用户名: 密码: 验证码:
Fe_(78)Si_9B_(13)非晶合金低频磁脉冲处理效应及其经验电子理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶弥散分布于非晶载体的铁基软磁合金一般通过快速冷凝非晶相的部分反玻璃化来制备。为了优化这一新型纳米合金的软磁性能,可以通过控制晶化程度改变晶粒尺寸、体积分数等实现。因此非晶-纳米晶双相合金的制备和性能研究引起了国内外学者的广泛兴趣,成为近年来软磁材料研究的热点。
     本论文采用低频磁脉冲处理非晶Fe78Si9B13制得了非晶-纳米晶双相合金,采用穆斯堡尔谱、XRD、TEM、DSC等手段对低频磁脉冲处理前后的样品进行微结构和性能测定,利用DSC曲线和Kissinger方程计算相变过程的激活能,研究低频磁脉冲处理非晶合金的相变热力学和动力学。再借助于EET理论和非晶合金的微晶模型,建立非晶相和晶化相的结构模型,采用BLD法计算非晶Fe78Si9B13合金晶化前后的相结构因子、界面结构因子和某些物理参数,并与实测值比较,从而确定磁脉冲参数(如场强Hp、频率fP、时间t等)与析出量、结构等与性能之间的关系,从电子层次探讨非晶合金磁致低温纳米晶化的微观机制。
     研究结果表明,在低频磁脉冲处理过程中,试样的最大温升At<10℃,而且内部和外部温升差别不大,不存在高温和瞬间高温,具有较好的温度均匀性。因此,用低频磁脉冲处理非晶合金并使之在低温发生纳米晶化既不同于普通的等温退火,也克服了电脉冲处理中由于焦耳热效应而导致的温升过高的缺点,是继电脉冲处理后又一种新的方法,其特点体现在脉冲磁场强度、脉冲频率和脉冲处理时间的协同作用。
     在低频磁脉冲作用下,非晶Fe78Si9B13合金的晶化量和磁矩值均与磁脉冲处理参数有关,且随着磁场强度和处理时间的增加,晶化量和磁矩值均呈线性增加;而随脉冲频率的增加却呈非单调变化。对应本研究的磁脉冲处理条件,30-35Hz为最佳频率范围。同时低频磁脉冲处理后的样品发生纳米晶化,导致其超精细磁场发生变化,原始非晶样品的超精细磁场为单峰分布,且超精细磁场值较大,约为260kOe左右。而低频磁脉冲处理后的样品的超精细磁场单峰向低位场移动,在高位场也有出现另一单峰的迹象,脉冲处理参数不同,各峰出现的位置不同。
     磁脉冲处理非晶Fe,8Si9B13合余发生纳米晶化过程的DSC曲线上出现两个放热峰,说明发生了两次相转变,且转变方式为初晶晶化,析出的晶化相为单相b.c.cα-Fe(Si)。将DSC曲线上第一放热峰的峰顶温度利用Kissinger方程进行处理,再用最小二乘法拟合,得出原始非晶Fe78Si9B13合金样品的第一放热峰的激活能为433.6 kJ/mol;磁致低温纳米晶化后的非晶Fe78Si9B13合金样品的第一放热峰的激活能均在219.3 kJ/mol以下,与原始非晶Fe78Si9B13合金相比,相变激活能大幅度降低,说明低频磁脉冲处理后的样品的相变势垒减小,相变更容易发生。这是由于在脉冲磁场作用下,非晶合金晶化前后样品的微结构发生了改变,临界形核半径rc、临界形核自由能ΔGc降低,而形核率Ⅰ增大,使形核长大容易,从而促进非晶合金晶化。
     利用经验电子理论(EET理论)中的BLD方法计算了磁脉冲处理前后非晶相和晶化相的价电子结构,根据非晶Fe78Si9B13合金中原子的比例和相结构因子nA以及各个晶胞铁原子对非晶Fe78Si9B13合金磁矩的贡献,建立了非晶相和晶化相总磁矩计算的经验公式,计算出了非晶相的总磁矩为1.895μB,晶化相的总磁矩为2.5579μB。再根据晶化相和非晶相的组成及磁矩计算出了磁致低温纳米晶化后的双相合金的磁矩值,并与实测值进行比较,其理论计算值与实验测定值的误差均小于10%,说明在一级近似下,从价电子层次上计算非晶的磁矩是可以实现的,这对于优化非晶Fe78SigB13合金的软磁性能将具有理论指导意义。但其磁矩值与脉冲磁场处理参数之间的关系还有待于进一步的研究。
     计算了与非晶相和晶化相性能有关的异相界面价电子结构参数P(hk1)、P(uvw)、Δp等;并利用相结构因子和界面结合因子解释了非晶Fe78Si9B13合金磁致低温纳米晶化的微观机理。对于非晶Fe78Si9B13合金,非晶基体中的a-Fe的nA值最小,相变驱动力最小,形核率最大,所以α-Fe晶体首先析出;其次是α-Fe-Si,所以在α-Fe之后也随之析出,形成α-Fe(Si)固溶体。而且非晶相α-Fe类(110)//晶化相α-Fe(110)面、非晶相α-Fe类(110)//晶化相α-Fe-Si(110)面、非晶相α-Fe-Si类(110)//晶化相α-Fe-Si(110)面和晶化相α-Fe(110)//晶化相α2-Fe-Si (110)面均满足一级近似下的电子密度连续,且两侧的电子密度都很高,当脉冲磁场处理时,非晶基体中的那些具有位相关系的电子密度高、密度差小的面便通过扩散实现有序化,形成α-Fe和α-Fe(Si)晶核。然后通过粒子相界面的推移、相界面积增加的过程实现晶粒的长大。若相界面的电子密度差越大,界面上的原子尺寸变化越大,界面上的原子状态与相内的原子状态变化越剧烈,相界面的推移阻力越大,晶粒长大越困难,即电子密度差使它们的聚集、长大受阻,所以脉冲磁场作用下的晶化只能形成细小的α-Fe(Si)晶化相且弥散分布于剩余非晶基体中。
Fe-based soft magnetic alloys containing nanocrystalline precipitates embedded in an amorphous matrix are generally prepaared by partial devitrification of rapidly solidified amorphous phase. In order to improve the soft magnetic properties of the double-phase nanocrystalline alloy, the grain sizes and volume fractions of the nanocrystalline will be adjusted by controlling the crystallization process. Therefore, the research on the formation and properties of the double-phase nanocrystalline alloy has attracted widespread attention in recent years and become a focus in soft magnetic materials.
     In this thesis the low frequency pulse magnetic field (LFPMF) treatment was adopted to nanocrystallize Fe78Si9B13 amorphous alloy to form the double-phase alloy. The microstructures and properties of untreated as well as treated alloys were examined by Mossbauer spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetric (DSC). The activation energy in phase transition process was determined through DSC profiles by Kissinger's equation, and phase transformation thermodynamics and kinetics in nanocrystallization of amorphous alloy treated by LFPMF were studied. Then the models of amorphous and microcrystalline phase were established with the empirical electron theory (EET) and the microcrystalline model of amorphous alloy. The phase structure factors, interface structure factors and some other physical parameters of the Fe78Si9B13 amorphous alloys before and after the LFPMF treatment were calculated with BLD method and compared with the experimental values. The effect of magnetic pulses parameters, such as field intensity Hp, frequency fp, time t, etc., on the amount of nanocrystalline, the structure and properties of the alloy was determined. And the micromechanism in nanocrystallization of amorphous alloy by LFPMF treatment was discussed in the electronic level.
