):313-314
    45.向贤礼,唐广惠.公路路基岩溶塌陷注浆治理探讨[J],西部探矿工程,2007,(6):195-197
    46.旷斌.喀斯特地貌区域岩溶路基的结构处理探讨[J],科技资讯,2006,(30):63-64
    47.王质.路基溶洞的几种处理方法[J],科技资讯,2007,(29):18
    48.李惠琼.路基岩溶塌陷及其整治[J],路基工程,2001,(6):64-67
    49.王玉波,高振利.我国公路工程岩溶溶洞处理方法及其效果检测[J],科技资讯,2006,(13):15-16
    50.袁树基.岩溶地区公路路基全面施工技术[J],技术园地,2007,(17):58-59
    51.董文.岩溶地区路基加固的处理[J],路基工程,2001,(4):51-53
    52.杨友梅.岩溶区高速公路地基处理[J],华东公路,2007,(4):45-46
    53.张合青,杨国荣,魏戈锋.广州新白云机场土洞、溶洞的稳定性判别及其加固处理[J],地球与环境,2005,33(3):36-40
    54. Perrier H., Simon M., Lacroix M.. Road reinforcement with geotextile fabric:prevention of Karstic sink holes[J], Proceedings of the 4th international conference, The Hague,1990,862-869
    55. Garlanger J. E.., Foundation design in florida Karst[J], Concrete International,1991,13(4):56-62
    56. Abdulla W. A., Goodings D. J.. Modeling of sinkholes in weakly cemented Sand[J], Journal of Geotechnical Engineering,1996,122(2):998-1005
    57.赵明华,袁腾方,黎莉等.岩溶区桩端持力层岩层安全厚度计算研究[J],公路,2003,(1):124-128
    58.赵明华,陈昌富,曹文贵等.嵌岩桩桩端岩层抗冲切安全厚度研究[J],湘潭矿业学院学报,2004,18(4):41-45
    59.李炳行,肖尚惠,莫孙庆.岩溶地区嵌岩桩桩端岩体临空面稳定性初步探讨[J],岩石力学与工程学报,2003,22(4):633-635
    60.牟春梅.岩溶区地基岩体溶洞项板稳定性评价[J],西部探矿工程,2002,(4):33-35
    61.周建普,李献民.岩溶地基稳定性分析评价方法[J],矿冶工程,2003,23(1):4-8
    62.贺可强,王滨,万继涛.枣庄岩溶塌陷形成机理与致塌模型的研究[J],岩土力学,2002,23(5):564-570
    63.陈明晓.岩溶覆盖层塌陷的原因及其半定量预测[J],岩石力学与工程学报,2002,21(2):285-289
    64.黄志春.广西水任—南宁公路拉显二号桥溶洞稳定性评价[J],西部交通科技,2006,(5):112-114,117
    65. Baus R L, Wang M C, Bearing capacity of strip footingabove void[J], Journal of Geotechnical Engineering, ASCE,1983,117(5):753-765
    66. Azam G, Wang M C, Performance of strip footing abovevoids in clay[J], Journal of Geotechnical Engineering, ASCE,1990,110(3):37-58
    67.牟春梅.岩溶区地基岩体溶洞顶板稳定性评价[J],西部探矿工程,2002,增刊:119-121
    68.赵明华,程晔,曹文贵.桥梁基桩桩端溶洞顶板稳定性的模糊分析研究[J],岩石力学与工程学报,2005,24(8):1376-1381
    69.蒋继昭.柳州至桂林高速公路西河大桥2号墩溶洞稳定性评价与容许承载力的确定[J],广西交通科技,1995,20(4):29-31
    70.李仁江,盛谦,张勇慧,景锋,冷先伦.溶洞顶板极限承载力研究[J],岩土力学,2007,28(8):1621-1625,1630
    71.罗强,谭捍华,龙万学,陈勇.岩溶地区公路桥基勘察与洞穴稳定性评价[J],公路交通科技,2006,23(2):111-114
    72.黄光强.岩溶地区铁路桥梁地基稳定分析与基础设计[J],铁道运营技术,2007,13(3):16-17,19
    73.汪稔,孟庆山,罗强,陈勇,谭捍华,石祥锋.桥基岩溶洞穴顶板稳定性综合评价[J],公路交通科技,2005,22(6):76-80
    74.阳军生,张军,张起森.溶洞上方圆形基础地基极限承载力有限元分析[J],岩石力学与工程学报,2005,24(2):296—301
    75.胡庆国,张可能,阳军生.溶洞上方条形基础地基极限承载力有限元分析[J],中南大学学报(自然科学版),2005,36(4):694—697
    76.龚成中,何春林.岩溶地区桩基承载力的有限元分析[J],西部探矿工程,2005,(4):30-32
    77.车平.桩基下溶洞顶板稳定性影响因素数值分析[J],山西建筑,2006,32(9):61-62
    78.程晔,赵明华,曹文贵.基桩下溶洞顶板稳定性评价的强度折减有限元法[J],岩土工程学报,2005,27(1):38-41
    79.蒋能勇,刘可.桥梁桩底溶洞的处理[J],广东交通职业技术学院学报,2004,(3):50-511,69
