用户名: 密码: 验证码:
高地应力条件下深部巷道围岩分区破裂形成机制和锚固特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着国民经济的持续稳定增长,国家对地下洞室开发利用逐渐趋向于深部。在高地应力、高渗透压、高温和开挖扰动等复杂恶劣地质条件下,深部地下工程产生了诸如大变形、强流变等特殊的变形破坏方式。其中,分区破裂是最引人关注的问题。分区破裂是深部巷道围岩在高地应力下的特殊工程地质现象,如果处理不当将会造成大范围的巷道破坏。因此,国内外专家学者对此进行了大量研究,但对分区破裂的形成机制仍没有统一的结论。
     本文结合国家自然科学基金项目“高地应力深部巷道围岩非线性变形破坏机理及锚固特性的研究”,以淮南矿区丁集煤矿-910m深部巷道为工程背景,通过采用真三维地质力学模型试验和理论分析相结合,并辅以现场监测和数值模拟的手段,全面系统研究了高地应力条件下深部巷道围岩分区破裂形成机制以及分区破裂形成过程中围岩的变形破坏规律。以此为基础,建立了分区破裂形成的条件判据,并研究了深部巷道围岩分区破裂的锚固特性。主要的研究内容和创新点如下:
     1)通过钻孔电视对淮南丁集矿深部巷道进行围岩破坏观测证实,深部巷道围岩存在分区破裂现象。观测结果初步表明深部巷道围岩分区破裂的破裂形态、破裂区半径、分布特征等与开挖巷道半径密切相关。
     2)开展了预留洞室轴向压缩破坏的模型试验,发现轴向高压力下洞室围岩出现了多条间隔破坏线。初步表明轴向高压力是导致产生分区破裂的重要因素。
     3)首次通过相似材料三维地质力学模型试验,再现出高地应力条件下深部巷道开挖导致围岩形成分区破裂现象,并获得巷道围岩位移和径向应变呈现波峰与波谷交替分布的波浪形变化规律。试验得到的分区破裂形态特征及围岩位移分布规律与现场监测基本一致。
     4)自主研制的高地应力真三维加载模型试验系统可用于同步、独立地向模型施加三轴高地应力。
     5)研究得到巷道围岩裂纹的扩展轨迹。首先提出了受压裂纹扩展的计算方法,然后通过扩展有限元将其应用于裂纹扩展轨迹的计算,计算结果表明围岩裂纹扩展到一定长度将最终趋向于形成环状断裂。
     6)通过对深部巷道围岩应力应变场和能量场的研究,揭示了分区破裂的形成机制。即围岩弹塑性区边界存在着切向应力峰值、径向应变不协调性和应变能的聚集,使该区域形成与开挖洞室呈同心圆的环状断裂,从而导致围岩卸荷及应力重分布并使围岩产生新的弹塑性区边界。该过程不断循环、递进,便形成了分区破裂现象。揭示了分区破裂产生后围岩位移与应变呈波峰波谷波浪形分布的原因在于新的塑性区的不断形成,使得新形成的塑性区的应变和位移值出现突变。
     7)通过研究得到形成分区破裂的地应力特征为轴向地应力第一或第二主应力,各破裂区形成具有时间上的递进性;当地应力不足以达到判据时分区破裂过程停止;分区破裂形态与开挖洞室半径、围岩力学参数等有关,各破裂区半径之间符合等比关系。这基本解释了试验和现场观测到的现象。
     8)建立了分区破裂的起裂判据。首先提出了极坐标系下的滑移裂纹模型,并将其扩展到一定程度后等效为圆弧形裂纹,通过复变函数计算了其受圆形洞室影响下的应力强度因子,认为当其大于围岩断裂韧度时分区破裂开始形成。
     9)基于能量平衡原理建立了分区破裂的形成判据:首先通过研究认为围岩开挖卸荷释放的应变能为围岩破坏的能量来源,并计算了围岩的可释放应变能;然后通过极坐标系下滑移裂纹模型计算了环状断裂形成所耗散的能量。当围岩可释放应变能大于塑性区边界环状断裂形成所耗散的能量时,分区破裂将会形成。
     10)将得到的分区破裂起裂判据程序化,将其嵌入扩展有限元平台,初步经过对高应力下深部巷道的模拟,得到了围岩的分区破裂现象。模拟得到的围岩破坏形态、破裂圈数等均与试验观察到的分区破裂现象大体符合。
     11)通过深部巷道围岩分区破裂锚固特性的地质力学模型试验发现锚杆对分区破裂有明显抑制作用。发现轴向高地应力作用下深部巷道围岩潜在的分区间隔破裂导致锚杆受力呈现拉压交替的变化现象。
     12)通过研究锚杆完全屈服时所吸收的能量,建立了基于能量平衡原理的抑制分区破裂形成的判据。初步研究了抑制分区破裂现象而采取的锚杆布置方式。
In recent years, with the rapid and stable development of the national economy, the utilization and developing of the underground cavern have been getting to deep embedded area. In the condition of complex geological environment such as high geo-stress, high osmotic pressure, high temperature and excavation induced disturbance, there appears special engineering response character, such as the large deformation, great rheology, etc. Among which the zonal disintegration phenomena is the most attractive problem. Specialists both home and abroad carried on much research on this, but there isn't a uniform conclusion on the forming mechanism yet.
     Under the financial support of National Natural Science Foundation of China (Grant No.40772173) and taking the deep tunnel which the embedded depth is 910m in Dingji coal mine of Huainan mine area as the background, the in-situ monitoring method, the true triaxial geomechanical model test, theoretical analysis and numerical simulation method are jointed together to research the forming mechanism and anchorage characteristic under high geostress entirely. Take the theoretical analysis and engineering practice tight coupling, the work in some aspect have been finished and listed below:
