用户名: 密码: 验证码:
高温下活性粉末混凝土爆裂规律及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性粉末混凝土(Reactive Powder Concrete,简称RPC)是一种高强度、高韧性、高耐久性的新型材料。由于RPC具有优异的耐久性,在盐湖地区及海洋环境的房屋和基础设施建设中具有应用前景。由于RPC相对普通混凝土和高强混凝土具有更致密的微观结构和更低的渗透性,因此高温下RPC的爆裂的风险也相应增加。高温下RPC的力学性能也未见系统的报道。高温下混凝土爆裂和力学性能退化将导致结构的毁损,甚至倒(坍)塌。因此,有必要对RPC的耐高温性能进行较系统的研究。
     本文对高温下哑铃型试件、立方体试件、棱柱体试件等累计957个RPC试件进行了高温下试验,考察了爆裂影响因素、抑制爆裂措施、不同纤维种类和掺量、恒温时间对RPC力学性能影响、RPC微观结构演化和高温下质量损失等。具体工作和成果为:
     (1)为考察高温下RPC的爆裂行为,完成了RPC哑铃型试件、立方体试件、棱柱体试件高温下爆裂试验。结果表明:RPC爆裂风险随含水率增加而增大;试件温度梯度越大,爆裂风险越大,升温速度和试件尺寸是影响试件温度梯度的重要因素;温度一定时,恒温时间对RPC爆裂的影响不大;单掺聚丙烯(PP)纤维体积掺量不小于0.3%(2.73kg/m3),单掺钢纤维不小于1%(78kg/m3),可有效防止RPC爆裂;单掺钢纤维体积掺量为2%时,RPC爆裂临界含水率为0.85%;合理选择和涂置防火涂料,可减小RPC温度,缓解RPC试件温度梯度,也可预防RPC爆裂。
     (2)为了判断过火的RPC所经历的最高温度,为火灾后RPC结构提供损伤评估和修复依据,提出了通过RPC试件颜色变化、裂纹状况和试件敲击声音等来推断过火RPC所经历的最高温度的方法。RPC试件高温后颜色随经历温度变化为:过火温度20~200℃为青灰色,过火温度300~400℃为棕褐色,过火温度500℃为淡红灰色,过火温度600℃为黑褐色,过火温度700℃为灰白色,过火温度800℃为黄白色。掺加PP纤维RPC、掺加钢纤维RPC和复掺纤维(PP纤维和钢纤维)RPC试件外观特征变化规律相似,纤维种类和掺量对试件颜色变化影响不大。当外观颜色基本相近时,可通过敲击声音判别过火RPC所经历最高温度的相对高低,试验结果表明,所经历的温度越高,敲击声音越沉闷。
     (3)为了评价高温下RPC构件的抗火安全性,考察了高温下RPC力学性能的退化行为。对高温下27个素RPC、81个单掺PP纤维RPC、81个单掺钢纤维RPC和81个复掺纤维RPC立方体试件进行抗压试验。对常温下9个和高温下36个单掺钢纤维RPC棱柱体试件、常温下9个和高温下36个复掺纤维RPC棱柱体试件分别进行轴心受压试验。对高温下27个素RPC、81个单掺PP纤维RPC、81个单掺钢纤维RPC和81个复掺纤维RPC哑铃型试件进行抗拉试验。获得了纤维种类及掺量对不同温度下RPC力学性能的影响规律;提出了合理考虑纤维种类和掺量影响的高温下RPC立方体抗压强度、棱柱体抗压强度、哑铃型试件抗拉强度、弹性模量和峰值压应变计算公式。获得了合理考虑纤维种类和掺量影响的高温下RPC单轴受压应力–应变关系。并对掺加不同纤维种类、不同纤维掺量的RPC力学性能进行了对比分析。
     (4)恒温时间是指试件中心温度达到目标温度后继续保持该温度的时间。恒温时间对材料和构件高温力学性能的影响,是工程界关注的热点问题之一。针对这一问题,通过45个RPC棱柱体试件,考察了恒温时间对棱柱体抗压性能的影响。结果表明:200~400℃时,恒温1小时和3小时RPC棱柱体抗压强度高于未经恒温试件;400~600℃时,恒温时间对棱柱体抗压强度的影响为:未经恒温棱柱体抗压强度>恒温1小时棱柱体抗压强度>恒温3小时棱柱体抗压强度;800℃时,恒温时间对棱柱体抗压强度的影响为:未经恒温棱柱体抗压强度<恒温1小时棱柱体抗压强度<恒温3小时棱柱体抗压强度。