用户名: 密码: 验证码:
天津地铁一号线土建工程关键技术问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁一号线是天津快速轨道规划线路中最重要的一条,它的建设将不仅大大完善天津市的城市基础设施,而且在促进城市合理布局、改善交通结构、保持生态环境等方面具有重要的经济和政治意义。本文围绕天津地铁一号线土建工程中的几个关键技术问题,分别对盾构掘进对地面隆起及沉降的影响、SMW工法在基坑工程中的应用、地铁双层车站地下隧道交叉相互影响的抗震研究等几个问题进行了分析研究,并用部分实测数据对分析结果进行了验证,得出了一些有价值的结论,为天津地铁一号线的设计和施工积累了经验,同时也为其它的地铁建设提供参考。本文的主要工作如下:
     (1)通过对小白楼至下瓦房区间盾构施工段进行现场实测,给出了地面及地层隆起与沉降曲线、不同深度地层侧移曲线,分析总结了泥土加压式盾构施工过程中周围土体的变形规律;本文还利用有限元软件建立三维有限元模型,对盾构隧道开挖过程进行了动态模拟。通过与现场实测数据对比分析表明,有限元计算结果与实测结果吻合良好,模型能较好地反映工程实际,为天津今后的地铁工程建设提供理论依据。
     (2)通过对洪湖里站3号出入口基坑支护工程进行的钢轨一水泥土组合墙施工试验、组合墙抗弯试验、组合墙水平侧移和地面沉陷监测试验以及钢轨的拔出试验,研究了在天津特有的地质条件下,用废旧的钢轨代替大规格H型钢的SMW工法施工中的水灰比确定问题、钢轨在水泥土挡墙中的效用发挥问题、基坑开挖对钢轨-水泥土组合墙水平位移以及地面沉陷的影响问题、钢轨的回收问题等,为今后工程的设计和施工提供参考。本文还对该基坑支护工程进行了有限元模拟,通过和试验数据的对比分析,验明了计算程序和所选取参数的正确性。
     (3)由于地下结构的抗震分析远不如地面结构成熟,很有必要对地铁结构,尤其是地铁隧道交叉处进行抗震分析。本文采用有限元法,分析了天津地质条件下交叉隧道的地震反应,研究其上层车站和下层车站地震作用下的位移和层间位移、层间剪力的变化规律;本文还对成层地质条件下、不同埋深、不同软弱层深度条件下的地铁隧道进行抗震分析,揭示了不同地质条件下交叉隧道的地震反应规律,为地铁车站的设计提供指导性意见。
Tianjin Subway No.1 Line is the most important line in the plan of Tianjin express rail transit system, the construction of which will not only perfect the municipal infrastructure of Tianjin, but also play an important role both economically and politically in promotion of reasonable urban layout, improvement of communications structure and maintaining sound biological environment. This dissertation covers analysis and research on several key technical problems involved in the civil engineering of Tianjin Subway No.1 Line, including influences of shield tunneling on ground surface upheaval and subsidence, applications of SMW construction method in construction of foundation pits, earthquake resistance and mutual influences of double-deck subway station crossed underground tunnels, etc. The analysis results are verified by measured data and several valuable conclusions have been obtained, allowing an accumulation of experience for design and construction of Tianjin Subway No.1 Line, and at the same time, a reference available for other subway projects. The dissertation mainly focuses on the following aspects:
     (1) Based on the on-site measurements on the shield tunneling section from Xiaobailou to Xiawafang, ground surface and stratum upheaval and subsidence curves, lateral displacement curves of stratums at different depth are presented; deformation rules of surrounding soils during shield tunneling with pressure on soils are analyzed and summarized; this dissertation also includes 3D finite element modeling established by finite element software to make dynamic simulation of shielding tunneling. Comparisons with data from on-site measurements and analysis show that results from finite element calculations are in good agreement with data from the actual measurement, and it shows that the modeling can fairly reflect practices in construction, which provides a theoretical basis for future subway construction in Tianjin.