     Experimental results showed that the maximum temperature risingΔt in the LFPMF treatment process is no more than 10℃. and the internal and external temperature rising did not show significant difference. There did not exist high temperature or transient high temperature and temperature uniformity was good. Therefore, the LFPMF treatment on amorphous alloy for nanocrystallization at low temperatures is an innovative process because it is not only different from ordinary isothermal annealing, and also superior to the pulse electric field treatment in which the Joule heating effect always cause a high temperature rising.
     Treated by pulse magnetic field, the amount of crystalline and the magnetic moment of the Fe78Si9B13 alloys increased linearly with the magnetic field intensity and treating time, but did not show determined tendency with the magnetic field frequency. The optimal frequency range in this study was determined as 30-35Hz. At the same time, the hyperfine magnetic field of the alloy was affected after the LFPMF treatment due to the occurrence of nanocrystallization. The distribution of hyperfine magnetic field of the original amorphous samples is a single-peak located at about 260kOe. After the LFPMF treatment, this single-peak shifted to lower magnetic field and there was a sign of appearance of another single-peak at higher magnetic field. The peaks position varied with the pulse magnetic field parameters.
     There appeared two exothermic peaks in the DSC profiles in the nanocrystallization process of Fe78Si9B13 alloy treated by LFPMF, indicating that two phase transitions took place and the transformation were both primary crystallization. The crystallized phase was single-phase b.c.c a-Fe(Si). The activation energy of the first exothermic peak of the original Fe78Si9B13 amorphous alloy was determined by Kissinger's equation as 433.6 kJ/mol. While the activation energy was only less than 219.3 kJ/mol when treated by LFPMF. The sharp decrease of the activation energy implied that the phase transition barrier was reduced and phase transition took place more easily when treated by LFPMF. This may be ascribed to that the LFPMF treatment decreases the critical nucleating radius rc, the critical nucleating free energyΔGc, increase of the nucleation rateⅠ, and then faster nucleation and growth, thus promoted the crystallizations of the amorphous alloys.
     The covalence electronic structures of amorphous and crystalline phases before and after LFPMF treatment were calculated using the bond length difference (BLD) method in the empirical electron theory (EET). The empirical calculation formula of the total magnetic moment were established according to the atoms proportions, phase structure factor nA and the contribution of each cell iron atoms to the magnetic moment of the Fe78Si9B13 alloy. The total magnetic moment of amorphous phase was calculated as 1.895μB and that of crystallized phase was 2.5579μB-Then the magnetic moment of the double-phase alloys after the nanocrystallization by LFPMF treatment was calculated based on the alloy composition and the total magnetic moment obtained above, and compared with experimental values. The error of these two is less than 10%, indicating that it is possible and reliable to calculate the magnetic moment of amorphous alloy from covalence electronic level in the first approximation. This can be applied to guide the optimization of soft magnetic properties of Fe78Si9B13 amorphous alloy. But the relationship between the magnetic moment and pulse magnetic filed parameters require further investigation.
     The out-of-phase interface valence electron parameters (P(hkl),P(uvw) andΔp, etc), those are related to the properties of amorphous and crystalline phases, were calculated and the micromechanism of nanocrystallization of Fe7gSi9B13 alloy by LFPMF treatment was explained using phase structure factor and interface conjunction factors. For Fe78Si9B13 amorphous alloy, the nA ofα-Fe in amorphous matrix is smaller than the others, then the driving force of phase transition is smaller while the nucleation rate is larger. Soα-Fe crystal is first crystallized. And then isα-Fe-Si crystal. They form a-Fe(Si) solid solution. Moreover, the electronic densities of the amorphous a-Fe (110) planes//crystallized a-Fe (110) planes, amorphous a-Fe (110) planes//crystallized a-Fe-Si (110) planes, amorphous a-Fe-Si (110) planes//crystallizedα-Fe-Si (110) planes, crystallized a-Fe (110) planes//crystallizedα-Fe-Si (110) planes are continuous under the first approximation, and the electronic density of both sides are high. When Fe78Si9B13 amorphous alloy was treated by LFPMF, the planes with certain phase difference and high electronic density, small density difference in the amorphous matrix can be ordered by diffusion and form the crystal nucleus of a-Fe andα-Fe(Si). Then with the movement of particle phase interface and the increase of phase interface area, the grains grow up. If the electronic density difference of phase interface is larger, the change of atomic size on interface will be more significant, the atoms states on interface or in phase will change much more, the resistance of interface movement will be higher, the grain's growth will be more difficult. In another word, the electron density difference makes their accumulation and growth inhibited. Therefore, the crystallization under pulse magnetic field can only form tiny crystallized phase a-Fe-(Si) well dispersed in the amorphous matrix.
