用户名: 密码: 验证码:
后交叉韧带功能分束及其断裂对内侧胫骨平台影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各项体育竞技事业和交通运输业的发展,膝关节的运动伤和车祸伤不断增多。后交叉韧带(posterior cruciate ligament,PCL)作为膝关节最主要的后向稳定结构,其损伤的发生率也呈增高趋势,且其中相当部分损伤为PCL部分损伤。临床研究表明PCL损伤后胫股关节内侧间室软骨退变的发生率较高,然而其退变的具体机制尚不明确。为生物力学因素所致,还是生物学因素所致,或是生物力学因素和生物学因素的共同作用所致?这些因素作用的具体机制如何?PCL部分损伤对胫股关节内侧间室的软骨又有何影响?这些问题的解决将为临床PCL损伤治疗方案的确定和PCL损伤后软骨退变的防治提供理论依据。同时,临床上还发现PCL重建的失败率较高,其中一个很重要的原因就是由于移植物应力集中而导致移植物失效。因此,很多学者致力于PCL各纤维束的解剖和功能研究。关于PCL的解剖分束,目前很多学者认识到PCL是一个纤维连续体,并不是由形态学上独立的纤维束组成。因此,PCL各纤维束的功能研究成为了当前研究的热点,但目前大部分研究仍局限于对PCL各纤维束的大体张力模式观察或PCL纤维束起止点距离的测量,不能反映各纤维应变的精细变化,且对膝关节的生理结构破坏比较大。因此,很有必要设计一种对膝关节结构破坏比较小,而又能反映PCL各纤维束精细功能变化的实验方法,以了解PCL各纤维束的力学行为。
     本研究拟应用自行设计的电阻应变片,采用微侵袭的方法将其置入膝关节PCL起止点各纤维束表面,对PCL各纤维束的应变变化进行测量并结合聚类分析统计学方法进行功能分束;采用生物力学测试方法,观察PCL完全断裂或部分断裂对内侧胫骨平台前部、中部和后部的应变变化影响。同时本研究将从组织学和分子生物学的角度对PCL断裂后内侧胫骨平台软骨的组织学改变及MMP-13和TIMP-1的表达变化进行研究,以探讨PCL断裂后是否会导致内侧胫骨平台软骨退变及其可能的发生机制。
     目的通过测量后交叉韧带各束在膝关节屈伸过程中的生物力学变化,探讨其相应的功能及分类,为后续实验及临床工作提供理论依据。
     方法12具新鲜成人尸体膝关节标本,依据PCL在膝关节中的空间位置将PCL分为:前内侧区纤维束(前内侧束)、前外侧区纤维束(前外侧束)、后内侧区纤维束(后内侧束)、后外侧区纤维束(后外侧束)。在膝关节标本上施加1000N轴向载荷下,分别测试膝关节0°、30°、60°、90°状态下PCL各纤维束应变。比较各束应变的差异,采用样品聚类方法进行分类。
     结果1.膝关节0°位,后内侧束、后外侧束应变明显大于前内侧束和前外侧束,差异有显著性,p<0.05;后内侧束与后外侧束应变无显著性差异,p>0.05;前内侧束与前外侧束无显著性差异,p>0.05。膝关节300位、60°位和90°位时,前外侧束、前内侧束应变大于后外侧束、后内侧束,差异有显著性,p<0.05;前外侧束与前内侧束应变无显著性差异,p>0.05;后外侧束与后内侧束无显著性差异,p>0.05。2.前内侧束和前外侧束应变变化一致,依序0°、30°、60°、90°逐渐增大,均有显著性差异,均P<0.05;后内侧束应变在膝关节0°最大,其次为90°位,再其次为60°位,30°位最小,0°与30°之间应变有显著性,p<0.05;30°与90°之间应变有显著性,p<0.05,其余各角度之间差异无显著差异,p>0.05。后外侧束应变在膝关节0°、30°、60°、90°位均无显著性差异,均p>0.05。
     3.聚类分析:前内侧束与前外侧束归为一类,后内侧束与后外侧束归为一类。
     结论1.PCL止点各区纤维束在膝关节屈伸过程中始终处于张力状态;
     2.膝伸直位(0°)前内侧区纤维束和前外侧区纤维束应变小于后内侧区纤维束和后外侧区纤维束,屈曲位(30°、60°、90°)时大于后内侧区纤维束和后外侧区纤维束,说明前内侧区纤维束和前外侧区纤维束主要维持膝关节屈曲稳定性,后内侧区纤维束和后外侧区纤维束主要维持膝关节伸直稳定性;
     3.屈膝0°至90°前内侧区纤维束和前外侧区纤维束应变变化较大,而后外侧区纤维束应变无明显变化。
     4.前内侧区纤维束和前外侧区纤维束聚为一类;后内侧区纤维束和后外侧区纤维束聚为一类。
     5.根据上述PCL止点各区纤维束的生物力学特点和聚类分析结果,提示PCL分为前、后两束较为合适。结合两束在PCL股骨止点一内一外的解剖特点将其分别定义为前外侧束和后内侧束。
     目的探讨PCL部分断裂和完全断裂对膝关节内侧胫骨平台的生物力学影响,为PCL损伤后继发骨关节炎的防治提供理论依据。方法新鲜成人尸体膝关节标本12具,依照测试先后顺序分为PCL完整组、ALB切断组、PMB切断组和PCL完全切断组。在膝关节标本上施加0-1000N轴向载荷,分别测量各组膝关节0°、30°、60°、90°位,内侧胫骨平台前、中、后各部的应变,比较各组应变的差异。实验数据采用SPSS17.0统计软件进行统计学分析,检验水准α=0.05。
     结果(1)0°位:①各级载荷下内侧胫骨平台前、中、后部均为压应变。②200N、400N载荷下,在前、中、后各部,PCL完整组和ALB切断组应变无明显差异,p>0.05;PMB切断组和全断组应变无明显差异,p>0.05。在前部和中部,PMB切断组和全断组应变绝对值明显大于PCL完整组和ALB切断组,p<0.05。而在后部,PMB切断组和全断组应变绝对值明显小于PCL完整组和ALB切断组,p<0.05。③600N、800N和1000N载荷下,在前、中、后各部,ALB切断组、PMB切断组和全断组之间应变无明显差异,p>0.05。在前部和中部,ALB切断组、PMB切断组和全断组应变绝对值均明显大于PCL完整组,p<0.05。在后部,ALB切断组、PMB切断组和全断组应变绝对值明显小于PCL完整组,p<0.05。
     (2)30°位:①各级载荷下内侧胫骨平台前、中、后各部均为压应变。②200N、400N载荷下,在前、中、后各部,PCL完整组、ALB切断组和PMB切断组之间应变无明显差异,p>0.05。在前部和中部,PCL完整组、ALB切断组和PMB切断组的应变绝对值明显小于全断组,p<0.05。在后部,PCL完整组、ALB切断组和PMB切断组的应变绝对值明显大于全断组,p<0.05。③600N、800N和1000N载荷下,在前、中、后各部,PCL完整组和PMB切断组应变无明显差异,p>0.05;ALB切断组和全断组应变无明显差异,p>0.05。在前部和中部,PCL完整组和PMB切断组的应变绝对值明显小于ALB切断组和全断组,p<0.05。在后部,PCL完整组和PMB切断组的应变绝对值明显大于ALB切断组和全断组,p<0.05。
     (3)60°和90°位:①各级载荷下内侧胫骨平台前部为拉伸应变,中、后部均为压应变。②200N、400N载荷下,在前、中、后各部,PCL完整组、ALB切断组和PMB切断组应变无明显差异,p>0.05。在前部和后部,PCL完整组、ALB切断组和PMB切断组应变绝对值均明显大于全断组,p<0.05;在中部,PCL完整组、ALB切断组和PMB切断组应变绝对值明显小于全断组,p<0.05;③600N、800N和1000N载荷下,在前、中、后各部,PCL完整组和PMB切断组应变无明显差异,p>0.05;ALB切断组和PCL全断组应变无明显差异,p>0.05。在前部和后部,PCL完整组和PMB切断组的应变绝对值明显大于ALB切断组和全断组,p<0.05。在中部,PCL完整组和PMB切断组的应变绝对值明显小于ALB切断组和全断组,p<0.05。
     结论(1)在不同载荷和角度下,PCL完全断裂对内侧胫骨平台前部、中部和后部的应变均有影响。(2)200N、400N载荷下,在伸直位ALB断裂对内侧胫骨平台各部的应变无影响,PMB断裂对内侧胫骨平台各部的应变均有影响,在屈曲位(30°、60°、90°)单纯ALB或PMB断裂对内侧胫骨平台各部的应变均无影响,提示在小载荷下伸直位PMB起稳定作用,而在屈曲位ALB和PMB均有稳定作用。(3)600N、800N和1000N载荷下,PMB断裂在所有角度(0°、30°、60°、90°)对内侧胫骨平台各部的应变均无影响;ALB断裂在膝关节伸直位对内侧胫骨平台各部的应变均无影响,在屈曲位(30°、60°、90°)对内侧胫骨平台的应变均有影响,提示在大载荷下PMB稳定作用较小,ALB主要在屈曲位起稳定作用,在伸直位稳定作用较小
     目的研究兔后交叉韧带断裂后不同时期内侧胫骨平台软骨组织结构的变化及MMP-13和TIMP-1的表达,探讨后交叉韧带断裂后内侧胫骨平台关节软骨退变的生物学机制。
     方法48只雄性家兔随机分为四组,行后腿单侧PCL切断,对侧假手术自身对照。分别于造模4、8、16、24周各处死12只。观察内侧胫骨平台大体形态变化,取内侧胫骨平台软骨行HE染色、甲苯胺蓝染色和免疫组化检测MMP-13和TIMP-1的表达。
     结果1.大体观察:在四个时间观测点上,实验组内侧胫骨平台软骨逐渐出现色泽改变、表面磨损、龟裂、溃疡及骨赘形成。2.HE染色和甲苯胺蓝染色:自第8周开始出现软骨表层不光滑、软骨细胞排列紊乱、软骨细胞增生肥大、基质染色不均等异常;从第4周至24周,实验组内侧胫骨平台软骨的Mankin评分随着时间推移而逐渐增高,各时间点间比较均有显著差异,p<0.05。3. MMP-13表达情况:实验组第4、8、16、24周MMP-13表达均明显高于对照组,p<0.05。对照组第4、8、16、24周之间MMP-13表达均无显著性差异,p>0.05。实验组第4、8、16、24周之间比较MMP-13表达均有显著性差异,p<0.05;且第4周最低,第8周最高,从第4周至24周,MMP-13表达呈先增高后降低趋势。4. TIMP-1表达情况:实验组第4、8、16周TIMP-1表达均高于对照组,均有显著性差异,P<0.05;第24周实验组与对照组TIMP-1表达无显著差异,P>0.05。对照组第4、8、16、24周之间比较TIMP-1表达均无显著性差异,P>0.05。实验组第8周和16周之间TIMP-1表达无显著性差异,P>0.05;其它各组之间均存在显著性差异,P<0.05;且第24周最低,第8周和第16周最高。
     结论(1)PCL断裂后可导致内侧胫骨平台的软骨退变。(2)PCL断裂后MMP-13和TIMP-1表达增高,提示MMP-13和TIMP-1可能在软骨退变中起重要作用。
Along with the development of sports and communication, the incidence of injury of posterior cruciate ligaments (PCL) increases, of which a considerable portion are partial injury of PCL.Clinical results manifest that the incidence of catilage degeneration in the medial chamber of tibiofemoral joint is higher than normal, however, the machanism is unclear. It may be explained by a biomechanical mechanism or a biological one or both of them together.It is also unknown how the biomechanical mechanism or the biological mechanism act or whether partial injury of PCL could influence the catilage degeneration in the medial chamber of tibiofemoral joint.It is urgent to solve these questions so as to provide theoretical evidence for making proper plans for PCL injury and how to prevent catilage degeneration after PCL injury.Meanwhile,clinical data also shows that the PCL reconstruction has a high failure rate owing to the graft's stress concentration.Therefore, many researchers pay attention to the anatomy and function of PCL fiber bundles,but a lot of experts begin to realize that the PCL is not made of completely separate fiber bundles, but a fiber continuum, therefore,the functional research of PCL fiber becomes the hot spot.however,most of the contemporary research on the functional research of PCL fiber is through the gross observation of the tension mode of PCL fiber bundles or the measurement of distance between the insertions of each PCL fiber bundes, which can not reflect the subtle functional change of PCL fiber bundes or cause much damage to the anatomical structure of the knee.So it is necessary to design a experiment that can reflect the subtle functional change of PCL fiber bundes and destroy PCL and other structures of the knee as less as possible.