     1) Through the in-situ monitoring, the zonal disintegration phenomena is proved to be existed, and the displacement law of wave crest and trough distributed alternately during the forming procedure which is different the shallow embedded tunnel is got. The results showed that the fracture shape of zonal disintegration are related to the radius of the excavated tunnel.
     2) through the model test of the axial compression on the cavern obligated, it is found that the axial high geo-stress is the important factor which lead to the zonal disintegration.
     3) The zonal disintegration phenomenon is first reappeared in laboratory through the geomechanical model test. And the displacement and radical strain changing law of wave crest and trough distributed alternately during the forming procedure which is different the shallow embedded tunnel is got. The fracture shape and displacement distribution law is accord with the in-situ observations.
     4) The self-developed high geo-stress true 3D loading model test system can be used to apply triaxial high stress synchronization and independently.
     5)the crack propagation trajectory in surrounding rocks are got based on research. First, the computing method of crack extension under compression is established, and then takes it into the computing of crack extension trajectory through the XFEM. The numerical result shows that the crack will intend to form the circle fracture when the crack propagates to some length.
     6) Through the research on the stress field and energy field of deep tunnel surrounding rocks, the forming mechanism of zonal disintegration was established, there exists the discontinuity of strain and crest value of tangential stress and energy aggregation in the elasto-plastic zone, which make the crack propagation and forming circle fracture. After the formation of the circle fracture, the surrounding rock mass will unloading, which make new stress redistribution and the new plastic zone's forming. The process list up will repeat in the new plastic boundary and induce the forming of the zonal disintegration phenomena. The reason of changing laws of alternation of crest and wave displacement and radical strain in surrounding rocks was revealed, which is the constant formation of newly plastic zone make the strain and displacement break in the newly formed plastic zones.
     7) Through the research, it is found that the geo-stress character of zonal disintegration forming is that the axial geo-stress is the first or second principal stress, and the fractured zones formed one by one. When the geo-stress is not enough to the criterion, the zonal disintegration formation will stop. The fractured shape of zonal disintegration is related to the radius of excavated cavern and mechanical parameters of surrounding rocks, and the radius of all fractured zones are equal ratio, which explains the phenomenon observed in test and in-situ monitoring.
     8) The initiation criterion of zonal disintegration is established. Fist, the sliding crack model in polar coordinates system is established, and when propagate to some length it is equivalent to the circle crack. The stress intensity factor is computed through the complex variables functions, and the zonal disintegration start to form when it is larger than the fracture toughness.