引文
1. 戴道生,韩汝琪等.非晶态物理[M],北京:电子工业出版社,1989
    2. 王一禾,杨鹰善.非晶态合金[M],北京:冶金工业出版社,1989
    3.郭贻诚,王震西.非晶态物理学[M],北京:科学出版社,1984
    4. J. Kramer., Annln Phys,1934,19:37
    5. A. Brenner, D. E. Couch, E. K. Williams., J. Res. Natn.Bur. Stand,1950,44:109
    6. D. Turnbull, M. H. Cohen., Concening reconstructive transformation and formation of glass[J], J. Chem. Phys,1958,29:1049-1057
    7. W. Klement, R. Willens, P. Duwez. Non-crystalline structure solidified good-silicon alloys[J], Nature,1960,187:869-870
    8. J. R. Pond, R. Maddin. Method of preducing rapidly solidified filamentary castings[J]3 Met. Soc of AIME-Trans,1969,245:2475-2476
    9. A. Inoue, T. Zhang, N. Nishiyama. Preparation of 16mm diameter rod of amorphous Zr65A17.5Ni10Cu17.5 alloys[J], Mater. Trans. JIM.,1993,34(12):1234-1237
    10. A. Peker, W. L. Johnson. A highly processable metallic glass:Zr41.2Ti13.8Cu12.5Ni10Be22.5 [J], J. Apps. Phys. Lett.,1993,36(17):2342-2344
    11. P. Duwez, S. C. Lin. Amorphous ferromagnetic phase in iron-carbon-phosphorus alloys[J], J. Apps. Phys.1967,38:4096-4097
    12. Y. Yoshizawa, S. Oguma, K. Yamauchi. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J], J. Apps. Phys.1988,64:6044-6046
    13. H. Koshiba, A. Inoue. Fe-based soft magnetic alloys with a wide supercooled liquid region[J], J. Apps. Phys.1999,85:5136-5138
    14. J. G. M, De Lau. Temperature dependence of the initial permeability of a ferromagnetic amorphous Co-P alloys[J], J. Apps. Phys.1970,41:5355
    15. Y. Masino, K. Aso, S. Uedaira, M. Hayakawa et. al.. Induced magnetic anisotropy of Co-based amorphous alloys[J], J. Apps. Phys.1981,52:2477-2479
    16. P. L. Maitrepierre. Structure of amorphous Ni-Pd-P and Fe- Pd-P [J], J. Apps. Phys.1969, 40:4826-4834
    17. K. C. Liang. C. C. Tsuei. Kondo effect in an amorphous Ni41Pd41B18 alloys containing Cr[J], Phys. Rev. B,1973,7:3215-3225
    18. G. R. Gregalski, J. A. Gerber, D. J. Sellmyer. Electronicproperties ang superconductivity of Zr-Pd glasses[J], Phys. Rev. B,1979,19:3469-3475
    19. K. H. Buschow. Thermal stability of amorphous Zr-Cu alloys[J], J. Apps. Phys.1981,52: 3319-3323
    20. L. Zhang, Y. S. Wu, X. F. Bian et. al.. Short-range and medium-range order in liquid and amorphous Al90Fe5Ce5 alloys[J], J. Non-Cryst. Solid,2000,262:169-176
    21. P. P. Chattopadhyay, R. N. Gannabattula, S. K. Pabi et. al.. Development of amorphous Al65Cu35-xTix alloys by mechanical alloys[J], Scripta Mater,2001,10:1191-1196
    22. D. H. Xu, G. Duan, W. L. Johnson. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper[J], Phys. Rev. Lett.2004,92:245504-1-245504-4
    23. A. Inoue, W. Zhang. Bulk glassy Cu-based alloys with a large supercooled region of 110K[J], Phys. Rev. Lett.2003,83:2351-2353
    24. X. K. Xi, D. Q. Zhao, M. X. Pan et. al.. Highly precessable Mg65Cu25Tb10 bulk metallic glass[J], J. Non-Cryst. Solid,2004,344:189-192
    25. X. K. Xi, D. Q. Zhao, M. X. Pan et. al.. On the criteria of bulk metallic glass formation in MgCu-based alloys[J], Intermetallics 2005,13:638-641
    26. D. J. Sellmyer, S. Nafis. Random maneticsm in amorphous rare-earth alloys (invited) [J], J. Apps. Phys.1985,57:3584-3588
    27. P. Hansen. Direct overwrite in amorphous rare-earth transition-metal alloys[J], J. Apps. Phys. Lett,1987,50:356-358
    28. S. Li, X. X. Wei, Q. Luo et. al.. Formation and properties of new bulk metallic glass [J], Science and technology of advanced materials,2005,6:823-827
    29. X. X. Wei, B. Zhang, R. J. Wang et. al.. Erbium- and cerium-based bulk metallic glass[J], Scripta Mater.2006,54:599-602
    30. X. H. Lin. Bulk glass formation and crystallization of Zr-Ti based alloys[J], Thesis of California Institute of Technology,1997,21(2):186-189
    31.J.扎齐斯基主编.于福嘉,侯立松等译.玻璃与非晶态材料[M],北京:科学出版社,2001
    32. S. Joseph, A. Poon, E. B. Gray et. al.. Glass formability of ferrous-alunium-based structural metallic alloys Section 1:Glass Formation and Structure[J], J. Non-Cryst. Solids,2003,2001,305:87-94
    33. A. Inoue. Bluk amorphous alloys-preparation and fundamental characteristics[M], Switzerland:Trans Tech Publications Ltd.1998
    34. Z. P.Lu. C. T. Liu. A new glass-forming ability criterion for bulk metallic glasses[J], Acta. Mater.,2002,50:3501-3512
    35.范洪波,曹福祥,蒋祖龄等.铝基非晶态合金的制备方法和性能[J],材料导报,1997,11(2):13-17
    36. A. Inoue. Formation and mechanical properties porous Pd-Pt-Cu-P bulk glassy alloys[J], Mater. Trans. JIM.,2005,47(12):2777-2780
    37.于桂复.从第七届国际急冷材料会议看急冷技术的研究现状及发展趋势[J],材料过程,1991,(1):1-3
    38.卢智超,李德仁,周少雄.非晶、纳米晶合金的国内外发展概况及其应用[J],新材料产业,2002,3:20-23
    39.J.扎齐斯基主编.于福嘉,侯立松等译.玻璃与非晶态材料[M],北京:科学出版社,2001,442
    40. A. I. Zaitsev, N. E. Zaitseva. Thermodynamic study of liquid Fe-Si-B alloys:the of termary associated groups on transformation of the alloy into the amorphous state[J], Phys Chem.2002,384:126-130
    41.曹兴国,车晓舟,戴礼智.微量铈对Fe-Si-B非晶合金退火脆化的影响[J],中国稀土学报,1995,4:324-327
    42. J. M. Dubois, G. L. Caer. Order local properties physiques des verres metalliques riches enfer[J], Acta Metall,1984,32:2101-2114
    43. T. Hamada, E. E. Fujita. Interference function of crystalline embryo model of amorphous metals[J], JPN. J. Apps. Phys.1982,21:981-986
    44. A. Il'inskii, S. Slyusarenko, O. Slukhovskii et. al. Structural properties of liquid Fe-Si alloys[J], J. Non-Cryst. Solids,2002,306:90-98
    45.晁月盛,张艳辉.功能材料物理[M],沈阳:东北大学出版社,2006:138-141
    46. D. Atkinson, P. T. Squire, M. R. J. Gibbs et. al. The effect of annealing and crystallizatin on the magnetoelastic properities of Fe-Si-B amorphous wire[J], J. Apps. Phys.,1993,73: 3411-3417
    47. L. Bednaeska, Ya. Galadzhun, Yu. Gorelenko et. al. Influnce of annealing on the physical and chemical properities of Fe-Si-B-(Me) amorphous alloys[J], J. Alloys Comp,2004, 367:270-273
    48. T. H. Noh, M. B. Lee, H. J. Kim, I. K. Kang. Relationship between crystallization process and magnetic properities of Fe-(Cu-Nb)-Si-B amorphous alloys[J], J. Apps. Phys.,1990, 67:5568-5570
    49. Z. H. Lai,H. Conrad,G. Q. Teng, Y. S. Chao. Nanocrystallization of amorphous Fe-Si-B alloys using high current density eletropulsing[J]. Mater. Sci. Eng.,1996,A287:238-247
    50.刘左权,赵鹤云,吕毓松等.激波诱导非晶合金Fe78Si9B13晶化[J],金属学报,1996,32:862-866
    51.周效峰,刘左权,刘应开等.Fe73Nb3Cu1Si13.5B9非晶合金的激波晶化研究[J],物理学报,1999,48:2098-3002
    52. H. Y. Tong, B. Z. Ding, H. G. Jiang, K. Lu et. al. Formation kinetics of nanocrystalline FeSiB alloy by crystallization of the metallic glass[J], J. Apps. Phys.,1994,75:654-656
    53. H. Y. Tong, J. T. Wang, B. Z. Ding, H. G. Jiang, K. Lu. The structure and properities of nanocrystalline Fe78Si9B13 alloys[J], J. Non-Cryst. Solids,1992,150:444-447
    54.姚彬,华中,闵春宗等.压力对非晶(Fe0.99Mo0.01)B13Si9晶化相a-Fe(Mo,Si)晶粒尺寸的影响[J],金属学报,1996,32:868
    55.卢柯.非晶态合金向纳米晶体的相转变[J],金属学报,1994,30(1):1-21.