     (2) Several problems in the special geological conditions in Tianjin are studied based on various tests in construction of foundation pit supports at No. 3 gateway of the Honghuli station. Such problems studied include ratio between water and cement in the SMW construction method that uses secondhand steel rails to replace large specification H profiles, roles of steel rails in cement-soil retaining walls, influences of foundation pit excavation on horizontal displacement of the steel rail-cement soil combination walls and ground surface subsidence and recovery of steel rails; and the tests made in the construction include construction of rail-cement soil combination walls, bending-resistance of the combination walls, horizontal displacement of the combination walls, ground surface subsidence and steel rail pull-out, etc. All the tests and studies have provided references to the future engineering designs and constructions. The dissertation also includes finite element simulation of the foundation pit supports, and it is compared with the test data. The comparison and analysis prove correctness of the calculation program and parameters selected.
     (3) As underground structure earthquake-resistant analysis is much less mature than that of the ground structures, it is absolutely necessary to make earthquake-resistant analysis for the subway structure, especially crossings of subway tunnels. In this dissertation finite element method is used in analysis on seismic reactions of crossed subway tunnels in the Tianjin geological conditions, in studies on changing rules of displacement, inter-layer displacement and inter-layer stresses of the upper and lower deck of subway stations under earthquakes. Besides, this dissertation also includes earthquake-resistant analysis on subways under stratified geological conditions at different depth underground and different weak stratums, which reveals seismic response rules of crossed subway tunnels in different geological conditions, providing instructive opinions for designers of subway stations.
引文
[1] X.Y.Lei, G.swoboda, G.Zenz, Application of Contact-Friction Interface Element to Tunnel Excavation in Faulted Rock, Computers and Geotechnics, 1995, 17:349~370
    [2] K.M.LEE, R.K.ROWE, An analysis for three-dimensional ground movements: the Thunder Bay tunnel, Canada Geotech, 1991, J.28: 25~41
    [3] R.K.Rowe and K.M.Lee, An Evaluation of Simplified Techniques for Estimating Three-dimensional Undrained Ground Movements due to Tunneling in Soft Soils, Canadian Geotechnical J.29: 39~52(1992)