20~400℃时由于掺合料中活性SO2与Ca(OH)2发生火山灰反应导致RPC抗压强度随恒温时间增加而升高,400~600℃时由于结合水蒸发和Ca(OH)2的分解导致孔洞和裂缝增加,其抗压强度随恒温时间的增加而降低,800℃时由于持续高温使得RPC发生烧结作用,抗压强度随恒温时间的增加而升高。温度不高于600℃时不同恒温时间的RPC弹性模量和峰值应变相差不大,但800℃时恒温3小时RPC的弹性模量相比未经恒温RPC和恒温1小时RPC弹性模量有小幅度增加,而恒温3小时RPC的峰值应变却急剧减小。参考单掺钢纤维RPC应力-应变关系曲线方程,建立了高温下不同恒温时间RPC的受压应力-应变曲线方程。
     (5)利用扫描电子显微镜(SEM)试验、XRD衍射试验和压汞试验(MIP)分析手段,研究了RPC微观结构形貌、裂缝和纤维变化、矿物组成及相变反应和孔结构演化随经历温度的变化规律。结果表明:温度小于400℃时,掺合料中的活性SO2与Ca(OH)2发生火山灰反应导致C–S–H数量增加。温度超过400℃时,可以观察到微小裂缝,800℃时RPC出现大量的孔洞和裂缝,微观结构变得酥松和粗糙。常温下PP纤维与基体粘结紧密,界面区完整密实;温度超过200℃时,PP纤维熔化后的孔洞和连通网络有利于水蒸汽的逸出,从而降低爆裂风险。钢纤维与基体粘结处的裂缝宽度随温度升高而增加,钢纤维在800℃时完全氧化。RPC微观结构随温度升高而逐渐劣化,是其宏观力学性能随温度升高而退化的根本原因。SO2含量随温度升高先减小再升高,斜方钙沸石的含量和峰值随温度升高而降低,800℃时RPC中的C–S–H分解是β-C2S和C3S含量增加的主要原因。RPC的孔径和孔隙率随温度升高而增加,相对普通混凝土和高强混凝土,RPC具有更小的孔径和更低的孔隙率。通过热重–差热(TG–DSC)分析研究了高温下RPC质量损失和吸热放热反应,在170℃、600℃和780℃时吸热峰的出现是分别由于PP纤维熔化、SO2晶型转变和C–S–H分解导致的。
     (6)在大量试验和分析的基础上,对高温下RPC爆裂的判别方法、爆裂预防措施、高温下力学性能等进行了总结。为RPC构件抗火验算提供了素材。
Reactive Powder Concrete (RPC) is characterised by super-high strength, extreme durability and superior toughness. RPC has excellent durability, which can be widely used in house, office buildings and other facilities of the salt lake region and coastal areas. It is probable that the lower permeability of RPC compared to NSC and HSC prevents free water from escaping, causing considerable internal vapour pressure that often results in spalling. RPC spalling mechanism and the rule of mechanical degradation at elevated temperatures have not been reported systematically. Furthermore, spalling and mechanical properties deterioration of the concrete will result in serious damage and collapse to the building structure. Thus, mechanical properties and the mechanism for explosive spalling of RPC remain an important but unsolved problem.