    80.李君宪.胡正昌.岩溶地基桥梁桩基施工技术探讨[J],黑龙江交通科技,2006,(2):56,58
    81.徐造时.岩溶地区桥梁基础的设计和施工[J],公路,1994,(11):12-15
    82.谢介福,盛岳平.岩溶地区桥梁桩基础施工[J],湖南交通科技,1994,20(4):5-10
    83.李丁徕,孙利民.岩溶地区铁路桥梁桩基设计问题探讨[J],山西建筑,2007,33(7):273-274
    84.罗亨文,周平.坝陵河大桥东索塔桩基工程岩溶综合探测技术[J],路基工程,2006,(4):118-120
    85.陈侃福,彭丁茂,杨建锋.黄衢高速公路K20+500-K21+000段岩溶分布特征及成因分析[J],东华理工学院学报,2006,(增刊):199-201
    86.曾治.浅谈岩溶地区桥梁基础地质勘察与设计[J],中国水运,2007,7(8):121-122
    87.陈希祥,黄永忠.宁杭高速公路宜广路立交桥场区岩溶发育特征[J],江苏地质,2007,31(3):218-222
    88.孔祥龙.石灰岩岩溶地区桥梁桩基设计与施工[J],交通标准化,2007,(7):63-65
    89.肖常青.岩溶地质条件下桥位桩基溶洞的处理[J],湖南水利水电,2006,(3):58-59
    90.张红杰.岩溶地区桥梁桩基施工方法[J],山西建筑,2007,33(27):121-122
    91.许琦.岩溶地区桥梁桩基础质量控制探讨[J],广东土木与建筑,2007,(1):39-40,44
    92.许琦.岩溶地区桥梁桩基础质量控制[J],中国市政工程,2007,(3):54-56
    93.赵荣营.岩溶地区桥梁基础设计[J],铁道标准设计,2007,(2):98-99
    94.覃文元.大桥桩基穿越复杂岩溶地质钻孔施工的处理方法[J],公路交通科技(应用技术版),2007,2:117-118,126
    95.郑永红.岩溶地区桥梁基础设计[J],铁道标准设计,2006,(10):41-43
    96.刘普尧.岩溶地区桥梁挖孔桩施工技术[J],科技信息,2007,(11):110-111
    97.付均强.岩溶地区桥桩工程的事故分析与防治[J],山西建筑,2007,33(16):323-324
    98.周湘君,肖志彪.岩溶地区中小桥基础设计实践[J],公路交通技术,2006,(6):98-100)
    99.谢智敏.岩溶区桥梁桩基的设计和施工处理[J],黑龙江交通科技,2007,(8):71-72
    100. Qubain B.S., Seksinsky E.J., Li J.. Design consideration for bridge foundations in Karst terrain[J], Proceedings and Field Trip Guide of the 49th Highway Geology Symposium, Prescott, Arizona,1998, 339-349
    101.铁道部第二勘察设计院.岩溶工程地质[M],北京:中国铁道出版社,1984
    102.程建铝,宋战平.喀斯特地区铁路隧道工程地质灾害研究初探[J],水利与建筑工程学报,2006,4(3):18-21
    103.吴静,葛浩然.洞室施工中岩溶及地下水富集区的预测和处理[J],云南水利发电,2007,23(1):38-41
    104.干昆蓉,杨毅,李建设.某隧道岩溶突水机理分析及安全岩墙厚度的确定[J],隧道建设,2007,27(3):13-16,50
    105.刘招伟,张民庆.某铁路隧道岩溶突水的连通性特征[J],隧道建设,2006,26(1):6-9
    106.焦南稳,商南南,胡蕊芬.干溪沟隧道特大溶洞通过方案优选与实施[J],采矿技术,2004,4(1):60-61
    107.李鸣冲.大型溶腔岩溶发育隧道处理方案分析[J],铁路工程造价管理,2006,21(4):42-45
    108.林本涛.干溪沟隧道岩溶整治分析[J],铁道工程学报,2006,(7):54-58
    109.卓越,邹翀.高水压岩溶隧道施工防水处理技术[J],隧道技术,2006,26(2):33-37
    110.黄立新.公路隧道通过大型溶洞群施工技术[J],铁道标准设计,2006,(4):86-88
    111.卢平,马德芹,曾裕平.华蓥山隧道工程地质条件及不良地质问题[J],路基工程,2005,(6):96-99
    112.蒋忠信,秦小林,袁茂林.南昆铁路典型隧道区溶洞研究[J],铁道工程学报,1995,(1):53-62
    113.李海斌.南岭隧道岩溶病害的勘察与分析[J],资源环境与工程,2006,20(4):405-408,424
    114.杨育僧,吴昊,许建飞,杨小强.岩溶地层中的盾构隧道施工[J],铁道工程学报,2007,(7):56-60
    115.何剑宏,张杨文.岩溶化围岩隧道的工程地质特征[J],铁道勘察,2006,(2):36-38
    116.张民庆,黄鸿健,田四明.岩溶隧道安全设计、施工与管理[J],铁道工程学报,2007,(5):75-81,85
    117.白明洲,许兆义,张庆云,刘浩杰.宜万铁路八字岭隧道岩溶管道冲积物特征实验研究[J],工程地质学报,2005,15(1):16-21
    118.苗德海.宜万铁路岩溶隧道灾害及防治对策[J],铁道标准设计,2007,(7):96-99
    119.刘泉声,白山云,肖春喜,高玮.基于现场监控量测的龙潭隧道施工期围岩稳定性研究[J],岩石力学与工程学报,2007,26(10):1982-1990