    56. H. Y. Tong, B. Z. Ding, H. G. Jiang, et. al. Nanostructured transformation mechanism of amorphous Fe-Si-B alloys by the method[J], J. Phys. D:Appl. Phys.,1994,27:396-401
    57. H. Y. Tong, B. Z. Ding, H. G. Jiang, K. Lu, et. al. Formation kinetics of nanocrystalline FeSiB alloys by crystallization of the metallic glass[J], J. Apps. Phys.,1994,75:654
    58. E. Illekovo. The crystallization kinetics of Fe80Si4B16 metallic glass[J], Thermochimica Acta,1996,280-281:289-301
    59. B. Yao, Y. Y. Hao, A. M. Wang, et. al. Study of the thermodynamic mechanism of the crystallization of amorphous Fe-Mo-Si-B alloys with a diffusion reaction at the surface[J], J. Non-Cryst. Solids,2001,205-207:554-558
    60. D. S. Dos Santos, D. R. Dos Santos. Crystallization kinetics of Fe-Si-B metallic glass[J], J. Non-Cryst. Solids,2002,304:56-63
    61. I. Mat'ko, E. Illekovo, P. Svec, P. Duhaj. Crystallization Characteristics in the Fe-Si-B glassy ribbon system[J], Mater. Sci. Eng.,1997, A225:145-152
    62. I. Mat'ko, E. Illekovo, P. Svec, P. Duhaj, et. al. Local ordering model in Fe-Si-B amorphous alloys[J], Mater. Sci. Eng.,1997, A226-228:280-284
    63. M. S. Leu, J. S. C. Jang, C. C. Lin, W. K. Wang. The effect of composition on the crystallization and magnetic transition of Fe-Si-B amorphous alloys[J], Materials chemistry and physics,1996,45:275-279
    64. K. G. Efthimiadis, C. A. Achilleos, S. C. Chadjivasiliou, L. A. Tsoukalas. Study on the crystallization of amorphous Fe78Si9B13 and Fe76Si8B16 by means of magnetic measurements [J], Solid State Communications,1997,101:541-544
    65. C. K. Kim. Effects of crystallization on the coercivity in Fe78Si9B13 amorphous alloys[J], Mater. Sci. Eng.,1996. B39:195-201
    66.陈国军,王旭军.FINEMET型FeCuNbSiB系纳米软磁合余的新进展[J],金属功能材料,2001,8:10-12
    67.滕功清,晁月盛,赖祖涵.Fe78Si9B13非晶合金纳米晶化的新方法[j],科学通报,1994,39(11):974-976
    68.郭红,晁月盛.低频脉冲磁场致非晶合金Fe78Si9B13纳米晶化及机制[J],机械工程材料,2004,28(3):40-43
    69.张艳辉,晁月盛.Fe78SigB13非晶合金纳米晶化的低频脉冲磁场处理方法[J],东北大学学报(自然科学学报),2003,24(10):1018-1020
    70. A. Inoue. Stabilization of metallic supercooled liquid and bulk amorphous alloy[J], Acta Mater,2000,48:279-306.
    71. Yizhou zhou, Qingsheng zhang, Guanhu he,et al. Connection of bulk amorphous alloy Zr55Al10Ni5Cu30 by high current density electropulsing[J], Materials Letters,2003,57: 2208-2211.
    72. M. G. Scott, F. E. Luborsky. Amorphous metallic alloys[M], London:Butter-worth,1988. 144
    73.王红霞,丁力栋,刘宗滨等.非晶超微晶软磁合金在电力电子领域的应用[J],金属功能材料,1998,5:105-106
    74.柯成.金属功能材料词典[M],北京:冶金工业出版社,1999
    75.肖素红,晁月盛,周本濂.连续超短电脉冲对非晶Fe78Si9B13合金软磁性能的影响[J],物理学报,2000,49(2):288-291
    76.郭奕铃,沉慧君.物理学史[M],北京:清华大学出版社,1993,403
    77.刘志林,李志林,刘伟东.界面电子结构与界面性能[M],北京:科学出版社,2002
    78.国家自然科学基金委员会.金属测量科学[M],北京:科学出版社,1995,133-140
    79. C. T. Sims. Superalloys 1984, ed. By Gell et. al. MIME, Warrendale, PA,1984,399
    80. P.Hohenberg, W. Kohn. Phys.Rev.,1964,136:38864
    81. W. Kohn, L. J. Sham. Phys.Rev.,1965,140:A1133
    82.张济山,崔华,胡壮麒.D电子合金理论及其在合金设计中的应用[J],材料科学与工程,1993,11(3):1-10
    83. M. Morinaga, J. Saito, N. Yukawa and H. Adachi. Electronic effect on the ductility of alloyed TiAl compound[J], Acta metal mater,1990,38(1):25-28
    84. T. Kawabata, T. Tamura and O. Izumi. Effect of Ti/Al Ratio and Cr、Nb and Hf Additions on Material Factors ang Mechanical Properties in TiAl[J]. Metallurgical Transactions A,1993,24(1):141-150
    85. D. G. Pettifor, A. H. Cttrell.陈魁英译.合金设计的电子理论[M],沈阳:辽宁科学技术出版社,1997,序言
    86.余瑞璜.固体与分子经验电子理论[J].科学通报,1978.23(4): 217-224
    87. Chongyu Wang. Feng An, Binling Gu et. al.. Election structure of the lightimpurity (boron)-vacancy complex in inon[J]. Phys. Rev.(B).1988,38(6):3905-3915
    88. Chongyu Wang, Shengying Liu and Linguang Han. Election structure of impurity (oxygen)-stacking fault complex in nickel[J]. Phys. Rev.(B),1990,41(3):1359-1368
    89. Chongyu Wang, Yong Yue and Shengying Liu. Election structure of the YBa2Cu3O7-y superconductor containing twin boundaries[J]. Phys. Rev.(B),1990,41(10):6591-6599
    90. Chongyu Wang, Bing Wang, Peng Feng et al.. Localized electronic structure of boron impurity vacancy complex in Ni[J]. Phys. Rev.(B),1992,46(5):2693-2701
    91. Chongyu Wang, Liqun Chen, Keng Li, et al.. Election structure of impurity boron-vacancy complex in transition metal y-Fe[J]. J.Appl. Phys,1992,71(1):239-242
    92. Chongyu Wang, Junqing Li, Wenyuan Qiu et al.. Election structure of ReCos type intermetallic compound[J]. Chinese science bulletin,1990,35(3):197-208
    93. Chongyu Wang and Yueping Zeng. Electronic structure of grain boundary in transition metal Ni, Science in China (Series A),1992,35(12):1466-1471
    94. Chongyu Wang and Tao Yu. Atomic structure and doping response of grain boundary in transition metal Ni, Science in China (Series A),1994,37(7):878-889
    95. J. S. Zhang, Z. Q. Hu, Y. Murata et al.. Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory Part I. Characterization of the phase stability [J]. Metallurgical transactions(A),1993, 24:2443-2450