    [4] Peck R.B, Deep Excavations and Tunneling in Soft Ground, State of the Art Report. Proceeding of 7th International Conference on Soil Mechanics and Foundation Engineering[C], Mexico City, 1969: 225~290
    [5]刘建航,侯学渊,盾构法隧道,北京:中国铁道出版社,1991,43-320
    [6] Finno,R.J., Clough,G.W., Evaluation of Soil Response to EPB Shield Tunnelling, Journal of Geotechnical Engineering, 1985, 111(2): 157-173
    [7]张庆贺,朱忠隆,杨俊龙等,盾构推进引起土体扰动理论分析及试验研究,岩石力学与工程学报, 1999, 18(6): 699~703
    [8]朱合华,丁文其等,盾构隧道施工过程模拟分析,岩石力学与工程学报,1999, 18: 860~864
    [9]李园,盾构施工地层变形的三维数值模拟及实验研究,硕士学位论文,天津:天津大学,2004
    [10] Mair R.J., Centrifugal modeling of tunnel construction in soft clay, Ph.D thesis, University of Cambridge, 1979
    [11] Clough G.w. and Schmidt B., Design and performance of excavation and tunnels in soft clay, State of the Art report, International symposium on soft clay, Bangkok, Thailand,1977
    [12] T.Kimura, R.J.Mair, Centrifugal testing of model tunnels in soft clay, Proc. Of 10th Int. Conf. Soil mechanics and foundation engineering, Stockholm, Balkema, 1981
    [13]徐永福,盾构推进引起地面变形的分析,地下工程与隧道, 2000, 27(1), 21~25
    [14]张云,殷宗泽,徐永福,盾构法隧道引起的地表变形分析,岩石力学与工程学报,2002,28(3),388~392
    [15]徐方京,侯学渊,盾尾间隙引起地层移动的机理及注浆方法分析,地下工程与隧道,1994,20: 12~16
    [16]徐方京,软土盾构隧道理论与实践浅析,同济大学学报,1999,3: 24~27
    [17]陈久照,苏键,基桩反射波法力锤性能研究,广东土木与建筑,2001,No.3: 68~73
    [18]孙建华,候学渊,松散地层浅埋隧道基于地表下沉的反分析理论,隧道建设, 1991, 1: 16~27
    [19]张冬梅,黄宏伟,王箭明,盾构推进引起地面沉降的粘弹性分析,岩土力学,2001,22(3): 311~314
    [20]王敏强,陈胜宏,盾构推进隧道结构三维非线性有限元仿真,岩石力学与工程学报,2002, 21(2): 228~232
    [21]易宏伟,孙钧,盾构施工对软粘土的扰动机理分析,同济大学学报,1999,28(6): 277~281
    [22]徐永福,孙钧,隧道盾构掘进施工对周围土体的影响,地下工程与隧道,1999,26(2),9~13
    [23]张云,殷宗泽,徐永福,盾构法隧道引起的地表变形分析,岩石力学与工程学报,2002,28(3): 388~392
    [24]张弥,潘杰梁,预测盾构开挖引起的地面沉陷的专家系统,地铁与轻轨,1990(30)
    [25]铃木健夫,柱列ソィルヤメニト连续壁,基础工,1986,(8):10~15
    [26]佐藤英二,青木雅路,丸刚正夫等,ソィルヤメニト柱列壁の钢材を用いた合成地下壁工法,基础工,1994,(5):49~55
    [27]王健,H型钢-水泥土组合结构试验研究及SMW工法的设计理论与计算方法,同济大学博士学位论文,1998
    [28]梁仁旺,张明,白晓红,水泥土的力学性能试验研究,岩土力学,2001,Vol.22(2):211~213
    [29]孔德志,SMW工法土挡墙的性能分析及在南京地铁工程中的应用,同济大学硕士学位论文,2001
    [30]伊藤康郎,ソィルヤメニト柱列壁の设计上の注意点,基础工,1994,(5):8~13
    [31]赵志缙,应慧清,简明深基坑工程设计施工手册,北京:中国建筑工业出版社,2000:306~308
    [32]王健,夏明耀,傅德明,H型钢与水泥土搅拌桩围护结构的设计与计算,同济大学学报,1998,26(6)
    [33]张冠军,SMW工法型钢起拔试验研究及应用,岩石力学与工程学报,2002,21(3):444~448
    [34]王健,H型钢-水泥土组合结构试验研究及SMW工法的设计理论与计算方法,博士学位论文,上海,同济大学,1998
    [35]王健,劲性水泥土地下连续墙试验研究,建筑技术开发,2000, 27(6):2~4
    [36]陈茂德,李铁军,SMW工法及H型钢内支撑在武汉某深基坑支护工程中的应用,土工基础,2001,15(1)