    120.臧守杰,綦彦波,程建铝.喀斯特地区隧道施工中隧底岩层稳定性评价研究[J],水利与建筑工程学报,2007,5(3):43-45
    121.张甘成,朱慧芳,童庆峰.连拱隧道底部岩溶处理方法及其计算分析[J],探矿工程,2007,(10):72-75
    122.付敬,丁秀丽,张练.岩溶回填改善地下洞室群围岩稳定性的数值分析[J],长江科学院院报,2006, 23(4):47-50
    123. W.Z. Chen, W.S. Zhu, J.F. Shao. Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation [J], International Journal of Rock Mechanics & Mining Sciences,2004, (41):669-677
    124. J.S. Yang, B.C. Liu, M.C.. Wang. Modeling of tunneling-induced ground surface movements using stochastic medium theory[J], Tunnelling and Underground Space Technology,2004, (19):113-123
    125. Tonon, F., Amadei, B.. Effect of elastic anisotropy on tunnel wall displacements behind a tunnel face[J], Rock Mech. Rock Eng,2002,35(3):141-160
    126. Jun Liu, Zhongkui Li, Zhuoyuan Zhang. Stability analysis of block in the surrounding rock mass of a large underground excavation [J], Tunnelling and Underground Space Technology,2004, (19):35-44
    127. Bhawani Singh, R. K. Goel, V. K. Mehrotra, S. K. Garg, and M. R. Allu. Effect of Intermediate Principal Stress on Strength of Anisotropic Rock Mass[J], Tunnelling and Underground Space Technology,1998,13(1):71-79
    128. C.B. Kooi, A. Verruijt. Interaction of circular holes in an infinite elastic medium[J], Tunnelling and Underground Space Technology,2001, (16):59-62
    129. William,David,Ortlepp. The behaviour of tunnels at great depth under large static and dynamic pressures[J],. Tunnelling and Underground Space Technology,2001, (16):41-48
    130. D. Kolymbas, W. Fellin, A. Kirsch. Squeezing due to stress relaxation in foliated rock[J], Int. J. Numer. Anal. Meth. Geomech,2006, (30):1357-1367
    131.Vahid Hajiabdolmajid, Peter Kaiser. Brittleness of rock and stability assessment in hard rock tunneling[J], Tunnelling and Underground Space Technology,2003, (18):35-48
    132. Toshihisa Adachi, Makoto Kimura, Kiyoshi Kishida. Experimental study on the distribution of earth pressure and surface settlement through three-dimensional trapdoor tests [J], Tunnelling and Underground Space Technology,2003, (18):171-183
    133.张志强.复杂地质条件下隧道填充性岩溶三维有限元分析[J],岩土工程技术,2006,20(3):159-162
    134.赵明阶,敖建华,刘绪华,王彪.隧道底部溶洞对围岩变形特性的影响分析[J],重庆建筑大学学报,2003,22(2):20-23,40
    135.赵明阶,徐容,刘绪华,敖建华,王彪.隧道顶部溶洞影响围岩稳定性的模型试验研究[J],地下空间,2003,23(2):153-157,225
    136.赵明阶,刘绪华,敖建华,王彪.隧道顶部溶洞对围岩稳定性影响的数值分析[J],岩土力学,2003,24(3):445-449
    137.赵明阶,敖建华,刘绪华,王彪.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J],岩石力学与工程学报,2004,23(2):213-217
    138.赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变形规律及其监测[J],同济大学学报(自然科学版),2004,32(7):866-871