     To study spalling and mechanical properties at elevated temperatures,957dumbbell-shaped specimen, cube specimens and prism specimens were prepared. Factors of explosive spalling, spalling prevention, effect of fibres on mechanical properties, microstructure and mass loss of RPC with different fibres were performed at elevated temperatures. The main work of this study is as follows:
     To study spalling law, dumbbell-shaped specimen, cube specimens and prism specimens were prepared. The results show that spalling risk increases with the moisture content. The risk of spalling increases with an increase in temperature gradient. Heating rate and specimen size are major factors which have effected on spalling of RPC. Hold time has little effect on spalling. Incorporating0.3%PP fibres (2.73kg/m3),1%steel fibres (78kg/m3) can prevent explosive spalling of RPC. Adding2%steel fibres by volume content, the critical moisture content of explosive spalling for RPC is0.85%. By smearing rationally tunnel fire resistant coating on the surface of the structure for RPC, the outside temperature of RPC can be reduced. Thus temperature gradient can be reduced to prevent spalling of RPC.
     To infer the maximum temperature experienced, assess fire damage and supply repair recommendations, methods are proposed according to the color change, the number and width of cracks and beating sound. Color change of RPC at different temperatures as follows: gray (20~200°C)→brown (300~400°C)→reddish gray (500°C)→dark brown (600°C)→gray (700°C)→yellow white (800°C). The appearance characteristics of RPC with PP fibres, RPC with steel fibres and RPC with hybrid fibres are similar. When the appearance of color is similar, it can infer maximum temperature of RPC experienced by beating sound. The beating sound increases gradually become dull with an increase temperature.
     In order to evaluate fire safety of RPC engineering, and consider degradation of the mechanical properties of RPC at elevated temperatures, the mechanical properties at elevated temperatures were carried out on RPC with PP fibres, steel fibres and hybrid fibres. To obtain cube compressive strength of RPC without fibres, RPC with PP fibres, RPC with steel fibres and RPC with hybrid fibres,270cube specimens were conducted at elevated temperatures, respectively. In order to obtain the axial compressive stress–strain relationship of RPC with steel fibres and RPC with hybrid fibres,90prism specimens were conducted at elevated temperatures, respectively. To obtain tensile strength of RPC without fibres, RPC with PP fibres, RPC with steel fibres and RPC with hybrid fibres,270dumbbell-shaped specimens were conducted at elevated temperatures, respectively. The effects of temperature, fibre content and hold time on the mechanical properties of RPC were studied about the thermal expansion, axial compressive strength, elastic modulus, peak strain and stress–strain. Mechanical properties for RPC with different fiber types and different fiber content were analyzed.
     Hold time is time that central temperature of specimens reaches the target temperature and maintains the target temperature a period of time. Hold time of the material properties and structure at elevated temperatures is hot problem for fire safety engineering. To solve this problem, hold time effect on mechanical properties of45prism specimens is considered at elevated temperatures. The results show that compressive strengths with hold time of1h and3h are higher than that with hold time of0h from200to400°C, are lower than that with hold time of0h between400and600°C, and higher than that with hold time of0h beyongd600°C. SO2can act with Ca(OH)2, which occurs pozzolanic reaction resulting in an increase in compressive strength at20~400°C. Decomposition of Ca(OH)2evaporation of bound water result in voids and cracks increasing, the compressive strength of RPC decreases with hold time at400~600°C. Sintering effect occurs due to sustained high temperature, the compressive strength increases with hold time at800°C. The elastic modulus and the peak strain of RPC for different hold time are more or less the same at20~600°C, but elastic modulus increases lightly and peak strain decreases rapidly at800°C. Utilising curve equation of RPC with steel fibres, stress–strain curve equation of RPC with different hold time was established at elevated temperatures.