     In our research the strain gages designed by ourselves would be placed on the surface of each PCL fiber bundle to measure the strain change on each fiber bundle.Then the data would be analysed by cluster analysis to classify the fiber bundles.Furthermore,we will measure the strain on the anterior,middle and posterior parts of the medial tibial plateau after cutting the partial or whole PCL. Meanwhile, the histological change and expression of MMP-13 and TIMP-1 in the medial tibial plateau cartilage of rabbits would be studied by HE staining, toluidine blue staining and immunohistochemical methods.
     Objective:To investigate the biomechanical function and intrinsic correlation of the PCL bundles in order to provide biomechanical evidence for the later experimental research and clinical therapy.
     Methods:12 fresh cadaveric knees from adult human beings were used. Selected the bilateral anterior part of the PCL femoral insertion and the bilateral posterior part of the PCL tibial insertion as the measurement parts which respectively correspond to:anteromedial area fiber bundle (anteromedial bundle)、anterolateral area fiber bundle (anterolateral bundle)、posteromedial area bundle (posteromedial bundle) and posterolateral area bundle (posterolateral bundle). The strain on the PCL bundles was measured when the knees were applied with 1000N axial loading force in 0°、30°、60°、90°positions. The bundles were functional classified by cluster analysis.
     Results:1.In 0°position, the strain on the posteromedial and posterolateral bundles was significantly larger than the anteromedial and anterolateral bundles (P<0.05), while there was no significant difference between the posteromedial and posterolateral bundles (P>0.05) and so did the anteromedial and anterolateral bundles (P>0.05); In 30°、60°nd 90°position, the strain on the anteromedial and anterolateral bundles was significantly larger than the posteromedial and posterolateral bundles (P<0.05), while there was no significant difference between the anteromedial and anterolateral bundles (P>0.05) and so did the posteromedial and posterolateral bundles (P>0.05).2.The strain on the anteromedial and anterolateral bundles gradually increased by degrees as the knee flexed from 0°to 90°and all the difference were significant (P <0.05). The strain on the posteromedial bundle was largest in 0°position while smallest in 30°position and the difference between 0°and 30°position were significan (P<0.05);The strain in 90°position was larger than in 30°position and the differences were significant (P<0.05); There were no significant differences between the strain of any other two positions (P>0.05). There were no significant changes of the strain on the posterolateral bundle among different angles (P>0.05).3.Cluster analysis classfied the anteromedial and anterolateral bundle as one class and the posteromedial and posterolateral bundles as the other class.
     Conclusion:1.A11 the four area fiber bundles of PCL maintain certain tension during the whole range of motion.
     2. The posteromedial and posterolateral area bundles mainly maintain stability of the knee in extended positions while the anteromedial and anterolateral area fiber bundles mainly maintain stability of the knee in flexed positions.
     3. The strain on the anteromedial and anterolateral area fiber bundles vary drastically while strain on posterolateral area bundles change littlely during the whole range of motion.
     4. Cluster analysis classfied the anteromedial and anterolateral bundle as one class and the posteromedial and posterolateral bundles as the other class.
     5.With Combined consideration of the biomechanical property, cluster analysis results and the relative position at the femoral insertion of the four area fiber bundles of PCL,PCL may be classified into the anterolateral functional fiber bundle and the posteromedial functional fiber bundle.
     Objective:To investigate the biomechanical influences of partial and total PCL rupture on the medial tibial plateau and provide theoretic evidence for prevention and cure of osteoarthritis.
     Methods:12 fresh cadaveric knees from adult human beings were divided into PCL intact group(12 samples)、ALB broken group(6 samples)、PMB broken group(6 samples) and PCL totally broken group(6 samples). The knees were applied with 0-1000N axial loading force when they flexed to 0°、30°、60°、and 90°.The strain on the anterior, middle and posterior part of the medial tibial plateau were respectively measured and analysed.
     Results:1. In 0°position:①Strain on the anterior,middle and posterior parts were all compressive.②With 200N and 400N axial loading, on all the anterior,middle and posterior parts,strain between PCL intact group and ALB broken group and strain between PMB broken group and PCL totally broken group were neither significantly different(P>0.05),while the absolute value of strain in PMB broken group and PCL totally broken group were significantly larger than PCL intact group and ALB broken group on the anterior and middle parts(P<0.05) and were significantly smaller than PCL intact group and ALB broken group on the posterior part(P<0.05).③With 600N、800N and 1000N axial loading, on all the anterior,middle and posterior parts, the differences among ALB broken group, PMB broken group and PCL totally broken group were not significant(P>0.05),while the absolute value of strain in all these three groups were significantly larger than PCL intact group on the anterior and middle parts (P<0.05) and were significantly smaller than PCL intact group on the posterior part(P<0.05).
     2. In 30°position:①Strain on the anterior,middle and posterior parts were all compressive.②With 200N and 400N axial loading, on all the anterior,middle and posterior parts, the differences among PCL intact group,ALB broken group and PMB broken group were all not significant(P>0.05),while the absolute value of strain in all these three groups were significantly smaller than PCL totally broken group on the anterior and middle parts (P<0.05) and were significantly larger than PCL totally broken group on the posterior part(P<0.05).③With 600、800N and 1000N axial loading, on all the anterior,middle and posterior parts, strain between PCL intact group and PMB broken group and strain between ALB broken group and PCL totally broken group were neither significantly different(P>0.05), while the absolute value of strain in ALB broken group and PCL totally broken group were significantly larger than PCL intact group and PMB broken group on the anterior and middle parts (P<0.05) and were significantly smaller than PCL intact group and PMB broken group on the posterior parts(P<0.05).