     9) The forming criteria of zonal disintegration are established based on the energy balance theory:first, the strain energy released through excavation and unloading is regarded as the energy resources of surrounding rocks damage, and the releasable strain energy was computed. Then, Take it to compare with the energy dissipatation during the formation of the circle fracture, the energy criteria of zonal disintegration is got.
     10) Make the zonal disintegration initiation criteria programmed and implant it into XFEM platform of Abaqus, the zonal disintegration phenomena is simulated. The fracture shape and fracture zones of zonal disintegration got from simulation are fit with the zonal disintegration phenomenon observed in test.
     11) Through the geomechanical model test of anchorage character of deep tunnel rock mass, the suppress impact of anchor on the zonal disintegration was found. The compression-tension alternation phenomena in rock bolt is got, which reflects that there exists the trend of forming zonal disintegration in deep rock mass.
     12) through the research on the energy of the anchorage can absorbed when it is entirely yield, the criteria of suppress the zonal disintegration based on the energy balance theory is got. The rock bolts arrange pattern to suppress the zonal disintegration phenomenon is researched preliminary.
引文
[1]谢和平.深部高应力下的资源开采与地下工程——机遇与挑战A.见:第175次香山科学会议学术讨论会交流材料C.北京:s.n.,2001,1-9
    [2]Nikolaevshij V N. Mechanics of porous and fractured mediaM.New York:USA,1990.
    [3]李化敏,李华奇,周宛.煤矿深井的基本概念与判别准则[J].煤矿设计,1999(10):5-7
    [4]李海燕,刘玉萍,秦佳之,薛翊国.煤矿深井开采的合理经济深度研究[J].地下空间与工程学报,2008,4(4):645-648
    [5]崔希民,刘艳华.地下资源安全开采深度的研究[J].矿业研究与开发2000,20(6):1-2.
    [6]梁政国.煤矿山深浅部开采界线划分问题[J].辽宁工程技术大学学报(自然科学版).2001,20(4):54-56
    [7]何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报.2005,24(6):2854-2858
    [8]孙晓明,何满潮,杨晓杰.深部软岩巷道锚网索耦合支护非线性设计方法研究J.岩土力学,2006,27钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[J].东华理工学院学报.2004,27(1):1-5
    [10]董方庭.巷道围岩松动圈支护理论与应用技术M,北京:煤炭工业出版社,2001
    [11]侯朝炯,李海燕.困难复杂条件下的煤巷锚杆支护[J].岩土工程学报,2001,23(1):84-88
    [12]李全生.我国井工煤矿开采技术现状和发展展望[J].煤矿开采,2002,7(3):1-5
    [13]姜耀东,赵毅鑫,刘文岗,等.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,14:赵继银,张传信.构造应力场对深井巷道围岩稳定的影响[J].金属矿山,2005.5
    [15]Heard H C. Transition from brittle fracture to ductile flow in Solenhofen limestone as a function of temperature, confining pressure, and interstitial fluid pressure[J]. Bull.Geol. Soc.Am,1960,79:193-226.
    [16]Singh [J]. Strength of rocks at depthA. In:Rock at Great DepthC. Rotterdam:A. A. Balkema, 1989. Cleary M. Effects of depth on rock fractureA. In:Rock at Great DepthC. Rotterdam: A. A Balkema,1989.1153-1163.
    [18]Kwasniewski M A. Laws of brittle failure and of B-D transition in sandstone A. In:Rock at
    [19]Great DepthC. Rotterdam:A. A. Balkema,1989:45-58.
    [20]陈颙,黄庭芳.岩石物理学M.北京:北京大学出版社,2001:17-38
    [21]贺永年,韩立军,邵鹏等.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-295
    [22]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1):Malan D F. Simulation of the time-dependent behavior of excavations in hard rock [J]. Rock Mechanics and Rock Engineering,2002,35(4):225-254.
    [24]孙钧,侯学渊主编.地下结构[J].北京:科学出版社,1999.