     By scanning electron microscope (SEM), X-diffraction (XRD) and MIP analysis, microstructure morphology, cracks and fibres variation, the mineral composition, the phase change reaction and pore structure evolution of RPC were studied. The results show that the admixture SO2and Ca(OH)2occurs pozzolanic reaction, which leads to the increase in the number of C–S–H below400°C so that mechanical properties of RPC increase. The microcracks can be observed beyond 400°C. A large number of voids and cracks occur and microstructure becomes porous and rough at800°C, which result from decomposition of Ca(OH)2and C–S–H gel. Cracks between steel fibre and matrix increase with increasing temperature, steel fibres are completely oxidized at800°C. Bond between PP fibres and matrix at room temperature are close, and interface region is dense; holes and communication network of PP fibres melted is benefit to the escape of the water vapor beyond200°C, which resulting in reducing the occurrence of spalling. SO2content firstly reduces, and then increases with the increasing temperature. Number and peak of CaAl2Si2O8·4H2O decreases with increasing temperature. C–S–H decomposes into β-C2S and C3S at800°C, and the rapid deterioration of the RPC strength is due to CH and C–S–H decomposition. The median diameter and the porosity of RPC increase with the increasing temperature, and RPC has smaller diameter and lower porosity than ordinary strength concrete and high strength concrete. By TG–DSC analysis, Endothermic peak appears at170°C,600°C and780°C respectively, which is due to melting of PP fibres, the SO2transformation and C–S–H decomposition.
     Based on a large number of tests and analysis, the method for distinguishing spalling of RPC, spalling prevention, mechanical properties at elevated temperatures are summarized. Utilising these experimental results, predictive equations were developed. The data collected and the proposed RPC models were utilised to develop preventing structure fire.
引文
[1]范维澄,王清安,姜冯辉,周建军.火灾学简明教程[M].合肥:中国科学技术大学出版社,1995:1–3.
    [2] Richard P, Cheyrezy M. Composition of reactive powder concretes[J].Cement and Concrete Research,1995,25(7):1501–1511.
    [3] Richard P, Cheyrezy M. Reactive powder concretes with high ductility and200–800MPa compressive strength[J]. ACI Special Publication,1994,144:507–18.
    [4] Cheyrezy M. Structural Application of RPC[J]. Concrete,1999,33(1):20–23.
    [5] Jaesung L, Yunping X, et al. A multiscale model for modulus of elasticity ofconcrete at high temperatures[J]. Cement and Concrete Research,2009,39(9):754–762.
    [6]刘红彬.活性粉末混凝土的高温力学性能与爆裂的试验研究[D].中国矿业大学学位论文,2012.
    [7] Diederichs U, Jumppanen U M, Penttala V. Material properties of highstrength concrete at elevated temperatures[C]. IABSE13th Congress, Helsinki(June1988).
    [8] Netinger I, Kesegic I, Guljas I. The effect of high temperatures on themechanical properties of concrete made with different types of aggregates[J].Fire Safety Journal,2011,46(7):425–430.
    [9] Jahren P A. Fire resistance of high strength/dense concrete with particularreference to the use of condensed silical fume-A review [J]. ACI SpecialPublication,1989,114:1013–1049.
    [10] Han C G, Hwang Y S, et al. Performance of spalling resistance of highperformance concrete with polypropylene fiber contents and lateralconfinement[J]. Cement and Concrete Research,2005,35(9):1747–1753.
    [11] Schneider U. Fire Resistance of High Performance Concrete. Proceedings ofthe RILEM International Workshop, Vienna, Austria,1994:237–242.
    [12] Phan L T, Carino N J. Code provisions for high strength concrete strength-temperature relationship at elevated temperatures. Materials and Structures,2003,36(2):91–98.
    [13] Dugat J, Roux N, Bernier G. Mechanical Properties of Reactive PowderConcretes[J]. Materials and Structures,1996,29(5):233–240..
    [14]吴炎海,何雁斌.活性粉末混凝土(RPC200)的配制试验研究[J].中国公路学报,2003,16(4):44–49.
    [15]闫光杰,阎贵平,安明喆等.200MPa级活性粉末混凝土试验研究[J].铁道学报,2004,26(2):116–119.
    [16]郑文忠,李莉.活性粉末混凝土配制及其配合比计算方法[J].湖南大学学报:自然科学版,2009,36(2):13–17.
    [17]何峰,黄政宇.原材料对RPC强度的影响初探[J].湖南大学学报(自然科学版),2001,28(2):89–94.
    [18]覃维祖.活性粉末混凝土的研究[J].石油工程建设,2002,28(3):1–3.