    96. J. S. Zhang, Z. Q. Hu, Y. Murata et al.. Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory Part II. Effect of refractory metals Ti, Ta and Nb on microstrctures and properties[J]. Metallurgical transactions(A),1993,24:2451-2458
    97. Kuiying Chen, Hongbo Liu and Zhuangqi Hu. Local orientational order in binary liquid Li-In alloys[J], J. Phys, Condens Matter,1995,7:517-529
    98. Changgong Meng, Jianting Guo and Zhuangqi Hu. Mechanism of Macroalloying-induced Ductility in Ni3Al. J. Mater, Sci. Tehcnol,1994,10:279-285
    99. 谢佑卿,张晓东,赵礼颖等.金属Cu的电子结构和物理性质,中国科学(A辑),1993,23(5):545-551
    100.谢佑卿.固体中多原子相互作用的新势能函数[J].中国科学(A辑),1992,22(8):880-887
    101.谢佑卿, 张晓东.Ag-Cu合金的原子体积和体积分数[J].中国科学(A辑),1998,28(1):12-17
    102.高英俊.陈振华,黄培云等.有序Al-Li余属间化合物的电子结构与结合性能[J],中国有色金属学报,1997,7(4):141-147
    103. Yingjun Gao. Zhenhua Chen, Peiyun Huang et al.. Bond parameters and electronic strcrure of V, Nb and Ta metals, Trans. Nonferrous Met. Soc. China,1998,8(1):20-25
    104.高英俊,陈振华,黄培云等.结构图及其在材料设计中的应用,稀有金属材料科学与工程,1997,26(4):1-6
    105. Ruifu Zhu, Yupeng Lu, Fucheng Zhang. Valence electron strcture of high manganese stell and its intrinsic property[J], Chinese science bulletin,1996,41(15):1313-1318
    106. Ruifu Zhu, Shitong Li et al.. Dynamic observations on Tem in-situtensile deformation [J], Chinese science bulletin,1996,41(23):2011-2016
    107.杨瑞成.高速钢回火行为的电子理论分析[J],材料科学与工艺,1996,4(4):102-107
    108.钱存富,段占强,耿平等.高Co-Ni二次硬化马氏体钢中合金元素对相变的影响[J],钢铁研究学报,1999,11(6):25-29
    109.钱存富,赵秉军.汽车用镀锌板Fe-Al过渡层相结合能的计算[J],东北大学学报,1998,19(5):547-552
    110.李培杰,刘树勋等.Co在Fe-Co-Cr高合金钢中作用机制的电子理论[J],科学通报,2002,47(22):1690-1697
    111. Yongquang Guo, Ruihuang Yu, Ruilin Zhang et al.. Calation of Magnetic Properties ang Analysis of Valence Electronic Structures of LaTl3-xAlx(T=Fe, Co)Compounds[J], J. Phys. Chem.,1998,102(1):9-20
    112. Jianmin Zhang, Zhengyuan Gao et al.. Electron Theory Study on the Room Temperature Embrittlement in Fe3Al and FeAl[J], J. Tron & Steel Res.,1996,3(1): 33-39
    113.尹衍生,谭训彦,李嘉.Zr02基陶瓷的t-m马氏体相变相接口电子结构[J],中国有色金属学报,2003,13(1):111-118
    114. Wenyong Su, Ruilin Zhang et al.. Computation of Diffusion Activation Energies of C, N in γ-Fe[J], Journal of Beijing Institute of Technology,2002,11(1):105-111
    115.贾堤,董治中等.NiTi形状记忆合金的价电子结构分析与马氏体相变[J],原子与分子物理学报,1998,45(3):420-425
    116.文九巴,任敏华等.A166Fe9Ti25合金解离能的经验电子理论分析[J],上海交通大学学报,1998,32(2):73-79
    117.高英俊,钟夏平等.微量Zr对Al-Mg合金晶粒细化作用的电子结构分析[J],广西科学,2003,10(1):32-36
    118. L. Pauling. The Nature of the Chemical Bond[J], Cornell University Press, Ithaca,1960, 3rd. ed., pp.393
    119. S. H. Yu. The empirical electron theory of solid and molecules—the hypothesis of equivalent valence electron[J]. Kexue Tongbao,1981.26(7):506-513
    120.张瑞林.固体与分子经验电子理论[M],长春:吉林科学技术出版社,1993,275,316,427
    121. Yongquan Guo, Ruihuang Yu, Ruilin Zhang, et. al.. Calculation of magnetic properties and analysis of valence electron structures of LaTl3-xAlx (T=Fe, Co) compounds[J], J. Phys. Chem. B,1998,102(1):9-16
    122. Zhilin Liu, Zhilin Li, and Zhenguo Sun, Catalysis mechanism and catalyst design of diamond growth, Metallurgical and materials transactions[J], Metallurgical and materials transactions,1999,30A(11):2757-2765
    123.余瑞璜.铝-镁二元金相α、δ相以及y-Al12Mg19相的价电子结构分析[J],吉林大学自然科学学报,1979,(4):54-75
    124. S. H. Yu. Periodic table in the microscopic space of solids and molecules—fine structure of atomic valence: Ⅰ subgroup BⅠ, BⅡ, AⅢ elements in the periodic table[J], Science reports of Jinan University,1981, (supp.1):7-25
    125. S. H. Yu. Periodic table in the microscopic space of solids and molecules—fine structure of atomic valence: Ⅱ subgroup AV elements As, Sb and Bi in the periodic table[J], Science reports of Jinan University,1981, (supp.l):26-29
    126. S. H. Yu. Quantum mechanical foundation of discontinuous states hybridization hypothesis in the empirical electron theory of solids and molecules[J], Science reports of Jinan University,1981, (supp.1):30-40
    127. S. H. Yu. Analyses of the valence electron structure of Mg and some Mg and Ag hcp solid solutions in phase transformation under critical high pressure—direct evidence of the existence of discontinuous hybridization of states in solids[J], Science reports of Jinan University,1981, (supp.1):41-55
    128.陈秀芳,余瑞璜,左秀忠.锕系元素单键半径R(1)公式ˉ固体与分子经验电子理论扩展到周期表第七周期所应用的参数[J],科学通报,1986,31(9):663-667
    129.余瑞璜.α-Fe、γ-Fe和Fe4N的价电子结构和磁矩结构分析—α-Fe→γ-Fe相变、高温渗氮表面硬化、渗碳体石墨化及其它材料的电子理论[J],金属学报,1982,18(3):337-349
    130.余瑞璜,张瑞林.奥氏体低温分解形成下贝氏体中的ε-Fe3C的价电子结构分析[J],金属学报,1982,18(4):444-450
    131.余瑞璜.Cr03、δ-Cr02、Cr203、α-Al203的熔点、沸点和在水中及其它溶液中的溶解度的电子理论[J],结构化学,1984,(3):193-196
    132. S. H. Yu. Electron theory of superconductivity and transition point Tc's of Tl2Ba2Can-1CunO2n+4 (n=1,2,3.4) and comparison with Tc's of TlBa2Can-1CunO2n+ (n=1,2.3,4.5). Published in Progress in high temperature superconductivity Vol.2[J], World Scientific Publishing Co. Inc.,687 Hartwell ST. Teaneck NJ 07666, U. S. A, 1987:494-497