    [25]张玉祥,陆士良.深井软岩巷道围岩控制机理[J].矿山压力与顶板管理,1997.3-4.
    [26]康红普.软岩巷道底鼓的机理及防治M.北京:煤炭工业出版社,1993
    [27]范秋雁.软岩流变地压控制原理.中国煤矿软岩巷道理论与实践M.徐州:中国矿业大学出版社,1996,141-148
    [28]姜耀东,赵毅鑫等.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,23(7):2396-2401.
    [29]何满潮,邹正盛,邹友峰.软岩巷道工程概论[J].徐州:中国矿业大学出版社,1993.
    [30]姚孝新,耿乃光,陈顒.应力途径对岩石脆性和延。性的影响[J].地球物理学报,1980,23(3):312-319.
    [31]尤明庆,华安增.岩石试样三轴卸围压试验[J].尤明庆,华安增.岩石试样破坏过程的能量分析J.岩石力学与工程学报,2002,21钱七虎.深部地下空间开发中的关键科学问题C//第230次香山科学会议——深部地下空间开发中的基础研究关键技术问题.北京:s.n.2004.
    [34]李世平.权台煤矿煤巷锚杆试验观测报告——兼论煤巷锚杆特点与参数选择新观点[J].中国矿业学院学报,1979,(4):19-57.
    [35]钟世航.软弱围岩隧道围岩中自承体系及其形成与发展M.武汉:湖北科学技术版社,1992.
    [36]贺永年.软岩巷道围岩松动带及其状态分析[J].煤炭学报,1991,16(2):63-69.
    [37]刘高,王小春,聂德新.金川矿区地下巷道围岩应力场特征及演化机制[J].地质灾害与环境保护,2002,13(4):40-45.
    [38]方祖烈.软岩巷道维护原理与控制措施A.见:何满潮主编.中国煤矿软岩巷道支护理论与实践C.北京:煤炭工业出版社,1996.64-70
    [39]ADAMS G.D, JAGER A.[J]. Etroscopic observations of rock fracturing ahead of faces in deep-level gold mines[J]. Journal of the South Afric Institute of Mining and Metallurgy, 1980,(2):115-127.
    [40]SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, part Ⅰ:data of in-situ observations[J]. Journal of Mining Science,1986,22(3):157-168.
    [41]SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, part Ⅱ:rock fracture simulated in equivalent materials[J]. Journal of Mining Science,1986,22(4):223-232.
    [42]SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, part Ⅱ:theoretical concepts[J]. Journal of Mining Science, 1987,23(1):1-6.
    [43]SHEMYAKIN E I, KURLENYA M V, OPARIN V N, et al. Zonal disintegration of rocks around underground workings, part Ⅳ:practical applications[J]. Journal of Mining Science, 1989,25(4):297-302.
    [44]李术才,王汉鹏,钱七虎等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008,27(8):1545-1553.
    [45]许宏发,钱七虎,王发军等.电阻率法在深部巷道分区破裂探测中的应用[J].岩石力学与工程学报,2009,28(1):111-119.
    [46]朱杰,汪仁和,林斌深埋巷道围岩多次破裂现象与裂隙张开度研究[J].煤炭学报,2010,887-890.
    [47]第21期新观点、新学说学术沙龙:围岩分区破裂现象以及相关的理论问题报告R.北京:中国科协,中国岩石力学与工程学会,2008.
    [48]SELLERS E J, KLERCK P.Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology, 2000,15(4):463-469.
    [49]潘一山,李英杰,唐鑫,等.岩石分区破裂化现象研究[J].岩石力学与工程学报,2007,26(增1):3335-3341.
    [50]李英杰,潘一山,李忠华.岩体产生分区碎裂化现象机制分析[J].岩土工程学报,2006,28(9):1124-1128.
    [51]唐鑫,潘一山,章梦涛.深部巷道区域化交替破碎现象的机制分析[J].地质灾害与环境保护,2006,17(4):80-84.
    [52]贺永年,张后全.深部围岩分区破裂化理论和实践的讨论[J].岩石力学与工程学报,2008,27(11):2369-2375.