     3.In 60°nd 90°positions:①Strain on the anterior part was tensile while strain on the middle and posteror parts were compressive.②With 200N and 400N axial loading, on all the anterior, middle and posterior parts, the differences among PCL intact group,ALB broken group and PMB broken group were all not significant(P>0.05),while the absolute value of strain in all these three groups were significantly larger than PCL totally broken group on the anterior and posterior parts (P<0.05) and were significantly smaller than PCL totally broken group on the middle part(P<0.05).③With 600N、800N and 1000N axial loading, on all the anterior,middle and posterior parts, strain between PCL intact group and PMB broken group and strain between ALB broken group and PCL totally broken group were neither significantly different(P>0.05), while the absolute value of strain in ALB broken group and PCL totally broken group were significantly smaller than PCL intact group and PMB broken group on the anterior and posterior parts (P<0.05) and were significantly larger than PCL intact group and PMB broken group on the middle parts(P<0.05).
     Conclusion:1.PCL total rupture may cause abnormal load on all parts of the medial tibial plateau with any axial loading in all the positions.
     2.With 200N and 400N axial loading, in extended positions ALB rupture may not cause abnormal load on any part of the medial tibial plateau,while PMB rupture may cause abnormal load on all parts of the medial tibial plateau;In flexed positions, neither ALB nor PMB isolated rupture may cause abnormal load on any part of the medial tibial plateau.It suggests that With low axial loading PMB act as the stabilizer in extended position, while in flexed positions both ALB and PMB play a role as the stabilizer.
     3. With 600N、800N and 1000N axial loading, PMB rupture may not cause abnormal load on any part of the medial tibial plateau in any position and ALB ruptre may not cause abnormal load on any part of the medial tibial plateau in extended position while cause abnormal load on all parts of the medial tibial plateau in flexed positions.It suggests that With large axial loading PMB play little stabilizing role in any position and ALB mainly act as a stabilizer in flexed positions.
     Objective:To explore whether PCL rupture could cause cartilage degenaration of medial tibial plateau and the biological mechanism for cartilage degenaration and further provide theoretical evidence for clinical diagnosis and therapy of osteoarthritis by studying changes in tissue structure and expression of MMP-13 and TIMP-1 in the medial tibial plateau cartilage after the PCL of rabbits were cut.
     Methods:48 male rabbits were randomly divided into four groups. All underwent unilateral PCL cut in posterior leg and the contralataral as the control randomly.HE staining, toluidine blue staining and immunohistochemical methods were carried out.Changes in tissue structure and expression of MMP-13 and TIMP-1 in the medial tibial plateau cartilage were observed and analyzed at 4、8、16、24 weeks after the PCL of rabbits were severed.
     Results:1.Gross observation:As the time went on, the color change,decreased gloss,the abrased surface and even ulcer and osteophyte occurred on medial tibial plateau cartilage.2.HE staining and toluidine blue staining:The rough surface,cell hypertrophy,cell hyperplasia,cell cluster,abnormal cell disposition and inequable staining occurred one after another since since 8 weeks after operation.Since 8 weeks the Mankin score of medial tibial plateau cartilage in experimental groups was significently higher than the control group(p<0.05). In experimental groups,the Mankin score increased continuously from 4 weeks to 24 weeks after operation and the difference was significant(p<0.05) while the Mankin score in contral group change little(P>0.05).3. MMP-13 expression:All the experimental groups had higher MMP-13 expression than that in control groups (P<0.05). In experimental groups, MMP-13 expressed significantly lower in 4-week group than that in 8、16、24-week groups (p<0.05) and expressed significantly higher in 8-week group than that in 4、16、24-week groups(p<0.05). There were no signifigant differences among the control groups (P>0.05).4. TIMP-1 expression:In 4、8、16-week groups the experimental groups had higher TIMP-1 expression than that in control groups (P<0.05) while in 24-week group there was no signifigant differences between the experimental group and the control group(P>0.05). In experimental groups, TIMP-1 expressed significantly lower in 24-week group than that in 4、8、16-week groups (p<0.05);There was no signifigant differences between 8-week group and 16-week group(P>0.05).TIMP-1 expressed significantly higher in 8-week group and 16-week group than that in 4、24-week groups (p<0.05). There were no signifigant differences among the control groups(P>0.05).
     Conclusion:1.PCL rupture may cause cartilage degeneration on the medial tibial plateau.
     2.The increased expression Of MMP-13 and TIMP-1 suggest that MMP-13 and TIMP-1 may participate in cartilage degeneration on the medial tibial plateau after PCL rupture.
引文
[1]Inderster A, Benedetto KP, Klestil T,et al. Fiber orientation of posterior cruciate ligament:an experimental morphological and functional study, Part 2. Clin Anat. 1995;8(5):315-322.
    [2]Makris CA, Georgoulis AD, Papageorgiou CD,et al. Posterior cruciate ligament architecture:evaluation under microsurgical dissection. Arthroscopy.2000 Sep;16(6):627-632.
    [3]Mommersteeg TJ, Kooloos JG, Blankevoort L, et al. The fibre bundle anatomy of human cruciate ligaments. J Anat.1995 Oct;187 (Pt 2):461-471.
    [4]Amis AA. Anatomy and biomechanics of the posterior cruciate ligament. Sports Med Arthrosc Rev,1999,7:225-234.
    [5]Covey DC, Sapega AA. Anatomy and function of the posterior cruciate ligament.Clin Sports Med.1994 Jul;13(3):509-518.
    [6]Girgis FG, Marshall JL, Monajem A.The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis.Clin Orthop 1975;(106):216-231.
    [7]Van Dommelen BA, Fowler PJ.Anatomy of the posterior cruciate ligament.A review. Am J Sports Med 1989;17(1):24-29.
    [8]Harner CD, Livesay GA, Kashiwaguchi S,et al.Comparative study of the size and shape of human anterior and posterior cruciate ligaments.J Orthop Res 1995;13(3):429-434.
    [9]Harner CD, Xerogeanes JW, Livesay GA, et al.The human posterior cruciate ligament complex:an interdisciplinary study.Ligament morphology and biomechanical evaluation. Am J Sports Med 1995;23(6):736-745.
    [10]高士濂.实用解剖图谱(下肢分册).第2版.上海:上海科学技术出版社,2004:180-219.
    [11]Baek GH, Carlin GJ, Vogrin TM,et al. Quantitative analysis of collagen fibrils of human cruciate and meniscofemoral ligaments. Clin Orthop Relat Res.1998 Dec;(357):205-211.
    [12]Harner CD, Baek GH, Vogrin TM,et al.Quantitative analysis of human cruciate ligament insertions.Arthr oscopy 1999;15(7):741-749.
    [13]Hughston JC, Bowden JA, Andrews JR, et al.Acute tears of the posterior cruciate ligament. Results of operative treatment. J Bone Joint Surg Am.1980 Apr;62(3):438-450.
    [14]Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech.1994;27:13-24.
    [15]Palmer I. On the injuries to the ligaments of the knee joint. Acta Orthop Scand Suppl,1938,5:283.
    [16]Van Dommelen BA, Fowler PJ.Anatomy of the posterior cruciate ligament.A review. Am J Sports Med,1989,17:24-29.
    [17]Rohrbough JT, Warren RF, WickiewiczT. Posterior Cruciate Ligament Reconstruction:Single-Versus Double-Bundle Technique.Techniques in Othopaedics,2001,16(2):119-126.
    [18]Chwaluk A, Ciszek B. Anatomy of the posterior cruciate ligament.Folia Morphol (Warsz).2009 Feb;68(1):8-12.
    [19]Harner CD, Baek GH, Vogrin TM, et al.Quantitative analysis of human cruciate ligament insertions.Arthroscopy.1999; 15:741-749.
    [20]Amis AA,Gupte GM,Bull AJ,et al. Anatomy of the posterior cruciate ligamentand the meniscofemoral ligaments.Knee Surg Sports Traumatol Arthrosc,2006,14:257-263.
    [21]刘平,敖英芳.膝关节后交叉韧带及板股韧带临床解剖学研究.中国运动医学杂志,2008,27(2):189-193.
    [22]Ahmad CS, Cohen ZA, Levine WN, et al. Codominance of the individual posterior cruciate ligament bundles. An analysis of bundle lengths and orientation. Am J Sports Med.2003 Mar-Apr;31(2):221-225.
    [23]Markolf KL, Feeley BT, Jackson SR, et al. Where should the femoral tunnel of a posterior cruciate ligament reconstruction be placed to best restore anteroposterior laxity and ligament forces? Am J Sports Med.2006 Apr; 34(4):604-611.