    133.金冶,张瑞林,余瑞璜.铁-碳、铁-氮系中几种固溶体的研究Ⅱ—γ-Fe-N固溶体的价电子结构与a-x曲线[J],吉林大学自然科学学报,1984,1:56-60
    134.张瑞林,金冶,余瑞璜.铁-碳、铁-氮系中几种固溶体的研究Ⅲ—ε-Fe-N固溶体的价电子结构与晶格常数~成份曲线[J],吉林大学自然科学学报,1984,(1):63-72
    135.张瑞林,吴尚刁‘,余瑞璜.由Nd2Fe14B的晶体直接给出其价电子结构的分析[J],中国科学(A辑),1988,18(2):197-203
    136.袁祖奎,余瑞璜.Fe-Crσ相价电子结构的分析[J],金属学报,1985,21(2):A140-146
    137.郑伟涛,张瑞林,余瑞璜.Ag-Au、Au-Cu二元合金形成能和高温相图的研究[J],科学通报,1989,34(9):705-711
    138.吴非,余瑞璜,张瑞林.Fe-Mn合金相图的电子理论计算[J],中国科学(A辑),1990,20(8):889-896
    139.丁涛.磁性转变相图和二元合金Al-Co相图的计算[M],长春:吉林大学,1994
    140.郑伟涛,余瑞璜,张瑞林.Cu-Au二元合金有序-无序相平衡的研究[J],科学通报,1991,36(2):179-181
    141.张建民.Fe-Al合金的电子理论研究[M],长春:吉林大学,1994
    142. Jianmin Zhang, Ruilin Zhang, Ruihuang Yu. The fracture of transgranular cleavage of Fe3Al and the intergranular fracture of FeAl[J], Chinese Science Bulletin,1994,39(15): 1315-1318
    143.张建民,张瑞林,余瑞璜.氢致α-Fe脆性机理的电子理论研究[J],科学通报,1995,40(3):234-236
    144. Yansheng Yin, Runhua Fan, Yongsheng Xie. The effect of chromium on the valence electron structure of Fe3Al intermetallic compounds[J], Materials chemistry and physics, 1996,4:190-19315.尹衍升,孙扬善,熊宏齐等.三元Fe3A1金属间化合物的价电子结构分析[J],金属学报,1993,29(11):A479-486
    146.尹衍升.合金化对铸态Fe3A1材料的作用与机制的研究[M],南京:东南大学,1993
    147. Yansheng Yin, Wenxiang Wang, Zhongliang Shi. Analysis of valence electron structure (VES) of Fe3Al intermetallic compounds[J], Materials chemistry and physics,1995,39: 243-247
    148.张小英.高强球铁(QT600-3)Ni-Fe焊缝异质焊接接头强度的研究[J],长春:吉林工业大学,1991
    149. J. Q. Wang. C. F. Qian. B. J. Zhang et. al.. Valence electron structure analysis of the cubic silicide intermetallics in rapidly dolidified Al-Fe-V-Si alloy[J], Scripta Materialia. 1996.34(10):1509-1515
    150. Kaijia Cheng. Application of the TFD model and Yu's theory to material design[J], Progress in natural science,1993,3(3):211-230
    151. Shuyu Cheng, Kaijia Cheng. Computation on heat of formation and EOS of alloy by a refined TFD model[J], Acta Physica Sinica (Overseas Edition),1993,2(6):439-448
    152. Kaijia Cheng, Shuyu Cheng. Theoretical foundations of condensed materials[J], Progress in natural science,1996,6(1):1-15
    153.程开甲,程漱玉.论材料科学的理论基础[J],自然科学进展,1996,6(1):12-20
    154. Kaijia Cheng, Shuyu Cheng. Theoretical foundations of condensed materials[J], Progress in natural science,1996,6(1):1-15
    155.程开甲,程漱玉.论少子对材料特性的影响[J],材料研究学报,1996,10(1):1-7
    156. Zhlin Liu, Tianshi Dai, Shuangliang Yang et al. Calculation of valence electron structure in L2'-type complex solid solutions[J], Science in China (Series A),1989, 32(11):1390-1397
    157. Zhlin Liu, Tianshi Dai, Yongbo Qu. The model of valence electron theory of drag-like effect[J], Chinese science bulletin,1989,34(12):979-983
    158. Zhlin Liu, Chunhui liu, Lianman Zhao. Valence electron structure of 40CrNiMo and its influences on phase transformation[J], Science in China (Series A),1989,32(7): 867-877
    159. Tianshi Dai, Zhlin Liu, Ruilin Zhang. Valance electron structure of Cr in Fe-C austenite and behavior of Cr in kinetics of phase transformation[J], Chinese science bulletin,1989, 34(21):1830-1833
    160.刘志林,牛洪军,王斌.C-Si偏聚对60Si2Mn钢贝氏体相变的影响[J],金属学报,1988,24(增刊1):SA36-39
    161. Zhlin Liu, Tianshi Dai, Yongbo Qu. The valence electron structures of martensite in low alloy ultra-high-strength steels and their influence on strength and toughness[J], Chinese science bulletin,1991,36(5):366-371
    162. Tianshi Dai, Zhlin Liu, Yongbo Qu et al. The valence electron structure of austenite in low alloy ultrahigh-strength steels and its influences on kinetics of phase transformation[J], Science in China (Series A),1990,33(9):1132-1140
    163. Zhilin Liu, Zhilin Li, Zhenguo Sun et al. Valence electron structure of cast iron and graphitization behavior criterion of elements[J], Science in China (Series A),1995, 38(12):1484-1491
    164. Zhilin Liu. Hongjun Niu. Canfeng Jin et al. A theory of C-Si segregation in Fe-C-Si alloys[J]. Chinese Science bulletin.1989.34(2):100-105
    165. Zhilin Liu, Tianshi Dai, Hongjun Niu et al. The application of Yu's theory in the study of phase transformation of industrial materials[J], Chinese journal of mechanical engineering,1989,2(2):147-155
    166. Zhilin Liu, Zhenguo Sun, Zhilin Li. Valence electron theory of graphite spheroidizing in primary crystallization[J], Science in China (Series A),1995,38(12):1492-1500
    167. Zhilin Liu, Zhenguo Sun, Zhilin Li. Structure formation factor in cast iron solidification theory[J], Chinese science bulletin,1995,40(16):1389-1396
    168. Zhilin Liu, Zhilin Li, Zhenguo Sun. Electron density of austenite/mar-tensite biphase interface[J], Chinese science bulletin,1996,41(5):367-370
    169. Zhilin Liu, Zhilin Li, and Zhenguo Sun. Catalysis mechanism and catalyst design of diamond growth[J], Metallurgical and materials transactions,1999,30A(11):2757-2765
    170. Zhilin Liu, Zhilin Li, Zhenguo Sun et al. Valence electron structure of cast iron and graphitization behavior criterion of elements[J], Science in China (Series A),1995, 38(12):1484-1491