    [19]施韬,陈宝春,施惠生.掺矿渣活性粉末混凝土配制技术的研究[J].材料科学与工程学报,2005,23(6):867–870.
    [20]赖建中,孙伟.生态型RPC材料的力学性能及微观机理研究[J].新型建筑材料,2009,(12):20–23.
    [21]龙广成,谢友均,蒋正武,孙振平,王培铭.集料对活性粉末混凝土力学性能的影响[J].建筑材料学报,2004,7(3):269–273.
    [22] Yaz c H, Yard mc M Y, Yi iter H. Mechanical Properties of ReactivePowder Concrete Containing High Volumes of Ground Granulated BlastFurnace Slag[J]. Cement&Concrete Composites,2010,32(8):639–648.
    [23] Voo J, Foster S J, Gilbert R I, et al. Design of Disturbed Regions in ReactivePowder Concrete Bridge Girders[C]. High Performance Materials in Bridges:Proceedings of the International Conference, Hawaii,2001:117-127.
    [24]林清.纤维约束活性粉末混凝土基本力学性能研究[D].福州大学硕士学位论文,2005.
    [25]卢姗姗.配置钢筋或GFRP筋活性粉末混凝土梁受力性能试验与分析[D].哈尔滨工业大学博士论文,2010.
    [26]张静.钢管活性粉末混凝土短柱轴压受力性能试验研究[D].福州大学硕士学位论文,2005.
    [27]何雁斌.活性粉末混凝土(RPC)的配制技术与力学性能试验研究[D].福州大学硕士学位论文,2003.
    [28]单波.活性粉末混凝土基本力学性能的试验与研究[D].湖南大学硕士学位论文,2002.
    [29]余清河.活性粉末混凝土的性能研究[D].长沙理工大学硕士学位论文,2008.
    [30]郝文秀,徐晓.钢纤维活性粉末混凝土力学性能试验研究[J].建筑技术,2012,43(1):35–37.
    [31]吴炎海,林震宇,孙士平.活性粉末混凝土基本力学性能试验研究[J].山东建筑工程学院学报,2004,3(19):7–11.
    [32]曾建仙,吴炎海,林清.掺钢纤维活性粉末混凝土的受压力学性能研究[J].福州大学学报(自然科学版),2005,33(Z):132–137.
    [33] An M Z, Zhang L J, Yi Q X. Size effect on compressive strength of reactivepowder concrete[J]. Journal of China University of Mining&Technology,2008,18(2):279-282.
    [34]郑文忠,卢姗姗,张明辉.掺粉煤灰和矿渣粉的活性粉末混凝土梁受力性能试验研究[J].建筑结构学报,2009,30(3):62–70.
    [35]马亚峰.活性粉末混凝土(RPC200)单轴受压本构关系研究[D].北京交通大学硕士学位论文,2006.
    [36]杨志慧.不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D].北京交通大学硕士学位论文,2006:17–18.
    [37]李莉.活性粉末混凝土梁受力性能及设计方法研究[D].哈尔滨工业大学博士学位论文,2010.
    [38] Zhang Y S, Sun W, et al. Preparation of C200green reactive powder concreteand its static–dynamic behaviors[J]. Cement&Concrete Composites,2008,30(9):831–838.
    [39]余自若,阎贵平,张明波.活性粉末混凝土的弯曲强度和变形特性[J].北京交通大学学报,2006,30(1):40–43.
    [40]郑文忠,李莉,卢姗姗.活性粉末混凝土简支梁正截面受力性能试验研究[J].建筑结构学报,2011,32(6):62–70.
    [41]王兆宁.活性粉末混凝土矩形截面配筋梁抗弯性能研究[D].北京交通大学硕士论文,2008.
    [42]康佩.活性粉末混凝土构件在受弯、受剪、受压状态下的设计计算方法[D].北京交通大学硕士论文,2012.
    [43]陆小吕.活性粉末混凝土矩形截面配筋梁正截面受弯的计算方法[D].北京交通大学硕士论文,2012.