    [24]Mannor DA, Shearn JT, Grood ES,et al. Two-bundle posterior cruciate ligament reconstruction. An in vitro analysis of graft placement and tension. Am J Sports Med.2000 Nov-Dec;28(6):833-845.
    [25]Burns WC 2nd, Draganich LF, Pyevich M, et al. The effect of femoral tunnel position and graft tensioning technique on posterior laxity of the posterior cruciate ligament-reconstructed knee. Am J Sports Med.1995 Jul-Aug; 3(4):424-430.
    [26]Papannagari R, DeFrate LE, Nha KW, et al. Function of posterior cruciate ligament bundles during in vivo knee flexion. Am J Sports Med.2007;35: 1507-1512.
    [27]Li G, DeFrate LE, Sun H, et al. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med. 2004 Sep;32(6):1415-1420.
    [28]DeFrateL E,Gill TJ,Li G. In Vivo Function of the Posterior Cruciate Ligament During Weightbearing Knee Flexion. Am J Sports Med,2004:1923-1928.
    [29]国家体育总局群体司。2000年国民体质监测报告。北京:北京体育大学出版社,2000.
    [30]Covey DC, Sapega AA, Marshall RC. The effects of varied joint motion and loading conditions on posterior cruciate ligament fiber length behavior. Am J Sports Med.2004 Dec;32(8):1866-1872.
    [31]Harner CD, Janaushek MA, Kanamori A, et al. Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med. 2000 Mar-Apr;28(2):144-151.
    [32]Race A, Amis AA. PCL reconstruction. In vitro biomechanical comparison of 'isometric' versus single and double-bundled'anatomic' grafts. J Bone Joint Surg Br.1998 Jan;80(1):173-179.
    [33]Mannor DA, Shearn JT, Grood ES,et al. Two-bundle posterior cruciate ligament reconstruction. An in vitro analysis of graft placement and tension. Am J Sports Med,2000,28(6):833-845.
    [34]Burns WC 2nd, Draganich LF, Pyevich M, et al. The effect of femoral tunnel position and graft tensioning technique on posterior laxity of the posterior cruciate ligament-reconstructed knee. Am J Sports Med,1995,23(4):424-430.
    [35]Barber FA, Fanelli GC, Matthews LS, et al. The treatment of complete posterior cruciate ligament tears. Arthroscopy 2000,16(7):725-731.
    [36]Amis AA, Bull AMJ, Gupte CM, et al. Biomechanics of the PCL and related structures:posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 2003,11(5):271-281.
    [37]Harner CD, Hoher J. Evaluation and treatment of posterior cruciate ligament injuries.Am J Sports Med.1998;26(3):471-482.
    [38]冯明光,许维亚,徐长明等.中国人胫骨平台与半月板后倾角MRI测量.中国运动医学杂志,2006,25(4):388-390.
    [39]Matsuda S, Miura H, Nagamine R, et al. Posterior tibial slope in the normal and varus knee. Am J Knee Surg 1999;12:165-168.
    [40]曲广运,杨林海,张光辉等.胫骨后倾角解剖与放射学测量评价.中华骨科杂志,2000,20(4):210-211.
    [41]Giffin JR, Vogrin TM, Tarinelli DJ, et al. Effects of increasing tibial slope on the biomechanics of the knee. Presented at the 2001 meeting of the Orthopaedic Research Society. San Francisco, CA. February 2001.
    [42]Koo S,Alexander E J, Gold GE,et al. Morphological thickness in tibial and femoral cartilage are influenced by gait characteristics in healthy and osteoarthritic knees. In:Proceedings of the 2003 ASME Summer Conference, Miami, FL,2003.
    [43]王亦璁.膝关节外科的基础和临床.第1版.北京:人民卫生出版社,1999:37-58.
    [44]Stiehl JB,Dennis DA,Komistek RD,et al. In Vivo Kinematic Analysis of a Mobile Bearing Total Knee Prosthesis. Clin Orthop Relat Res,1997,345:60-66.
    [45]DeFrate LE,Sun H,Wuerz TH,et al. In-vivo tibiofemoral joint kinematics during weightbearing flexion.50th Annual Meeting of the Orthopaedic Research Society. Poster No:1248.
    [46]Grood ES, Stowers SF, Noyes FR. Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures. J Bone Joint Surg Am.1988 Jan;70(1):88-97.
    [47]Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 1980;62A:259-270.
    [48]Gollehon DL, Torzilli PA, Warren RF. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J Bone Joint Surg Am 1987;69A:233-242.
    [49]Veltri DM, Deng X-H, Torzilli PA,et al. The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study. Am J Sports Med 1995;23:436-443.
    [50]Covey DC, Sapega AA, Riffenburgh RH. The effects of sequential sectioning of defined posterior cruciate ligament fiber regions on translational knee motion.Am J Sports Med.2008 Mar; 36(3):480-486.
    [51]Kumagai M, Mizuno Y, Mattessich SM, et al. Posterior cruciate ligament rupture alters in vitro knee kinematics. Clin Orthop Relat Res.2002 Feb;(395):241-248.
    [52]Gill TJ, DeFrate LE, Wang C,et al. The biomechanical effect of posterior cruciate ligament reconstruction on knee joint function. Kinematic response to simulated muscle loads. Am J Sports Med.2003 Jul-Aug;31(4):530-536.
    [53]MacDonald P, Miniaci A, Fowler P,et al. A biomechanical analysis of joint contact forces in the posterior cruciate deficient knee. Knee Surg Sports Traumatol Arthrosc.1996;3(4):252-255.
    [54]Skyhar MJ, Warren RF, Ortiz GJ,et al. The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee. J Bone Joint Surg Am.1993 May;75(5):694-699.
    [55]Van de Velde SK, Bingham JT, Gill TJ,et al. Analysis of tibiofemoral cartilage deformation in the posterior cruciate ligament-deficient knee. J Bone Joint Surg Am.2009 Jan;91(1):167-175.
    [56]Ramaniraka NA, Terrier A, Theumann N, et al. Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint:a finite element analysis. Clin Biomech (Bristol, Avon).2005 May;20(4):434-442
    [57]Van Dommelen BA, Fowler PJ.Anatomy of the posterior cruciate ligament.A review. Am J Sports Med 1989;17(1):24-29.
    [58]Bergfeld JA, Graham SM, Parker RD, et al. A biomechanical comparison of posterior cruciate ligament reconstructions using single-and double-bundle tibial inlay techniques. Am J Sports Med.2005 Jul;33(7):976-981.
    [59]Smith RL, Donlon BS,Gupta MK,et al. Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res,1995,13:824-831.
    [60]Smith RL, Lin J,Trindade MC,Shida J,et al.Time-dependent effects of intermittent hydrostatic pressure on articular chondrocyte type Ⅱ collagen and aggrecan mRNA expression. J Rehabil Res Dev,2000,37:153-161.
    [61]Carter DR,Beaupre GS,Giori NJ,et al. Mechanobiology of skeletal regeneration. Clin Orthop.1998,355(Suppl.):S41-S55.
    [62]Wu JZ, Herzog W,Epstein M. Joint contact mechanics in early stages of osteoarthritis. Med. Eng. Phys,2000,22:1-12.
    [63]Andriacchi TP,Mundermann A,Smith RL et al.A framework for the in vivopathomechanics of osteoarthritis at the knee. Annals of Biomedical Engineering,32(3),2004:447-457.
    [64]Hyttinen MM, Arokoski JP, ParkkinenJJ,et al.Age matters:Collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading. Osteoarthritis Cartilage,2001,9:694-701.
    [65]Kumar P, Oka M, Toguchida J,et al.Role of uppermost superficial surface layer of articular cartilage in the lubrication mechanism of joints. J. Anat,2001, 199:241-250.
    [66]Maniwa S, Nishikori T,Furukawa S,et al. Alteration of collagen network and negative charge of articular cartilage surface in the early stage of experimental osteoarthritis. Arch Orthop. Trauma Surg,2001,121:181-185.
    [67]Forster H,Fisher J. The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc. Inst. Mech. Eng. [H],1999 213:329-345.
    [68]Smith RL, Trindade MC, Ikenoue T,et al. Effects of shear stress on articular chondrocyte metabolism. Biorheology,2000,37:95-107.
    [69]Das P, Schurman DJ, Smith RL. Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J. Orthop. Res,1997,15:87-93.
    [70]-Fujisawa-T, Hattori T, Takahashi K,et al.Cyclic mechanical stress-induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J. Biochem.(Tokyo),1999,125: 966-975.
    [71]Boynton MD, Tietjens BR. Long-term followup of the untreated isolated posterior cruciate ligament-deficient knee. Am J Sports Med.1996 May-Jun; 24(3):306-310
    [72]Strobel MJ, Weiler A, Schulz MS, et al. Arthroscopic evaluation of articular cartilage lesions in posterior-cruciate-ligament-deficient knees. Arthroscopy. 2003 Mar;19(3):262-268.