    [53]顾金才,顾雷雨,陈安敏,等.深部开挖洞室围岩分层断裂破坏机制模型试验与分析[J].岩石力学与工程学报,2008,27(3):433-438.
    [54]M.V.Kurlenya and V.N.Oparin. Scale factor of phenomen-on of zonal disintegration of rock, and canonical series of atomic and ionic radii. Journal of Mining Science,1996,32(2): 81-90.
    [55]V. Reva V N. Stability criteria of underground workings under zonal disintegration of rocks[J]. Fiz.Tekh. Probl. Razrab. Polezn. Iskop.,2002,(1):35-38.
    [57]Guzev M A and Paroshin A A. Non-euclidean model of the zonal disintegration of rocks L.S. Metolov and A.F. Morozov. Physical foundations of mechanism of zonal rock failure in the vincity of mine working[J]. Journal王明洋,周泽平,钱七虎.深部岩体的构造和变形与破坏问题[J].岩石力学与工程学报,2006,25(3):448-455
    [60]陈士林,钱七虎,王明洋.深部坑道围岩的变形与承载能力问题[J].岩石力学与工程学报,2005,24(13):2203-2212
    [61]王明洋,戚承志,钱七虎.深部岩体块系介质变形与运动特性研究[J].岩石力学与工程学报,2005,24(16):2825-2831
    [62]王明洋,宋华,郑大亮等.深部巷道围岩的分区破裂机制及深部界定探讨[J].岩石力学与工程学报,2006,25(9):1771-1776
    [63]陈建功,朱成华,张永兴,等.深部巷道围岩分区破裂化弹塑脆性分析[J].煤炭学报2010,35(4)541-545
    [64]周小平,钱七虎.深埋巷道分区破裂化机制[J].岩石力学与工程学报,2007,26(5):877-885.
    [65]李树忱,钱七虎,李春睿,康立军,齐庆新等.深部巷道围岩分区破裂与冲击地压关系初探[J].煤炭学报2010,35(2):185-189
    [67]贺永年,韩立军,邵鹏,蒋斌松.深部巷道稳定的若干岩石力学问题[J].中国矿业大学学报,2006,35(3):288-296
    [68]贺永年,蒋斌松,韩立军等.深部巷道围岩间隔性区域断裂研究[J].中国矿业大学学报,2008,37(3):300-304
    [69]周小平,钱七虎,张伯虎.深埋球形洞室围岩分区破裂化机理[J].工程力学,2010,27(1):69-75
    [70]陈伟,王明洋,顾雷雨.深埋洞室围岩分层断裂现象模型试验解析[J].岩石力学与工程学报,2009,28(s1):2680-2686
    [71]陈坤福.深部巷道围岩破裂演化过程及其控制机理研究与应用D.徐州:中国矿业大学博士学位论文,2009
    [72]Wu H, Guo ZK,WU H, FANG Q, GUOWU H, FANG Q,X.P. Zhou, F.H. Wang,X.P. Zhou,Q.H.唐春安,张永彬.岩体间隔破裂机制及演化规律初探[J].岩石力学与工程学报,2008,27(7):1362-1369.
    [78]王红英,张强,张玉军,等.深部巷道围岩分区破裂化数值模拟[J].煤炭学报2010,35(4):535-540
    [79]高富强,康红普,林健,等.深部巷道围岩分区破裂化数值模拟[J].煤炭学报2010,35Q HQIAN, X(?)可满潮,袁和生,靖洪文.中国煤矿锚杆支护理论与实践M.科学出版社,方祖烈.拉压区特征及主次承载区的支护理论M.世纪之交软岩工程技术现状与展望.北京:煤炭工业出版社,1999
    [83]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):刘泉声,张华,林Liu Q S, Zhu (?)可满潮,齐干,许云良.深部软岩巷道锚网索耦合支护设计及施工技术.J煤炭工程
    [87]Melenk J M, Bubskal. The partition of the unity finite element method:basic theory and applications. Computer Methods in Applied Mechanics and Engineering,1996,139:289-314.