    [37]李强,曾德顺,盾构施工中垂直交叉隧道变形的三维有限元分析,岩土力学,2001,22(3):334-338
    [38]钱玉林,绪伯通,陈滨等,SMW支护结构及其工程应用,工程技术,2001,(6)
    [39]史佩栋,日本SMW工法地下连续墙,地基基础工程,1995,Vol.5(1):59~65
    [40] Taki,O.and Yang,D.S.(1991). Soil-cement mixed wall technique,Geotechnical engineering congress,1991:geotechnical special publication no.27,ASCE,New York,N.Y,Vol.1:298~309
    [41]刘宝琛,林德璋,浅部隧起的地表移道开挖引动及变形,地下工程,1983(7): 1~7
    [42]刘宝琛,张家生,近地表开挖引起的地表沉降的随机介质方法,岩石力学与工程学报,1995,14: 289~296
    [43]姜忻良,谭丁,姜南等,交叉隧道地震反应三维有限元和无限元分析,天津大学学报,2004,37(4):307~311
    [44]麦家儿,广州地铁3号线支线与主线交叉重叠段的设计与施工,城市轨道交通研究,2005,5,63~67
    [45]张志强,苏江川,姜元俊,马王槽主隧道与横通道交叉部施工受力特征数值模拟分析,公路交通科技,2007,24(1):109~113
    [46]张志强,马王槽一号隧道与联络横通道空间交叉结构数值模拟报告[R],成都:西南交通大学,2003
    [47]朱伯芳,有限单元法原理与应用(第二版),中国水利水电出版社,1998
    [48]卓家寿,弹性力学中的有限元法,弹性力学专题教材,1986
    [49]王成,邵敏,有限单元法基本原理与数值方法,清华大学出版社,1988
    [50]江弘道,陈和群,有限单元法程序设计,水利水电出版社,北京,1989
    [51]莫维尼,王崧(译). ANSYS理论与应用(第二版).北京:电子工业出版社,2005
    [52]张波,盛和太, ANSYS有限元数值分析原理与工程应用.北京:清华大学出版社,2005
    [53]老虎工作室,李权, ANSYS在土木工程中的应用,北京,人民邮电出版社,2005
    [54]钱家欢,殷宗泽,士工原理与计算(第二版),北京:中国水利水电出版社,2001
    [55]徐芝纶,弹性力学(第三版),北京:高等教育出版社,2000
    [56]徐秉业,刘信声,应用弹塑性力学,北京:清华大学出版社,1999
    [57]陈精一,蔡国忠,ANSYS使用指南,北京:中国铁道出版社,2001
    [59]龚晓南,高等土力学,杭州:浙江大学出版社,2001
    [60] J.Inose,M.nakajima, H.Nakamura, Ground settlement accompanying construction of large cross-section shield tunnels in Tokyo, Towards new worlds in tunneling, Vieitez-Utesa and Montanez-Cartaxo(eds), 1992: 173~180
    [61]钟小春,南京地铁地基液化变形及抗震措施研究,河海大学硕士学位论文,2001
    [62]于翔,陈启亮,赵跃堂等,地下结构抗震研究方法及其现状,解放军理工大学学报,2000,vol.5
    [63]林皋,地下结构抗震问题,第四届全国地震工程会议,1994
    [64]林皋,地下结构抗震分析综述(上),世界地震工程,1990,vol.2
    [65]林皋,地下结构抗震分析综述(下),世界地震工程,1990,vol.3
    [66]徐文焕,地下结构抗震分析中若干问题的探讨,西南交通大学学报,1993,No.3
    [67]宫必宁,赵大鹏,地下结构与土动力相互作用试验研究,地下空间,2002,vol.4
    [68]高峰,关宝树,深圳地铁地震反应分析,西南交通大学学报,2001,vol.4
    [69]姜忻良,宋丽梅,软土地层中地下隧道结构地震反应分析,地震工程与工程振动,1999,vol.1
    [70]胡晓燕,周健,胡晓虎,地震引起的竖向应力对地铁隧道的影响,工程抗震,2000,vol.2
    [71]董鹏,周健,土与结构相互作用下的地下建筑物动力可靠性分析,建筑结构学报,2004,25(2):124~12
    [72]王勋成,邵敏,有限单元法基本原理与数值方法,北京:清华大学出版社,1998
    [73]罗定安,工程结构数值分析方法程序设计,天津:天津大学出版社,1994
    [74] J.P.瓦尔夫,土一结构动力相互作用.北京:地震出版社,1989
    [75]姜析良,徐余,郑刚,地下隧道一土体系地震反应分析的有限元与无限元藕合法,地震工程与工程振动,199,19(3):22~26
    [76]雷晓燕,岩土工程数值计算,北京:中国铁道出版社,1999
    [77]王国强,实用工程数值模拟技术及其在ANSYS上的实践,西北工业大学出版社,1999
    [78]谢康和,周健,岩土工程有限元分析理论与应用,科学出版社,2002
    [79]王松涛,曹资,现代抗震设计方法,中国建筑工业出版社,1997
    [80]蒋建国,周绪红,邹银生等,土一结构动力相互作用研究的发展历程及展望岩土工程界,2000,vol.6
    [81]国胜兵,赵毅等,地下结构在竖向和水平地震荷载作用下的动力分析,地下空间,2002,vol.4