    [73]焦晨,于长隆,敖英芳.单纯后交叉韧带断裂继发关节内损伤的临床研究.中国运动医学杂志,2003,22(4):337-343.
    [74]刘万里,薛茜,曹明芹等.用SPSS实现完全随机设计多组比较秩和检验的多重比较.地方病通报,2007,22(2):27-29.
    [75]Mankin HJ,Dorfman H, Lipiell O,et al.Biomechanical and metabolic abnormalities in articular cartilage from osteoarthritis in human hips.J Bone Joint Surg,1971,53A:523-530.
    [76]Joseph AB等主编.陈启明等主译.骨科基础科学-骨关节肌肉系统生物学和生物力学.第2版.北京:人民卫生出版社,2001:382-406.
    [77]Lorenz H, Richter W. Osteoarthritis:Cellular and molecular changes in
    degenerating cartilage. Progress in Histochemistry and Cytochemistry, 2006,40:135-163.
    [78]Swoboda B. Epidemiological arthrosis research. Orthopade,2001;30(11):834-840.
    [79]孙永生,娄思权.骨性关节炎发病分子机制研究进展.中国骨与关节损伤杂志,2005,20(8):571-573.
    [80]Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction:cell biology of osteoarthritis. Arthritis Res 2001;3(2):107-113.
    [81]Murphy QKnauper V,Atkinson, et al. Matrix metalloproteinases in arthritic disease. Arthritis Res,2002,4(Suppl3):39-49.
    [82]董刚,周辉.金属蛋白酶在骨关节炎软骨内环境中的表达与调控.中国骨伤,2009,22(2):156-159.
    [83]Freije JMP, Diez-Itza I, Balbin M, et al. Molecular cloning and expression ofcollagenase-3,a noval human matrix Metalloproteinase produced by breast carcinomas.J Biol Chem,1994,269:16766-16773.
    [84]Mitchell PG, Magna HA, Reeves LM, et al. Cloning, expression, and type Ⅱ collagenolytic activity of matrix Metalloproteinase-13 from human osteoarthritic cartilage. Clin Invest,1996,97:761-768
    [85]Reboul P,Pelletier JP, Tardif G, et al.The new collagenase,collagenase-3, is expressed and synthesized by human condrocyts but not by synoviocytes:A role in osteoarthritis.J Clin Invest,1996,97:2011-2019
    [86]Hulboy DL, Rudolph LA, Mstrisian LM. Matrix metalloproteinases as mediators of reproductive function.Molecular Human reproduction,1997,3(1): 27-45.
    [87]王健,敖英芳.后交叉韧带断裂继发关节软骨退行性变的实验研究.中国运动医学杂志,2004,23(5):476-479.
    [88]Myers SL, Brandt KD, O'Connor BL, er al.Synovitis and osteoarthtitic change in canine articular cartilage after anterior cruciate ligament transaction-effect of surgical hemostasis. Arthritis Rheum,1990,33:1406.
    [89]乔长峰,杨开舜MMP-13. TIMP-1在兔骨关节炎模型中的表达及其意义.中国现代医生,2009,49(3):39-41.
    [90]吴宏斌,杜靖远,胡勇等.兔前交叉韧带切断骨关节炎模型中MMP-1、MMP-13及TIMP-1 mRNA表达研究.中华风湿病学杂志,2002,6(3):169-173.
    [91]Bluteau G, Conrozier T, Mathieu P,et al. Matrix metalloproteinase-1,-3,-13 and aggrecanase-1 and-2 are differentially expressed in experimental osteoarthritis. BiochimBiophys Acta 2001; 1526(2):147-158.
    [92]Tchetina EV, Squires G, Poole AR. Increased type Ⅱ collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte-differentiation related genes in earlyhuman articular cartilage lesions. J Rheumatol 2005;32(5):876-886.
    [93]Bluteau G, Gouttenoire J, Conrozier T, et al. Differential gene expression analysis in a rabbit model of osteoarthritis induced by anterior cruciate ligament (ACL)section. Biorheology 2002;39(1-2):247-258.
    [94]Wu W, Billinghurst RC, Pidoux Ⅰ, et al. Sites of collagenase cleavage and denaturation of type Ⅱ collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum 2002;46(8):2087-2094.
    [95]Pelletier JP, Mineau F, Faure MP,et al. Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum,1990;33(10):1466-1476.
    [1]Barber FA, Fanelli GC, Matthews LS, et al. The treatment of complete posterior cruciate ligament tears. Arthroscopy 2000,16(7):725-731.
    [2]Amis AA, Bull AMJ, Gupte CM, et al. Biomechanics of the PCL and related structures:posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc 2003,11(5):271-281.
    [3]Harner CD, Hoher J. Evaluation and treatment of posterior cruciate ligament injuries. Am J Sports Med.1998;26(3):471-482.
    [4]Van Dommelen BA, Fowler_PJ.Anatomy of the posterior cruciate ligament.A review. Am J Sports Med 1989;17(1):24-29.
    [5]Girgis FG, Marshall JL, Monajem A.The cruciate ligaments of the knee joint.Anatomical, functional and experimental analysis.Clin Orthop 1975; (106): 216-231.
    [6]Harner CD, Livesay GA, Kashiwaguchi S,et al.Comparative study of the size and shape of human anterior and posterior cruciate ligaments.J Orthop Res 1995;13(3):429-434.
    [7]Harner CD, Xerogeanes JW, Livesay GA, et al.The human posterior cruciate ligament complex:an interdisciplinary study.Ligament morphology and biomechanical evaluation.Am J Sports Med 1995;23(6):736-745.
    [8]高士濂.实用解剖图谱(下肢分册).第2版.上海:上海科学技术出版社,2004,180-181.
    [9]Baek GH, Carlin GJ, Vogrin TM,et al. Quantitative analysis of collagen fibrils of human cruciate and meniscofemoral ligaments. Clin Orthop Relat Res.1998 Dec;(357):205-211.
    [10]Harner CD, Baek GH, Vogrin TM,et al.Quantitative analysis of human cruciate ligament insertions.Arthr oscopy 1999; 15(7):741-749.
    [11]Moorman CT 3rd, Murphy Zane MS, Bansai S,et al. Tibial insertion of the posterior cruciate ligament:a sagittal plane analysis using gross, histologic, and radiographic methods.Arthroscopy.2008 Mar;24(3):269-275.
    [12]Ramos LA, de Carvalho RT, Cohen M, et al.Anatomic relation between the posterior cruciate ligament and the joint capsule. Arthroscopy.2008 Dec;24(12):1367-1372.
    [13]Subit D, Masson C, Brunet C, et al. Microstructure of the ligament-to-bone attachment complex in the human knee joint. Mech Behav Biomed Mater.2008 Oct;1(4):360-367.
    [14]Yamamoto M,Hirohata K.Anatomical study on the menisco-femoral ligaments of the knee.Kobe J Med Sci1991,37:209-226.
    [15]Wan AC,Felle P.The menisco-femoral ligaments.Clin Anat,1995,8:323-326.
    [16]Amis AA, Gupte CM, Bull AM, et al. Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc.2006 Mar;14(3):257-263.
    [17]Nagasaki S, Ohkoshi Y, Yamamoto K, et al. The incidence and cross-sectional area of the meniscofemoral ligament. Am J Sports Med.2006 Aug;34(8):1345-1350.
    [18]Harner CD, Livesay GA, Kashiwaguchi S,et al.Comparative study of the size and shape of human anterior and posterior cruciate ligaments.J Orthop Res 1995;13(3):429-434.
    [19]Zemirline A, Gerard R, Uguen A,et al. Meniscoligamentous band between the posterior horn of the lateral meniscus and the anterior cruciate ligament: arthroscopic, anatomical and histological observations. Surg Radiol Anat.2009 Sep 25.
    [20]Gupte CM, Smith A, McDermott ID, et al. Meniscofemoral ligaments revisited: Anatomical study, age correlation and clinical implications. Journal of Bone and Joint Surgery,2002,84(6):846-851.
    [21]严广斌.膝关节后外侧复合体.中华关节外科杂志(电子版),2009,3(2):269.
    [22]Covey DC. Injuries of the Posterolateral Corner of the Knee.The Journal of Bone and Joint Surgery (American),2001,83:106.
    [23]Mariani PP, Becker R, Rihn J, et al. Surgical treatment of posterior cruciate ligament and posterolateral corner injuries.An anatomical, biomechanical and clinical review. The Knee,2003,10:311-324.
    [24]Seebacher JR, Inglis AE, Marshall JL,et al. The structure of the posterolateral aspect of the knee. J Bone Joint Surg Am.1982;64:536-541.
    [25]Cooper JM, McAndrews PT, LaPrade RF. Posterolateral corner injuries of the knee:anatomy, diagnosis, and treatment. Sports Med Arthrosc.2006 Dec;14(4):213-220.
    [26]Frank JB, Youm T, Meislin RJ, et al. Posterolateral corner injuries of the knee. Bull NYU Hosp Jt Dis.2007;65(2):106-114.