    139.赵明阶,王学军,刘绪华,敖建华,王彪.隧道侧岩溶分布对围岩稳定性影响的数值模拟研究[J],重庆交通学院学报,2003,25(1):6-11
    140.赵明阶,徐容,许锡宾.岩溶区全断面开挖隧道围岩变形特性模拟[J],同济大学学报(自然科学版),2004,32(6):710-715
    141.吴梦军,许锡宾,刘绪华,敖建华.岩溶对公路隧道围岩稳定性的影响研究[J],地下空间,2003,23(1):59-62
    142.吴梦军,许锡宾,赵明阶,刘绪华.岩溶地区公路隧道施工力学响应研究[J],岩石力学与工程学报,2004,23(9):1525-1529
    143.史世雍,梅世龙,杨志刚.隧道顶部溶洞对围岩稳定性的影响分析[J],地下空间与工程学报,2005, 1(5):698-702,716
    144.焦斌权,靳晓光,李晓红,阳光.岩溶区隧道围岩—支护体系稳定性研究[J],中国地质灾害与防治学报,2004,15(3):78-82
    145.张鹏勇,徐林生,王新平.阳宗隧道试验段动态开挖过程的数值模拟研究[J],重庆交通学院学报,2003,22(4):7-10
    146.唐晓松.大型地下硐室工程整体稳定性的有限元模拟分析[J],采矿技术,2003,3(2):70-72
    147. D. Sterpi, A. Cividini. A Physical and Numerical Investigation on the Stability of Shallow Tunnels in Strain Softening Media[J], Rock Mech. Rock Engng,2004
    148. T. Unlu, H. Gercek. Effect of Poisson's ratio on the normalized radial displacements occurring around the face of a circular tunnel[J], Tunnelling and Underground Space Technology,2003, (18):547-553
    149. R. Bhasin, K. Heeg. Numerical Modelling of Block Size Effects and Influence of Joint Properties in Multiply Jointed Rock[J], Tunnelling and Underground pace Technology,1998,13(2):181-188
    150. E. J. Sellers, P. Klerck. Modelling of the Effect of Discontinuities on the Extent of the Fracture Zone Surrounding Deep Tunnels[J], Tunnelling and Underground Space technology,2000,15(4):453-439
    151. P. Kumar. Infinite Elements for Numerical Analysis of Underground Excavations[J], Tunnelling and Underground Space Technology,2000,15(1):117-124
    152. K.-J. Shou. A Three-Dimensional Hybrid Boundary Element Method for Non-Linear Analysis of a Weak Plane Near an Underground Excavation[J], Tunnelling and Underground Space Technology, 2000,15(2):215-226
    153. Sulem J, Panet M, Guenot A. An analytical solution for time-dependent displacement in acircular tunnel[J], Int. J. Rock Mech. Min. Sci.&Geomech. Abstr,1987,30(3):155-164
    154. Horsrund P, Holt RM, Sonstebo El. Time dependent borehole stability:laboratory studies and numerical simulation of different mechanism in shale[J], Proc. Eurock'94. Rotterdam:Balkema,1994, 259-266
    155. E. Maranini, M. Brignoli. Creep behaviour of a weak rock:experimental characterization[J], Int. J. Rock Mech. Min. Sci,1999, (36):127-138
    156.张勇.复杂岩溶隧道充填型溶洞综合处理技术[J],铁路建筑技术,2007,(5):30-32
    157.尚寒春.华蓥山隧道东口岩溶分析及溶洞处理[J],铁道工程学报,2007,(8):58-60,70
    158.杨丽若,李德宏.牛角山隧道岩溶处治措施[J],公路隧道,2007,(1):43-47
    159.张保祥.浅析岩溶地区隧道设计与施工技术[J],中国科技信息,2006,8:172-173
    160.张延,陈中.隧道岩溶处理面面谈[J],现代隧道技术,2001,38(1):60-64