    171. Zhilin Liu, Zhenguo Sun, Zhilin Li. Valence electron theory of graphite spheroidizing in primary crystallization[J], Science in China (Series A),1995,38(12):1492-1500
    172. Zhilin Li, Zhilin Liu, Zhenguo Sun. Valance electron structure of austenite-martensite interface and phase transformation toughening[J], Chinese journal of mechanical engineering,1996,9(2):119
    173.刘志林.合金的价电子结构与成份设计[M],长春:吉林科学技术出版社,2002,第二版
    174. Zhilin Liu, Zhilin Li, and Zhenguo Sun. Catalysis mechanism and catalyst design of diamond growth[J], Metallurgical and materials transactions,1999,30A(11):2757-2765
    175. Zhilin Liu. Valance electron structure and composition design of a low alloy ultra-high-strength steel[J], Chinese journal of mechanical engineering,1990,3(2): 142-148
    176. Zhilin Liu, Zhenguo Sun, Zhilin Li. Application of Yu's theory and Cheng's theory in alloy research[J], Progress in natural science,1998,8(2):134-146
    177. Zhilin Liu, Weidong Liu, Zhilin Li. The electron structure of interface and its properties[C], International Conference on Surface and interface Science and Engineering (SISE'2001),8-9
    178. Zhilin Liu. C-Me segregating theory in solid alloys[J], Chinese science bulletin,1989, 34(23):2006-2010
    179.张瑞林,余瑞璜.Fe-C马氏体价电子结构分析[J],金属学报,1984,20(4):A279-285
    180. Zhilin Liu. C-Me segregating theory in solid alloys[J], Chinese science bulletin,1989. 34(23):2006-2010
    181.张福成,郑炀增.锰铬奥氏体钢中合金元素及碳的短程有序分布[J],科学通报,1991,36(5):382-385
    182. Yangzeng Zheng, Fucheng Zhang. Effect of heterogeneous distribution of C and alloying elements on γ/α' transformation in a Fe-Mn-Cr-C alloy, Acta. Metallurgica sinica (series A),1991,4(6):467-470
    183. Tianfu Jing, Fucheng Zhang, Yangzeng Zheng. Wear resistence and work-hardening of 6-Mn-2Cr metastable austenitic steel, Mechanical properties materials design conference. Boqun Wu volume editor, C-MRS international, Beijing China,1990: 629-634
    184. Ruifu Zhu, Yupeng Lu, Fucheng Zhang. Valence electron structure of high manganese steel and its intrinsic property[J], Chinese science bulletin,1996,41(15):1313-1316
    185. Ruifu Zhu, Shitong Li, Tao Wei et. al.. Dynamic observations on TEM in-situ tensile deformation, Chinese science bulletin,1996,41(23):2011-2015
    186.朱瑞富,吕宇鹏,陈传忠等. Fe-C-Mn合金奥氏体的价电子结构分析,金属学报,1996,32(6):561-564
    187.朱瑞富,李士同,刘玉先等. Fe-Mn-C合金中的C-Mn偏聚及其对相变和形变的影响,中国科学(E辑),1997,27(3):193-199
    188.叶以富,尚玉侠,周香林等.球状石墨的晶核是“布基球”[J],科学通报,1996,41(19):1815-1817
    189.屈庸博.材料物理与材料设计[J],吉林工业大学学报,1989,(1):138-142
    190.张振宇,张百刚.马氏体的价电子结构与马氏体的强度及塑性[J],试验技术与试验机,1991,31(4),20-21
    191.耿平.新型高强高韧钢的微观结构与强韧性研究[J],沈阳:东北大学,1997
    192.晁月盛.穆斯堡尔谱学和正电子湮没技术[M],沈阳:东北工学院出版社.1986
    193.张宝峰.穆斯堡尔谱学[M].天津:天津大学出版社.1991
    194.李士.穆斯堡尔谱学方法与数据处理[M],甘肃:兰州大学出版社,1990
    195.梁志德,王福.现代物理测试技术[M],北京:冶金工业出版社,2003,207
    196.常铁军,祈欣.测量近代分析测试方法[M],哈尔滨:哈尔滨工业大学出版社,1999
    197.周文生编.磁性测量原理[M],北京:电子关于出版社,1999
    198. Y. C. Gibb. Principles of Mossbauer Spectroscopy[M], London:Chapman and Hall, 1976
    199. G. W. Koebrugge, J. Van der Stel, J. Sietsma et al. Effect of free volume on the kinetics of chemical short range ordering in amorphous Fe40Ni40B20[J].J.Non-Cryst. Solids., 1990,117-118:601-604
    200. G.W. Koebrugge,J. Sietsma, J. Van den Beukel. Non-Cryst. Solids.,1990,117-118: 609
    201. T. Egami. Structure and magnetism of amorphous alloys[J], IEEE Trans. Mag.,1981, 17:2600-2605
    202. Z. Kajcsos, T. Winter, S. Mantl, W. Triftshauser. Phys. Stat. Sol.(a),1980,58:77
    203.陈岁元,刘常升,李慧莉,崔彤.非晶Fe735Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究[J],物理学报,2005,54(9):4157-4163
    204. M. Sorescu, F. T. Knobbe, D. J. Barb. Phys. Chem. Solid.,1995,56:79
    205. G. Herzer. IEEE Transactions on Magnetics[J],1989,25(5):3327
    206. G. Herzer. Scripta Metallurgica Materialia[J],1995,33(10/11):1741
    207. G. Herzer. IEEE Transactions on Magnetics[J],1990,26(5):1397
    208. J. W. Christian. The theory of Transformation in Metals and Alloy[M], Ed. Pergamon Press, Oxford.1975
    209. H. E. Kissinger. Variation of peak temperature with heating rate in differential thermal analysis[J], J. Res. Nat. Bur. St.,1956,57(4):217-221
    210.徐洲,赵连城.金属固态相变原理[M],北京:科学出版社,2004
    211. U. Koster, U. Herold. Glassy Metal I, Vol.46[M], New York:Springer-Verlag Berlin Heidelberg,1981
    212. E. Homer, H. E. Kissinger. Reaction kinetics in differential thermal analysis[J], Analytical Chemistry,1957,29(11):1702-1706
    213. I. Mat'ko, E. Illekova, P. Svec, P. Duhaj and C. K. zomorova. Local ordering model in Fe-Si-B amorphous alloys[J], Mater. Sci. and Eng.,1997, A226-228:280-284
    214. I. Mat'ko, E. Illekova, P. Svec and P. Duhaj. Crystallization characteristics in the Fe-Si-B glassy ribbon system[J], Mater. Sci. Eng.,1997, A225:145-152
    215. V. Ponnambalam, S. J. Poon. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter [J], Journal of Materials Research,2004,19(5):1320-1323
    216. J. Y. Bang, R. Y. Lee. Crystallization of metallic glass Fe78Si9B13[J], Mater. Sci.,1991, 26:4961-4965