    [27]Hughston JC, Bowden JA, Andrews JR, et al.Acute tears of the posterior cruciate ligament. Results of operative treatment. J Bone Joint Surg Am.1980 Apr;62(3):438-450.
    [28]Race A, Amis AA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech.1994;27:13-24
    [29]Amis AA. Anatomy and biomechanics of the posterior cruciate ligament. Sports Med Arthrosc Rev,1999,7:225-234.
    [30]Girgis FG, Marshall JL, Al Monajem ARS. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop,1975, 106:216-231.
    [31]Palmer I. On the injuries to the ligaments of the knee joint. Acta Orthop Scand Suppl,1938,5:283.
    [32]Van Dommelen BA, Fowler PJ (1989).Anatomy of the posterior cruciate ligament.A review. Am J Sports Med,1989,17:24-29.
    [33]Covey DC, Sapega AA. Anatomy and function of the posterior cruciate ligament.Clin Sports Med.1994 Jul;13(3):509-518.
    [34]Rohrbough JT, Warren RF, Wickiewicz T. Posterior Cruciate Ligament Reconstruction:Single-Versus Double-Bundle Technique.Techniques in Othopaedics,2001,16(2):119-126.
    [35]Chwaluk A, Ciszek B. Anatomy of the posterior cruciate ligament.Folia Morphol (Warsz).2009 Feb;68(1):8-12.
    [36]Hughston JC, Bowden JA, Andrews JR, et al.Acute tears of the posterior cruciate ligament. Results of operative treatment. J Bone Joint Surg Am.1980 Apr;62(3):438-450.
    [37]Inderster A, Benedetto KP, Klestil T,et al. Fiber orientation of posterior cruciate ligament:an experimental morphological and functional study, Part 2. Clin Anat.1995;8(5):315-322.
    [38]Makris CA, Georgoulis AD, Papageorgiou CD,et al. Posterior cruciate ligament architecture:evaluation under microsurgical dissection. Arthroscopy.2000 Sep;16(6):627-632.
    [39]Mommersteeg TJ, Kooloos JG, Blankevoort L, et al. The fibre bundle anatomy of human cruciate ligaments. J Anat.1995 Oct;187 (Pt 2):461-471.
    [40]Trent PS, Walker PS, Wolf B.Ligament length patterns, strength, and rotational axes of the knee joint. Clin Orthop,1976,117:263-270.
    [41]Marinozzi G, Pappalardo S, Steindler R.Human knee ligaments:mechanical tests and ultrastructural observations.Ital J Orthop Traumatol,1983,9:231-240.
    [42]Kennedy JC, Hawkins RJ, Willis RB,et,al.Tension studiesof human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate and tibial collateral ligaments.J Bone Joint Surg Am,1976,58:350-355.
    [43]Prietto MP, Bain JR, Stonebrook SN, et al.Tensile strength of the human posterior cruciate ligament(PCL). Trans 34th Ann ORS,1988,13:195.
    [44]Butler DL, Kay MD, Stouffer DC(1986) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments.J Biomech 19:425-432.
    [45]权铁刚,罗民,高明等.膝关节后交叉韧带力学性质实验研究.试验技术与试验机.2006,3:9-11.
    [46]Hamer CD, Vogrin TM, Kanamori A, et al. Effects of axial compression on the function of the posterior cruciate ligament. Trans ORS 2000;25:780.
    [47]Ahmad CS, Cohen ZA, Levine WN, et al. Codominance of the individual posterior cruciate ligament bundles. An analysis of bundle lengths and orientation. Am J Sports Med.2003 Mar-Apr;31(2):221-225.
    [48]Papannagari R, DeFrate LE, Nha KW, et al. Function of posterior cruciate ligament bundles during in vivo knee flexion. Am J Sports Med. 2007;35:1507-1512.
    [49]Li G, DeFrate LE, Sun H, et al. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med. 2004 Sep;32(6):1415-1420.
    [50]Fox RJ, Harner CD, Sakane M,et al.Determination of the in situ forces in the human posterior cruciate ligament using robotic technology.A cadaveric study. Am J Sports Med 1998; 26(3):395-401.
    [51]Mauro CS, Sekiya JK, Stabile KJ,et al. Double-bundle PCL and posterolateral corner reconstruction components are codominant. Clin Orthop Relat Res.2008 Sep;466(9):2247-2254.
    [52]Covey DC, Sapega AA, Riffenburgh RH. The effects of sequential sectioning of defined posterior cruciate ligament fiber regions on translational knee motion.Am J Sports Med.2008 Mar; 36(3):480-486.
    [53]Grood ES, Stowers SF, Noyes FR. Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures. J Bone Joint Surg Am.1988 Jan;70(1):88-97.
    [54]Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 1980;62A:259-270.
    [55]Gollehon DL, Torzilli PA, Warren RF. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J Bone Joint Surg Am 1987;69A:233-242.
    [56]Veltri DM, Deng X-H, Torzilli PA, et al. The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study. Am J Sports Med 1995;23:436-443.
    [57]Fontbote CA, Sell TC, Laudner KG,et al. Neuromuscular and biomechanical adaptations of patients with isolated deficiency of the posterior cruciate ligament. Am J Sports Med.2005 Jul;33(7):982-989.
    [58]Kumagai M, Mizuno Y, Mattessich SM, et al. Posterior cruciate ligament rupture alters in vitro knee kinematics. Clin Orthop Relat Res.2002 Feb;(395):241-248.
    [59]Gill TJ, DeFrate LE, Wang C,et al. The biomechanical effect of posterior cruciate ligament reconstruction on knee joint function. Kinematic response to simulated muscle loads. Am J Sports Med.2003 Jul-Aug;31(4):530-536.
    [60]Kozanek M, Fu EC, Van de Velde SK,et al. Posterolateral structures of the knee in posterior cruciate ligament deficiency. Am J Sports Med.2009 Mar;37(3):534-541.
    [61]Kanamori A, Vogrin TM, Yagi M, et al. Effects of PCL-deficiency on the soft tissues of the knee and joint contact forces. Trans ORS 2000;25:485.
    [62]Harner CD, Hoher J, Vogrin TM, et al. The effects of a popliteus muscle load on in situ forces in the posterior cruciate ligament and on knee kinematics. A human cadaveric study. Am J Sports Med.1998;26(5):669-673.
    [63]Hoher J, Vogrin TM, Woo SL, et al. In situ forces in the human posterior cruciate ligament in response to muscle loads:a cadaveric study. J Orthop Res. 1999 Sep;17(5):763-768.
    [64]Vogrin TM,Giffin JR,Woo SL,et al. Biomechanics of the Posterior Cruciate Ligament-Deficient Knee.Techniques in Orthoaedics,2001,16(2):109-118.
    [65]MacDonald P, Miniaci A, Fowler P,et al. A biomechanical analysis of joint contact forces in the posterior cruciate deficient knee. Knee Surg Sports Traumatol Arthrosc.1996;3(4):252-255.
    [66]Skyhar MJ, Warren RF, Ortiz GJ,et al. The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee. J Bone Joint Surg Am.1993 May;75(5):694-699.
    [67]Van de Velde SK, Bingham JT, Gill TJ,et al. Analysis of tibiofemoral cartilage deformation in the posterior cruciate ligament-deficient knee. J Bone Joint Surg Am.2009 Jan;91(1):167-175.
    [68]Ramaniraka NA, Terrier A, Theumann N, et al. Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint:a finite element analysis. Clin Biomech (Bristol, Avon).2005 May;20(4):434-442.
    [69]Fukagawa S, Matsuda S, Tashiro Y, et al. Posterior Displacement of the Tibia Increases in Deep Flexion of the Knee. Clin Orthop Relat Res.2009 Oct 22.
    [70]Nakagawa S, Kadoya Y, Todo S, et al. Tibiofemoral movement 3:full flexion in the living knee studied by MRI. J Bone Joint Surg Br.2000 Nov;82(8):1199-1200.
    [71]Nielsen S, Helmig P. Posterior instability of the knee joint. An experimental study. Arch Orthop Trauma Surg.1986; 105(2):121-125.
    [72]Gupte CM, Bull AMJ, Thomas RD, et al. The meniscofemoral ligaments, secondary restraints to the posterior drawer.Analysis of anteroposterior and rotary laxity in the intact and posterior-cruciate-deficient knee. J Bone Joint Surg Br 2003;85(5):765-773.
    [73]Petersen W, Loerch S, Schanz S,et al. The role of the posterior oblique ligament in controlling posterior tibial translation in the posterior cruciate ligament-deficient knee.Am J Sports Med.2008 Mar;36(3):495-501.
    [74]Fanelli GC, Edson CJ. Posterior cruciate ligament injuries in trauma patients: Part II. Arthroscopy.1995 Oct;11(5):526-529.
    [75]LaPrade RF, Wentorf FA, Fritts H, et al. A prospective magnetic resonance imaging study of the incidence of posterolateral and multiple ligament injuries in acute knee injuries presenting with a hemarthrosis. Arthroscopy.2007 Dec;23(12):1341-1347.