    [88]DuarteBelytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journalf or Numerical Methods in Engineering,1999,45:601-620.
    [90]Sukumar N, Prevost J-H. Modeling quasi-static李录贤,王铁军.扩展有限元法(XFEM)及其应用.力学进展,2005,35(1):5-20
    [92]CHESSA JACK, SMOLINSKI PATRICK,BELYTSCHKO TED. The extended finite element method (XFEM) for solidification problems[J].International Journal for Numerical Methods in Engineering,2002; 53(8):1959-1977.
    [93]余天堂.模拟三维裂纹问题的扩展有限元法[J].岩石力学与工程学报,2010,10(31)3280-3294.
    [94]董玉文,任青文.基于XFEM的混凝土开裂数值模拟研究[J].重庆交通大学学报(自然科学版)2009,方修君,金峰.基于abaqus平台的扩展有限元法[J].工程力学,2007,24(7):6-10.
    [96]方修君,金峰,王进挺.用扩展有限元法模拟混凝土的复合开裂过程[J].工程力学,2007,34(1):46-52
    [97]方修君,金峰,王进挺.基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J].清华大学学报(自然科学版)2008,48(12):2065-2069.
    [98]应宗权,杜成斌,程丽.含夹杂非均质材料的扩展有限元数值模拟[J].河海大学学报(自然科学版)2008,36(4):546-549.
    [99]张明海水压裂纹扩展有限元法分析及计算[J].焦作工学院学报(自然科学版)2001,20(6):479-481.
    [100]葛修润,刘建武.加锚节理面抗剪性能研究[J].朱维申,任伟中,张玉军,等.开挖条件下节理围岩锚固效应的模型试验研究[J].岩土力学,1997,18(3):1-7.
    [102]程良奎,范景伦,韩军,等.岩土锚固M.北京:中国建筑工业出版社,2003.
    [103]李术才.节理岩体力学特性和锚固效应分析模型及应用研究R.武汉:武汉水利电力大学,1999.
    []04]张玉军.地下圆形洞室锚固区按环向各异性体计算的弹性解C.陈胜宏,强晟.加锚固体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1):沈泰.地质力学模型试验技术的进展[J].长江科学院院报.200].(18):32-36.
    [107]陈安敏.顾金才.沈俊.等.地质力学模型试验技术应用研究[J].岩石力学与工程学报.2004,23(22):3785—3789.
    [108]袁文忠.相似理论与静力学模型试验M.西安:西安交通大学出版社.1998.
    [109]杜应吉,地质力学模型试验的研究现状与发展趋势[J].西北水资源与水工程.1996,7(2):64-67.
    [110]张强勇,顾金才,顾雷雨,陈安敏.深部洞室开挖围岩分层断裂破坏机制模型试验研究[J].岩石力学与工程学报,2008,27(3):433-438.
    [112]李仲奎,徐千军,罗光福.大型地下水电站厂房洞群三维地质力学模型试验[J].水利学报,2002,5(5):31-36.
    [113]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验M.北京:中国水利水电出版社,2005.
    [114]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004,23(21):3727-3731.
    [115]陈旭光,张强勇等.数控真三维梯度加载模型试验系统的研制及应用[J].煤炭学报,2011,36(2):272-277.
    [116]朱鸿鹄,殷建华等.大坝模型试验的光纤传感变形监测[J].岩石力学与工程学报,2008,27(6):1188-1194.魏广庆,施斌等.FBG在隧道施工监测中的应用及关键问题探讨[J].土木工程学报,2009,31(4):571钱七虎,李树忱.深部岩体工程围岩分区破裂化现象研究综述[J].岩石力学与工程学报,2008,Ⅰngraffea and Heuze. Finite elementBrace, W.F. A note on brittle crack growth in compression[J].J.王新华.用断裂力学的方法研究地震断裂的扩展方式[J].地球物理学报,1984,27(3):258-267
    [122]Horri H, Nemat-Nasser S. Compression-induced microcrack growth in brittle solids:Axial splitting and shear failure[J]. J. Geophys. Res.,1985,90(B4):3105-3125.