    161.吴跃华,郑极新.隧道岩溶与处治技术探讨[J],西部探矿工程,2007,(9):154-156
    162.李国英.岩溶地区隧道仰拱开裂的整治[J],铁路标准设计,2007,(1):68-71
    163.冉平,刘辉.岩溶隧道病害处置方法探讨[J],西部探矿工程,2006,(10):184-185
    164.王树仁,何满潮,刘招伟.岩溶隧道突水灾变过程分析及控制技术[J],北京科技大学学报,2006,28(7):613-618
    165.刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机理及防治对策研究[J],岩土力学,2006,27(2):228-232,246
    166.魏敏志.不同工法在岩溶区地铁隧道施工的适宜性[J],西部探矿工程,2007,(11):163-164
    167.王艳芳.大瑶山三号隧道岩溶地段施工技术[J],山西建筑,2007,33(18):161-162
    168.周伟.复杂地质条件下隧道岩溶处理办法的研究[J],山西建筑,2007,33(14):277-278
    169.张春佳.黄织线岩脚隧道岩溶塌陷处理施工技术[J],铁路运营技术,2007,13(3):3-4,9
    170.李海峰.浅埋暗挖地铁隧道岩溶地层注浆加固止水施工[J],石家庄铁道学院学报,2006,19(增):37-40
    171.尹兴盛.清水塘隧洞通过溶洞群的施工措施[J],西部探矿工程,2004,(5):108-109
    172.何江.溶洞地区的隧道施工技术[J],铁道建筑,2004,(5):29-31
    173.刘清文.铁路隧道溶洞处理技术[J],西部探矿工程,2005,(7):113-115
    174.林存友.铁路隧道隧底岩溶的处理[J],铁道建筑技术,2001,(2):13-14
    175.李任良.岩溶公路隧道施工策略[J],公路隧道,2007,(2):37-40
    176.张民庆,黄鸿健,苗德海,田四明.宜万线高坪2号隧道DK140+451岩溶处理[J],铁道标准设计,2007,增刊:157-159
    177.童志辉.浅埋软弱围岩隧道施工[J],铁道建筑,2002,(6):30-32
    178.唐春安.岩石破裂过程中的灾变[M],北京:煤炭工业出版社,1993
    179. Tang C.A.. Numerical simulation on progressive failure leading to collapse and associated seismicity[J], International Journal of Rock Mechanics and Mining Science,1997,34(2):249-261
    180. Tang C.A., Kaiser, P.K.. Numerical simulation of cumulative damage and seismic energy release in unstable failure of brittle rock-----Part I. Fundamentals[J], International Journal of Rock Mechanics and Mining Science,1998,35(2):113-121
    181.刘红元,刘建新,唐春安.采动影响下覆岩垮落过程的数值模拟[J],岩土工程学报,2001,23(2):201-204
    182.朱万成,唐春安.岩板中混合裂纹扩展过程的数值模拟[J],岩土工程学报,2000,22(2):231-234
    183. W.C. Zhu, C.A. Tang. Numerical simulation on shear fracture process of concrete using mesoscopic mechanical model[J], Construction and Building Materials,2002,16:453-463
    184.朱万成.混凝土断裂过程的细观数值模型及其应用[D],沈阳东北大学,2001
    185.林鹏.含裂纹与孔洞缺陷介质的脆性破坏行为[D],沈阳东北大学,2002
    186.陈哗.岩溶区高速公路路桥基础稳定性评价方法与应用研究[D],长沙湖南大学,2005
    187.石祥锋.岩溶区桩基荷载下隐伏溶洞顶板稳定性研究[D],武汉中国科学院武汉岩土力学研究所,2005
    188.刘之葵.岩溶区溶洞及土洞对建筑地基影响的研究[D],长沙中南大学,2004
    189.杨宜章.岩溶和空区上方地基承载特性的研究[D],长沙中南大学,2007
    190.王桂林.岩石洞室地基稳定性研究[D],重庆重庆大学,2004
    191.宋战平.隐伏溶洞对隧道围岩——支护结构稳定性的影响研究[D],西安西安理工大学,2005
    192.岩土工程手册编委会.岩土工程手册[M],北京:中国建筑工业出版社,1994,648-662
    193.李斌.公路工程地质(三版)[M],北京:人民交通出版社,1989,147-153
    194.黄伯瑜.岩溶地基稳定性评价与工程处理[J],勘察科学技术,1988,(3):1-6
    195.彭柏兴.利用卸荷拱理论对地基中防空洞进行评价和处理[J],勘察科学技术,1999,(6):25-31
    196.程晔,曹文贵,赵明华.高速公路下伏岩溶顶板稳定性二级模糊综合评判[J],中国公路学报,2003,16(4):21-24
    197.郑颖人,赵尚毅,孔位学,邓楚键.极限分析有限元法讲座—I岩土工程极限分析有限元法[J],岩土力学,2005,26(1):163-168