    [76]Janousek AT, Jones DG, Clatworthy M, et al. Posterior cruciate ligament injuries of the knee joint. Sports Med.1999 Dec;28(6):429-441.
    [77]Schulz MS, Russe K, Weiler A,et al. Epidemiology of posterior cruciate ligament injuries. Arch Orthop Trauma Surg.2003 May;123(4):186-191.
    [78]DeLee JC, Bergfeld JA, Drez D. The posterior cruciate ligament. In:DeLee JC, Drez DJ, eds. Orthopaedic Sports Medicine:Principles and Practice. Vol.2. Philadelphia:WB Saunders; 1994:1374-1400.
    [79]Margheritini F, Rihn J, Musahl V, et al. Posterior cruciate ligament injuries in the athlete:an anatomical, biomechanical and clinical review. Sports Med. 2002;32:393-408.
    [80]Cosgarea AJ, Jay PR. Posterior cruciate ligament injuries:evaluation and management. J Am Acad Orthop Surg.2001;9:297-307.
    [81]Fowler PJ, Messieh SS. Isolated posterior cruciate ligament injuries in athletes. Am J Sports Med.1987; 15:553-557.
    [82]Clancy WG, Shelbourne KD, Zoellner GB, et al.:Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament:report of a new procedure. J Bone Joint Surg Am 1983,65A:310-322.
    [83]Kannus P, Bergfeld J, Jarvinen M, et al. Injuries to the posterior cruciate ligament of the knee. Sports Med.1991; 12:110-131.
    [84]Fornalski S, McGarry MH, Csintalan RP, et al. Biomechanical and anatomical assessment after knee hyperextension injury. Am J Sports Med.2008 Jan;36(1):80-84.
    [85]Rubinstein RA Jr, Shelbourne KD, McCarroll JR,et al. The accuracy of the clinical examination in the setting of posterior cruciate ligament injuries. Am J Sports Med.1994;22(4):550-557.
    [86]Fleming RE, Blatz DJ, McCarroll JR. Posterior problems in the knee. Am J Sports Med 1981,9:107-113.
    [87]Allen CR, Kaplan LD, Fluhme DJ,et al. Posterior cruciate ligament injuries. Curr Opin Rheumatol.2002 Mar;14(2):142-149.
    [88]Covey DC, Sapega AA:Injuries to the posterior cruciate ligament. J Bone Joint Surg Am 1993,75A:1376-1386.
    [89]Shelbourne KD, Benedict F, McCarroll JR,et al. Dynamic posterior shift test. An adjuvant in evaluation of posterior tibial subluxation. Am J Sports Med. 1989;17(2):275-277.
    [90]Veltri DM, Warren RF. Isolated and combined posterior cruciate ligament injuries. J Am Acad Orthop Surg,1993;1:67-75.
    [91]Veltri DM, Deng XH, Torzilli PA, et al. The role of the cruciate and posterolateral ligaments in stability of the knee:a biomechanical study. Am J Sports Med.1995;23:436-443.
    [92]Bae JH, Choi IC, Suh SW,et al. Evaluation of the reliability of the dial test for posterolateral rotatory instability:a cadaveric study using an isotonic rotation machine. Arthroscopy.2008 May;24(5):593-598.
    [93]Jung YB, Nam CH, Jung HJ,et al. The influence of tibial positioning on the diagnostic accuracy of combined posterior cruciate ligament and posterolateral rotatory instability of the knee. Clin Orthop Surg.2009 Jun;1(2):68-73.
    [94]Jakob RP, Hassler H, Staeubli HU. Observations on rotatory instability of the lateral compartment of the knee. Experimental studies on the functional anatomy and the pathomechanism of the true and the reversed pivot shift sign. Acta Orthop Scand Suppl,1981;191:1-32.
    [95]Cooper DE. Tests for posterolateral instability of the knee in normal subjects. J Bone Joint Surg Am.1991;73:30-36.
    [96]Hughston JC, Norwood LA Jr. The posterolateral drawer test and external rotational recurvatum test for posterolateral instability of the knee. Clin Orthop, 1980;147:82-87.
    [97]Pugh L, Mascarenhas R, Arneja S, et al. Current concepts in instrumented knee-laxity testing. Am J Sports Med.2009 Jan;37(1):199-210.
    [98]Schulz MS, Russe K, Lampakis G,et al. Reliability of stress radiography forevaluation ofposterior knee laxity.The American Journal of Sports Medicine, 33(4):502-506.
    [99]Garofalo R, Fanelli GC, Cikes A, et al. Stress radiography and posterior pathological laxity of knee:comparison between two different techniques.Knee. 2009 Aug;16(4):251-255.
    [100]Nikolaou VS, Chronopoulos E, Savvidou C,et al. MRI efficacy in diagnosing internal lesions of the knee:a retrospective analysis. J Trauma Manag Outcomes.2008 Jun 2;2(1):4.
    [101]Khanda GE, Akhtar W, Ahsan H. Assessment of menisci and ligamentous injuries of the knee on magnetic resonance imaging:correlation with arthroscopy. J Pak Med Assoc.2008 Oct; 58(10):537-540.
    [102]Acosta AR,Calimano MT,Monu JUV, et al.The posterior cruciate ligament: patterns of injury and related pathology.The Radiologist,2002,9(1):11-20.
    [103]Moyer RA, Marchetto PA. Injuries of the posterior cruciate ligament. Clin Sports Med 1993;12:307-315.
    [104]St. Pierre P, Miller MD. Posterior cruciate ligament injuries. Clin Sports Med 1999; 18:199-202
    [105]Sonin AH, Fitzgerald SW, Friedman H, et al. Posterior cruciate ligament injury:MR imaging diagnosis and patterns of injury. Radiology.1994 Feb; 190(2):455-458.
    [106]Rodriguez W Jr, Vinson EN, Helms CA, et al. MRI appearance of posterior cruciate ligament tears. AJR Am J Roentgenol.2008 Oct;191(4):1031.
    [107]Mair SD, Schlegel TF, Gill TJ, et al. Incidence and location of bone bruises after acute posterior cruciate ligament injury. Am J Sports Med.2004 Oct-Nov;32(7):1681-1687.
    [108]Faber K, Dill J, Thain L. Intermediate follow-up of occult osteochondral lesions following ACL reconstruction. Arthroscopy.1996;12:370-371.
    [109]Mankin HJ. The response of articular cartilage to mechanical injury. J Bone Joint Surg Am.1982;64:460-466.
    [110]Thompson RCJ, Oegema TRJ, Lewis JL, et al. Osteoarthrotic changes after acute transarticular load:an animal model. J Bone Joint Surg Am. 1991;73:990-1001.
    [111]Gross ML, Grover JS, Bassett LW,et al. Magnetic resonance imaging of the posterior cruciate ligament. Clinical use to improve diagnostic accuracy. Am J Sports Med.1992 Nov-Dec;20(6):732-737.
    [112]Grover JS,Basset LW, Gross ML,et al. Posterior cruciate ligament:MR imaging. Radiology,1990,174:527-530.
    [113]Parolie JM, Bergfeld JA. Long-term results of nonoperative treatment of isolated posterior cruciate ligament injuries in the athlete. Am J Sports Med. 1986 Jan-Feb;14(1):35-38.
    [114]Shelbourne KD, Muthukaruppan Y. Subjective results of nonoperatively treated, acute, isolated posterior cruciate ligament injuries. Arthroscopy.2005 Apr;21(4):457-461.
    [115]Torg JS, Barton TM, Pavlov H,et al. Natural history of the posterior cruciate ligament-deficient knee. Clin Orthop Relat Res.1989 Sep;(246):208-216.
    [116]Keller PM, Shelbourne KD, McCarroll JR, et al. Nonoperatively treated isolated posterior cruciate ligament injuries. Am J Sports Med.1993 Jan-Feb;21(1):132-136.
    [117]Boynton MD, Tietjens BR. Long-term followup of the untreated isolated posterior cruciate ligament-deficient knee. Am J Sports Med.1996 May-Jun;24(3):306-310.
    [118]Shelbourne KD, Davis TJ, Patel DV. The natural history of acute, isolated, nonoperatively treated posterior cruciate ligament injuries. A prospective study. Am J Sports Med.1999 May-Jun;27(3):276-83.
    [119]Shino K, Horibe S, Nakata K, et al. Conservative treatment of isolated injuries to the posterior cruciate ligament in athletes. J Bone Joint Surg Br.1995 Nov;77(6):895-900.
    [120]Dejour H, Walch G, Peyrot J, et al. The natural history of rupture of the posterior cruciate ligament. Rev Chir Orthop Reparatrice Appar Mot. 1988;74(1):35-43.
    [121]Strobel MJ, Weiler A, Schulz MS, et al. Arthroscopic evaluation of articular cartilage lesions in posterior-cruciate-ligament-deficient knees. Arthroscopy. 2003 Mar;19(3):262-268.