    [123]Nemat-Nasser S, Obata M. A microcrack model of dilatancy in brittleNemat-Nasser S, HorriH.李强,杨庆,栾茂田.曲线翼型裂纹扩展路径理论分析及试验验证[J].工程力学,2010,31(2):345-349
    [126]李强,杨庆,栾茂田.高围压下岩石椭圆裂纹面构型变化规律[J].大连理工大学学报,2009,49(4):545-550
    [127]李强,杨庆,栾茂田.张开裂纹闭合的数值模拟及简化判据研究[J].工程力学,2009,26(9):237-243
    [128]崔振东,刘大安,安光明.V形切槽巴西圆盘法测定岩石断裂韧度KIC的实验研究[J].岩土力学,2010,31(9):2743-2748.
    [129]徐芝纶.弹性力学M.北京G. C. Sih Liebowitz On the Griffith energy criterion for brittle fracture International Journal of Solids and Structures 1967,3(1):1-22.
    [131]沈为.非线性能量释放率断裂判据[J].华中工学院学报,1979,(1):120-131.
    [132]沈为,李德怡.复合型断裂的非线性能量分析[J].固体力学学报,1983,(1):23-39.
    [133]X P ZHOU, F H Wang, Q HH.Horri and Nemat Nasser Curved crack growth in brittle solids under farfield compression. Advances in aerospace structures and materials 1982, Nov:75-81.
    [135]李银平,王元汉,陈龙珠, Kachanov MBrencich A, et al. Interaction of a main crack with ordered distributions of microcracks:A numerical technique by displacement discontinuity boundary朱维申,等.三维弹塑性断裂损伤模型在裂隙岩体工程中的应用[J].固体力学学报,1999,20(2):164.
    [139]朱维申,陈卫忠,周群力.从断裂力学的观点对新丰江水库地震机理的探讨[J].地震研究,1979年第3期.
    [141]周群力等,混凝土重力坝与基岩胶结面用断裂力学方法进行计算的探讨[J].水文地质工程地质,唐春安,等.岩石介质中多裂纹扩展相互作用及其贯通机制的数值模拟.地震,2001李银平平,工元汉,陈龙珠,等含预制裂纹大理岩的压剪试验分析[J].岩土工程学报,2004,Horri H, Nemat-Nasser S.H. HoriiH. HoriiAshby M F and Hallam S张强勇.多裂隙岩体三维加锚损伤断续模型及其数值模拟与工程应用研究D.中国科学院武汉岩土力学研究所博士学位论文.1998.5
    [149]STEIF P S. Crack extension under compressive LEHNER F, KACHANOV M. On modeling ofBAUD P. REUSCHLE T,沈明荣,陈建峰.岩体力学M.上海:同济大学出版社,2006
    [153]L.N.Germanovich, A.V.Dyskin. Muskhelishvili N I. Some basic problems of谢和平,彭瑞东.鞠扬等.岩石破坏的能量分析初探[J].谢和平,彭瑞东,赵忠虎,谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,朱维申,程峰.能量耗散本构模型及其在三峡船闸高边坡稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):261-264.
    [160]朱维申,李术才,程峰.高磊.矿山岩石力学M.北京:机械工业出版社,1988
    [162]蔡美峰.岩石与地下工程M.北京:科学出版社,Fairhurst, C. and Cook,Hallbauer D C, WagnerCook N G W. The design of underground excavationsC潘岳,王志强圆形硐室岩爆的折迭突变模型[J].采矿安全与工程学报,2005,26(2):175-186.
    [167]潘岳,王志强.应变非线性软化的硐室围岩荷载-位移关系研究[J].岩土力学,2004,潘岳.受压构件本构失稳的折迭突变模型[J].岩土力学,2001,22(3):271—275.
    [169]陈旭光,张强勇.岩石剪切破坏过程能量耗散和释放研究[J].采矿安全与工程学报,2010,ATERKINSON B K.岩石断裂力学M.尹祥出,修济刚,译.北京:地震出版社,1994.