    198.栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J],防灾减灾工程学报,2003,23(3):1-8
    199.赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J],岩土工程学报,2002,24(3):343-346
    200.张鲁渝,时卫民,郑颖人.平面应变条件下土坡稳定有限元分析[J],岩土工程学报,2002,24(4):487-490
    201.张鲁渝,郑颖人,赵尚毅.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J],水利学报,2003,(1):21-27
    202.赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J],岩石力学与工程学报,2003,22(2):254-260
    203.郑宏,李春光,李焯芬等.求解安全系数的有限元法[J],岩土工程学报,2002,24(5):626-628
    204.连镇营,韩国城,孔宪京.强度折减有限元研究开挖边坡的稳定性[J],岩土工程学报,2001,23(4):407-411
    205.宋二祥.土工结构安全系数的有限元计算[J],岩土工程学报,1997,19(2):1-7
    206. Zienkiewicz O C, Humpheson C, Lewise R W. Associated and non-associated Visco-plasticity and plasticity in soil mechanics[J], Geotechnical Engineering, ASCE, 1975,25(4):671-689
    207. Ugai K. A method of calculation of total factor of safety of slopes by elasto-plastic FEM[J], Soils and Foundations,1989,29(2):190-195
    208. Mateui T, San K C. Finite element slope stability analysis by shear strength reduction[J], Soils and Foundations,1992,32(1):59-70
    209. Ugai K, Leshchinsky D. Three-dimensional limit equilibrium and finite element analysis:a comparison of results[J], Soils and Foundations,1995,35(4):1-7
    210. Duncan J M. State of the art:Limit equilibrium andfinite-element analysis of slope[J], Journal of Geotechnical Engineering, ASCE,1996,122(7):577-596
    211. Griffiths D V, Lane P. A.Slope stability analysis by finite elements[J], Geotechnique,1999,49(3): 387-403
    212. Dawson E M,Roth W H, Drecher A. Slope stability analysis by strength reduction[J], Geotechnique, 1999,49(6):835-840
    213.Manzari M T, Nour m A. Significance of soil dilatancy in slope stability analysis[J], Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000,126(1):75-80.
    214.唐春安,朱万成.混凝土损伤与断裂——数值试验[M],北京:科学出版社,2003
    215.孙钧.岩土材料流变及其工程应用[M],北京:中国建筑工业出版社,1999
    216.唐春安.岩石声发射规律数值模拟初探[J],岩石力学与工程学报,1997,16(4):368-374
    217. Weibull W. A statistical distribution function of wide applicability[J], Journal of Applied Mechanics, 1951,18(3):293-297
    218. Hudson J A, Fairhurst C. Tensile strength Weibull's theory and a. general statistical approach to rock failure.Structure, Solid Mechanics and Engineering Design[A], The Proceeding of Civil Engineering MaterialsConference, Teeni(eds.), Southampton,1969
    219.唐春安,刘红元.非均匀性对岩石介质中裂纹扩展模式的影响[J],地球物理学报,2000,143(1):116-121
    220.蔡美峰,何满潮,刘东燕.岩石力学与工程[M],北京:科学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700