    [82]董月红,土一结构相互作用的研究,西北工业大学硕士学位论文,1997
    [83] J.P.Wolf,土一结构动力相互作用,地震出版社,1989
    [84]张克绪,谢君斐,土动力学,地震出版社,1989
    [85]曹炳政,罗奇峰,马硕等,神户大开地铁车站的地震反应分析,地震工程与工程振动,2002,vol.4
    [86]杨春田,日本阪神地震地铁工程的震害分析,工程抗震,1996,vol.2
    [87]于翔,钱七虎,赵跃堂等,地铁工程结构破坏的竖向地震力影响分析,解放军理工大学学报(自然科学版),2001,vol.3
    [88]阳军生,刘宝深著,城市隧道施工引起的地表移动及变形,中国铁道出版社2002
    [89]地下铁道设计规范[S] GB50157-92
    [90]铁路隧道质量评定验收标准[S] TBJ417-87
    [91]地下工程施工及验收规范[S] GBJ208-83
    [92]铁路隧道设计规范[S] GBJ3-85
    [93]地下铁道工程施工及验收规范[S] GB50299-19
    [94] John C.M.S, Zahrah T.F. A seismic design of underground structures, Tunnelling and Underground Space Technology.1987,21:65~197
    [95] Shukla D.K,Rizzo P.C, StephensonDE. Earthquake load analysis of tunnel sands hafts[C]. Proceeding of the Seventh World Conference on Earthquake Engineering,1980,8:20~28
    [96] John P.W,Song C.Dynamie-stiffness matrix of unbounded soil by finite-element multicell cloning, Earthquake Engineering and Structural Dynamies, 1994, 23:233~250
    [97] Dasgupta G.A finite element formulation for unbounded homogeneous continua [J].Mech.ASME,1982
    [98] Y.X.Cai, RL.Gould, C.S.Desai, Nonlinear Analysis of 3D Seismic Interaction of Soil-Pile-Structure Systems and Application,Engineering Structures[J],2000,22
    [99] Thomas R.K. Earthquake design criteria for subways[J]. Jounal of the Structural Division, Proeeedings of ASCE.1969(6):1213~1231
    [100] C.B.M.Blom, E.J.van der Horst, P.S.Jovanovic, Three-dimensional Structure Analyses of the Shield-Driven“Green Heart”Tunnel of the High-Speed Line South, Tunnelling and Underground Space Technology, 1999, 14(2): 217~224
    [101] Marta Dolezalova, Tunnel complex unloaded by a deep excavation, Computers and Geotechnics, 2001, 28: 469~493
    [102] Shue-Yeong Chi, Jin-Ching Chern, Chin-Cheng Lin, Optimized Back-Analysis for Tunnelling-Induced Ground Movement Using Equivalent Ground Loss Model, Tunnelling and Underground Space Technology, 2001, 16: 159~165
    [103] Kumar P. Infinite element for numerical analysis of under-ground excavations [J].Tunneling and Underground Space Technology,2000, 15(1): 117~124
    [104] Shin J H, Potts D M, Zdravkovic L. Three-dimensional modeling of NATM tunneling in decomposed granite soil [J].Geotechnique,2002, 52(3): 187~200
    [105] Chi-Te Chang, Chieh-Wen Sun, S.W.Duann, Response of a Taipei Rapid Transit System (TRTS) Tunnel to Adjacent Excavation, Tunnelling and Underground Space Technology, 2001,16: 151~158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700