    [171]刘宁.高地应力条件下围岩劈裂破坏的力学机理及其能量分析模型研究D.济南:山东大学博士学位论文,2009
    [172]孙广忠,黄运飞.高边墙地下洞室洞壁围岩板裂化实例及其力学分析[J].岩石力学与工程学报,1988,7(1):15-24.
    [173]缪协兴,安里千.岩壁中滑移裂纹扩展的冲击矿压模型[J].中国矿业大学学报,1999,
    [174]李晓静.深埋洞室劈裂破坏形成机理的试验和理论研究D.济南:山东大学博士学位论文,2007
    [175]杨圣奇,徐卫压,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007,24(1):136-142.
    [176]王学滨.岩样单轴压缩变形及断裂能研究[J].岩石力学与工程学报,2005,24(10):唐春安,张永彬.岩体间隔破裂机制及演化规律初探[J].Q H QIAN, X P ZHOU, H.Q. Yang. Zonal disintegration of surrounding rock mass around the diversion tunnels in Jinping Ⅱ工红英,张强,张玉军,等.深部巷道围岩分区破裂化数值模拟[J].煤炭学报2010,35(4):535-540
    [180]高富强,康红普,林健,等.深部巷道围岩分区破裂化数值模拟[J].煤炭学报2010,35(1):21-25
    [181]余天堂.模拟三维裂纹问题的扩展有限元法[J].岩石力学与工程学报,2010,10(31)3280-3294.
    [182]董玉文,陈胜宏,汪卫明,徐明毅,等.小湾高拱坝坝踵开裂的有限单元法分析[J].水利学报,2003,(1):66-71.
    [184]方修君,金峰.基于abaqus平台的扩展有限元法[J].工程力学,2007,24(7):6-10
    [185]方修君,金峰,王进挺.用扩展有限元法模拟混凝土的复合开裂过程[J].工程力学,2007,34(]):46-52
    [186]方修君,金峰,王进挺.基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J].清华大学学报(自然科学版)2008,48(12):2065-2069
    [187]应宗权,杜成斌,程丽.含夹杂非均质材料的扩展有限元数值模拟[J].河海大学学报(自然科学版)2008,36(4):546-549
    [188]余天堂.模拟三维裂纹问题的扩展有限元法[J].岩石力学与工程学报,2010,10(31)3280-3294.
    [189]董玉文,任青文.基于XFEM的混凝土开裂数值模拟研究[J].重庆交通大学学报(自然科学版)2009,陈胜宏,汪卫明,徐明毅,等.小湾高拱坝坝踵开裂的有限单元法分析[J].水利学报,2003,(1):66-71.
    [191]方修君,金峰.基于abaqus平台的扩展有限元法[J].工程力学,2007,24(7):6-10
    [192]方修君,金峰,王进挺.用扩展有限元法模拟混凝土的复合开裂过程[J].工程力学,方修君,金峰,王进挺.基于扩展有限元法的Koyna重力坝地震开裂过程模拟[J].清华大学学报(自然科学版)2008,48(12):2065-2069
    [194]应宗权,杜成斌,程丽.含夹杂非均质材料的扩展有限元数值模拟[J].河海大学学报(自然科学版)2008,36(4):
    [196]李建波,陈健云,林皋.非网格重剖分模拟宏观裂纹体的扩展有限单元法(Ⅰ:基础理论).[J].计算力学学报.2006,23(2):207-213
    [197]Li C., Stillborg B. Analytical models for rock bolts[J]. Int.J.of Rock Mech.Min.Sci.,1999, 36(8):1013-1029.
    [198]Spang K. Egger P. Action of fully-grouted bolts in jointed rock and factors of influence[J]. Rock Mechanics and Rock Engineering,1990,23(3):201-229.
    [199]伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报,2003,22(5):769-772.
    [200]程良奎,单孔复合锚固法的机理与实践,门莫明等编,岩土锚固技术的新进展,北京:人民交通出版社,2000
    [201]顾金才,沈俊,锚索预应力在岩体内引起的硬币状态模型试验研究,岩石力学与工程学报。Vol.19;2000.917-921
    [202]汤雷,蒋金平,锚杆支护强度,地下空间.17(2),1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700