    [122]Hamada M, Shino K, Mitsuoka T,et al. Chondral injury associated with acute isolated posterior cruciate ligament injury.Arthroscopy.2000 Jan-Feb; 16(1):59-63.
    [123]焦晨,于长隆,敖英芳.单纯后交叉韧带断裂继发关节内损伤的临床研究.中国运动医学杂志,2003,22(4):337-343.
    [124]Chen CH. Surgical treatment of posterior cruciate ligament injury. Chang Gung Med J.2007 Nov-Dec;30(6):480-492.
    [125]Hoher J, Scheffler S, Weiler A. Graft choice and graft fixation in PCL reconstruction. Knee Surg Sports Traumatol Arthrosc.2003 Sep;11(5):297-306.
    [126]Chen CH, Chen WJ, Shih CH. Arthroscopic reconstruction of the posterior cruciate ligament:a comparison of quadriceps tendon autograft and quadruple hamstring tendon graft. Arthroscopy.2002 Jul-Aug;18(6):603-612.
    [127]Hermans S, Corten K, Bellemans J. Long-term results of is olated anterolateral bundle reconstructions of the posterior cruciate ligament:a 6-to 12-year follow-up study. Am J Sports Med.2009 Aug;37(8):1499-1507.
    [128]Zhao J, Xiaoqiao H, He Y, et al. Sandwich-style posterior cruciate ligament reconstruction. Arthroscopy.2008 Jun;24(6):650-659.
    [129]Li B, Wen Y, Wu H, et al. Arthroscopic single-bundle posterior cruciate ligament reconstruction:retrospective review of hamstring tendon graft versus LARS artificial ligament. Int Orthop.2009 Aug;33(4):991-996.
    [130]Noyes FR, Barber-Westin SD. Posterior cruciate ligament allograft reconstruction with and without a ligament augmentation device. Arthroscopy. 1994 Aug;10(4):371-382.
    [131]Berg EE.Posterior cruciate ligament tibial inlay reconstruction.Arthroscopy 1995;11(1):69-76.
    [132]Ahn JH, Yang HS, Jeong WK, et al. Arthroscopic transtibial posterior cruciate ligament reconstruction with preservation of posterior cruciate ligament fibers: clinical results of minimum 2-year follow-up. Am J Sports Med.2006 Feb;34(2):194-204.
    [133]Thomann YR, Gaechter A.Dorsal approach for reconstruction of the posterior cruciate ligament. Arch Orthop Trauma Surg 1994;113(3):142-148.
    [134]Campbell RB, Jordan SS, Sekiya JK. Arthroscopic tibial inlay for posterior cruciate ligament reconstruction. Arthroscopy.2007 Dec;23(12):1356.
    [135]McAllister DR, Miller MD, Sekiya JK, et al. Posterior cruciate ligament biomechanics and options for surgical treatment. Instr Course Lect.2009; 58:377-388.
    [136]Hiraga Y, Ishibashi Y, Tsuda E, et al. Biomechanical comparison of posterior cruciate ligament reconstruction techniques using cyclic loading tests. Knee Surg Sports Traumatol Arthrosc.2006 Jan;14(1):13-19.
    [137]Margheritini F, Mauro CS, Rihn JA, et al. Biomechanical comparison of tibial inlay versus transtibial techniques for posterior cruciate ligament reconstruction:analysis of knee kinematics and graft in situ forces. Am J Sports Med.2004 Apr-May;32(3):587-593.
    [138]Hermans S, Corten K, Bellemans J. Long-term results of is olated anterolateral bundle reconstructions of the posterior cruciate ligament:a 6-to 12-year follow-up study. Am J Sports Med.2009 Aug;37(8):1499-1507.
    [139]Goudie EB, Will EM, Keating JF. Functional outcome following PCL and complex knee ligament reconstruction. Knee.2009 Sep 29.
    [140]Sekiya JK, West RV, Ong BC, et al. Clinical outcomes after isolated arthroscopic single-bundle posterior cruciate ligament reconstruction. Arthroscopy.2005 Sep:21(9):1042-1050.
    [141]Harner CD, Janaushek MA, Kanamori A, et al. Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med. 2000 Mar-Apr;28(2):144-151.
    [142]Race A, Amis AA. PCL reconstruction. In vitro biomechanical comparison of 'isometric' versus single and double-bundled'anatomic' grafts. J Bone Joint Surg Br.1998 Jan;80(1):173-179.
    [143]Bergfeld JA, Graham SM, Parker RD, et al. A biomechanical comparison of posterior cruciate ligament reconstructions using single-and double-bundle tibial inlay techniques. Am J Sports Med.2005 Jul;33(7):976-981.
    [144]Ramaniraka NA, Terrier A, Theumann N, et al. Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint:a finite element analysis. Clin Biomech (Bristol, Avon).2005 May;20(4):434-442
    [145]Kim SJ, Kim TE, Jo SB, et al. Comparison of the clinical results of three posterior cruciate ligament reconstruction techniques. J Bone Joint Surg Am. 2009 Nov;91(11):2543-2549.
    [146]Houe T, Jorgensen U. Arthroscopic posterior cruciate ligament reconstruction: one-vs. two-tunnel technique. Scand J Med Sci Sports.2004 Apr; 14(2): 107-111.
    [147]Wang CJ, Weng LH, Hsu CC, et al. Arthroscopic single-versus double-bundle posterior cruciate ligament reconstructions using hamstring autograft. Injury. 2004 Dec;35(12):1293-1299.
    [148]Kohen RB, Sekiya JK. Single-bundle versus double-bundle posterior cruciate ligament reconstruction. Arthroscopy.2009 Dec;25(12):1470-1477.
    [149]Noyes FR, Barber-Westin SD. Posterior cruciate ligament revision recon-struction,part 1:causes of surgical failure in 52 consecutive operations. Am J Sports Med.2005 May;33(5):646-654.
    [150]Mannor DA, Shearn JT, Grood ES,et al. Two-bundle posterior cruciate ligament reconstruction. An in vitro analysis of graft placement and tension. Am J Sports Med.2000 Nov-Dec;28(6):833-845.
    [151]Burns WC 2nd, Draganich LF, Pyevich M, et al. The effect of femoral tunnel position and graft tensioning technique on posterior laxity of the posterior cruciate ligament-reconstructed knee. Am J Sports Med.1995 Jul-Aug; 23(4):424-430.
    [152]Markolf KL, Feeley BT, Jackson SR, et al. Where should the femoral tunnel of a posterior cruciate ligament reconstruction be placed to best restore anteroposterior laxity and ligament forces? Am J Sports Med.2006 Apr;34(4):604-611.
    [153]Mao YQ, Chen BC, Zhu ZA. In vitro study of knee stability after two-band two-tunnel posterior cruciate ligament reconstruction. Chin J Traumatol.2006 Aug;9(4):195-200.
    [154]LaPrade RF, Muench C, Wentorf F, et al.The effect of injury to the posterolateral structures of the knee on force in a posterior cruciate ligament graft:a biomechanical study. Am J Sports Med.2002 Mar-Apr;30(2):233-238.
    [155]Apsingi S, Nguyen T, Bull AM, et al. The role of PCL reconstruction in knees with combined PCL and posterolateral corner deficiency. Knee Surg Sports Traumatol Arthrosc.2008 Feb; 16(2):104-111.
    [156]Mauro CS, Sekiya JK, Stabile KJ, et al. Double-bundle PCL and posterolateral corner reconstruction components are codominant. Clin Orthop Relat Res. 2008 Sep;466(9):2247-2254.
    [157]Apsingi S, Nguyen T, Bull AM, et al. Control of laxity in knees with combined posterior cruciate ligament and posterolateral corner deficiency: comparison of single-bundle versus double-bundle posterior cruciate ligament reconstruction combined with modified Larson posterolateral corner reconstruction. Am J Sports Med.2008 Mar;36(3):487-494.
    [158]Markolf KL, Graves BR, Sigward SM, et al. Popliteus bypass and popliteofibular ligament reconstructions reduce posterior tibial translations and forces in a posterior cruciate ligament graft. Arthroscopy.2007 May; 23(5):482-487.
    [159]Fanelli GC, Edson CJ, Reinheimer KN. Evaluation and treatment of the multiligament-injured knee. Instr Course Lect.2009;58:389-395.
    [160]Kohen RB, Sekiya JK. Single-bundle versus double-bundle posterior cruciate ligament reconstruction. Arthroscopy.2009 Dec;25(12):1470-1477.
    [161 Baker CL Jr, Norwood LA, Hughston JC. Acute combined posterior cruciate and posterolateral instability of the knee. Am J Sports Med.1984 May-Jun; 12(3):204-208.
    [162]Freeman RT, Duri ZA, Dowd GS. Combined chronic posterior cruciate and posterolateral corner ligamentous injuries:a comparison of posterior cruciate ligament reconstruction with and without reconstruction of the posterolateral corner. Knee.2002-Dec;9(4):309-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700