    217.姜振春.Fe-Si-B非晶合金恒导磁性能的研究[D],沈阳:东北大学材料与冶金学院,2005
    218. U. Koster, U. Herold, H. G. Hillenbr et al. Crystallization kinetics in Fe-Si-B metallic glasses[J], Mater. Sci.Lett.,1980,15:2125-2129
    219. C. F. Chang, J. Marti. Crystallization of the metallic glass Fe80Si8B12[J], Mater. Sci., 1983,18:2297-2304
    220. G. Herzer, H. R. Hilzinger. Surface crystallization and magnetic properties in amorphous iron rich alloys[J], J. Magn. Magn. Mater.,1986,62:143-151
    221. V. R. V. Ramanan,G. E. Fish. Crystallization kinetics in Fe-B-Si metallic glasses[J], J. Appl. Phys.,1982,53(3):2273-2275
    222. C. A. C. Souza, F. S. Oliti, C. S. Kiminami. Influence of structural relaxation and partial devitrification of the corrosion resistance of Fe78Si9B13 amorphous alloys[J], Scripta Mater.1998,39:329-334
    223. Y. Takahara. Irreversible structural relaxation in Fe-Si-B amorphous alloys[J], Mater. Sci. Eng.,1997, A231:128-133
    224. M. Hasiak, W. H. Ciurzynska, Y. Yamashiro. Microstructure and some magnetic properties of amorphous and nanocrystalline Fe-Cu-Nb-Si-B alloys[J], Mater. Sci. Eng., 2000, A293:261-266
    225. C. H. Shek. X. D. Hu, G. M. Lin et al. Structural relaxation of residual amorphous matrix and modulus oscillation in nanocrystalline FeSiNbCuB ribbons[J], Nanostruc. Meter.,1999,11:1133-1140
    226. A. Houzali, F. Alves, J. C. Perron. Stress and structural relaxation in amorphous ribbons along dynamic current annealing[J], J. Magn. Magn. Mater,1996,160:291-292
    227. K. Hono, D. H. Ping, M. Ohnuma, H. Onodera. Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloys[J], Acta Mater, 1999,47:997-1006
    228. T. Kulik. Nanocrystallization of metallic glasses[J], J. Non-Cryst. Solids.,2001,287: 145-161
    229. J. M. Borrego, C. F. Conde, M. Millan A. Conde, M. J. Capitan et al. Nanocrystallization in Fe73.5Si13.5B9Nb1Cu1X2(X=Nb,Mo and V) alloys studied by X-ray synchrotron radiation[J], Nanostr. Mater.,1998,10:575-583
    230. L. F. Barquin, J. C. Gomez Sal, P. Gorria, J. S. Garitaonandia, J. M. Barandiaran. Crystal structure and magnetic behavior of nanocrystalline Fe-Nb-Cu-Si-B alloys studied by means of in situ neutron diffraction[J], J. Phys.:Condens. Mater.,199,109: 5027-5038
    231. M. Knobel, R. Sato Turtelli, H. R. Rechenberg. Compositional evolution and magnetic properties of nanocrystalline Fe73.5Cu1Nb3Si13.5B9[J], J Appl. Phys,1992,71:6008-6012
    232. M. E. Mchenry, M. A. Willard, D. E. Laughlin. Amorphous and nanocrystalline materials for application as soft magnets[J], Progress in Mater. Sci.,1999,44:291-313
    233.冯端.金属物理学,第二卷,相变[M],北京:科学出版社,2000,116
    234.牛玉超Fe-Si-B非晶态合金结构演变及其流变行为的研究[D],济南:山东大学,2006
    235. R. W. Chan. P.Haasen. Physical Metallurgy[M]. Amsterdam:North-Hoiiand,1983
    236. F. E. Luborsky, H. H. Liebermann. Crystallization kinetics of Fe-B amorphous alloys[J], J Appl. Phys. Lett.,1978,33:233-234
    237. J. S. Garitaonandia, P. Gorria, L. Fernandez Barquin et al. Low-temperature magnetic properties of Fe nanograins in an amorphous Fe-Zr-B matrix[J], Phts. Rev. Lett.,2000, 61:6150-6155
    238. T. A. Donnelly, D. G. Fisher, R. B. Murray et al. Electron and proton irradiation effects in amorphous Fe-Ni-P-B alloys[J], J Appl. Phys.,1982,53:7801-7803
    239. Y. J. Liu, T. H. Cang. The correlation of microstructural development and thermal stability of mechanically alloyed muticomponent Fe-Co-Ni-Zr-B alloys[J], Acta Mater, 2002,50:2747-2760
    240. Z. Hu, Y. Fan, Y. Wu et al.. Study on Fe-P-B ultrafine amorphous alloys particles[J], J. Magn. Magn. Mater,1995,140-144:413-414
    241. H. Sakamoto, T. Yamada, N. Okumura et al.. Improvement in brittleness of amorphous Fe-Si-B-C alloys ribbons by controlling casting conditions[J], Mater. Sci. Eng.,1996, A206:150-153
    242. R. S. de Biasi, M. L. N. Grillo. FMR study of crystallization in the amorphous alloys Fe67Coi8B14Si1(Metglas2605CO) [J], J. Alloy Compd,1998,279:233-236
    243. K LU, J T Wang, W T Wang et al. A new method for synthesizing nanocrystalline alloys[J]. J Appl Phys,1991,69:522.
    244.黄剑,严彪,杨磊.铁基纳米晶合金的高频磁性能研究[J],上海有色金属,2005,26(3):114-117
    245.卢柯,王景唐,董林.用TEM研究非晶态Ni-P合金薄膜原位加热时的动态晶化过程[J],金属学报,1991,29:B31.
    246.陈庆军,范洪波,孙剑飞,沈军等.Fe2Co2Ni2Zr2Mo2W2B块体非晶合金的玻璃形成能力与热稳定性[J],中国有色金属学报,2005,15(10):1555-1559.
    247. A. Datta et al. Proc.4th Int.Conf.On Rapidly Quenched Metals, Eds. I. Masumoto and K.Suzuki, Japan Institute of Metals (sendai,1981),1007.
    248. R. Hasegawa, R.V. Ramanan, G.E. Fish, J.Appl. phys.1982,153:2276
    249.晁月盛,李明扬,耿岩.铁基非晶的低频脉冲磁场处理效应[J],物理学报,2004,53(10):3453-3456
    250.晁月盛,张艳辉,郭红等.低频磁脉冲处理Fe78Si9B13非晶合金的低温纳米晶化[J],金属学报,2007,43(3):231-234
    251.张艳辉,晁月盛.低频脉冲磁场处理Fe78Si9B13非晶合金的微观结构和磁性[J],稀有金属材料与工程,2007,36(8):1469-1472
    252.周铁军,王敦辉,章建荣.机械合金化Fe-Si合金的微结构与磁性[J],物理学报,1997,46(11):2250-2257
    253.吕俊,陈晓虎,陈晓闽等. Fe-Zr-B非晶合金的机械合金化制备与非晶化机制研究[J],金属功能材料,2006,13(2):6-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700