    [44] Chan Y W, Chu S H. Effect of Silica Fume on Steel Fiber BondCharacteristics in Reactive Powder Concrete[J]. Cement and ConcreteResearch,2004,34(7):1167–1172.
    [45]安明喆,杨新红,王军民等. RPC材料的耐久性研究[J].建筑技术,2007,38(5):367–368.
    [46]刘斯凤,孙伟,林玮等.掺天然超细混合材高性能混凝土的制备及其耐久性研究[J].硅酸盐学报,2003,31(11):1080–1085.
    [47]杨吴生,黄政宇.活性粉末混凝土耐久性能研究[J].混凝土与水泥制品,2003,(1):19–20.
    [48] Graybeal B, Tanesi J. Durability of an Ultrahigh Performance Concrete[J].Journal of Materials in Civil Engineering,2007,19(10):848–854.
    [49]施惠生,施韬,陈宝春,姚玉梅.掺矿渣活性粉末混凝土的抗氯离子渗透性研究[J].同济大学学报(自然科学版),2006,34(1):93–96.
    [50] Roux N, Andrade C, Sanjuan M A. Experimental Study of Durability ofReactive Powder Concretes[J]. Journal of Materials in Civil Engineering,1996,8(1):1–6.
    [51] Lee M G, Wang Y C, Chiu C T. A Preliminary Study of Reactive PowderConcrete as a New Repair Material[J]. Construction and Building Materials,2007,21(1):182–189.
    [52] Candrlic V, Bleiziffer J, Mandic A. Bakar Bridge in Reactive Power Concrete,Proceedings of the Third International Conference on Arch Bridge[C]. Paris,France,2001:695–700.
    [53]张立军,安明喆,阎贵平.活性粉末混凝土及其工程应用[J].世界科技研究与发展,2005,27(6):49–52.
    [54]陈国平,方志,张旷怡,胡建华.基于高性能材料大型岩锚体系应用研究[J].中外公路,2011,31(6):16–19.
    [55]陆建新.铁路客运专线桥梁用RPC人行道盖板制备技术与生产工艺研究[Z].陕西省:中铁一局集团有限公司.
    [56]李论.配有钢纤维RPC免拆柱模的RC短柱轴心受压力学性能研究[D].东北林业大学硕士论文,2013.
    [57] Lea F C. Effect of temperature on some of the properties of materia[J].Engineering,1920,110:293–298.
    [58] Malhotra H L. Effect of temperature on compressive strength of concrete[J].Mag. Concr. Res.,1956,23(8):85–94.
    [59] Abrams M S. Compressive Strength of Concrete at Temperatures to1600F[J],Temperature and Concrete, SP-25, American Concrete Institute,1971.
    [60]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003:73–76.
    [61]李卫,过镇海.高温下砼的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8–16.
    [62] Poon C, Azhar S, Anson M, Wong Y. Comparison of the strength anddurability performance of normal and high-strength pozzolanic concretes atelevated temperatures[J]. Cem. Concr. Res.,2001,31(9):1291–1300.
    [63] Cheng F, Kodur V K, Wang T C. Stress-strain cures for high-strengthconcrete at elevated temperatures[J]. Mater. Civ. Eng.,2004,16(1):84–94.
    [64] Behnood A. Effects of high temperatures on the high-strength concretesincorporating copper slag as coarse aggregate[C]. In: Seventh InternationalSymposium on Utilization of High-Strength/Performance Concrete,SP-228-66, American Concrete Institute, Washington,2005:1063–1075.
    [65] Phan L T, Carino N J. Effects of test conditions and mixture proportions onbehaviour of high-strength concrete exposed to high temperatures[J], ACIMater,2002,99(1):54–66.
    [66] Lie T T. Structural fire protection[C]. ASCE Committee on Fire Protection,Structural Division, American Society of Civil Engineers, New York,1992:225–229.
    [67] Shin K Y, Kim S, Kim J, Chung M, Jung P. Thermo-physical properties andtransient heat transfer of concrete at elevated temperatures[J]. Nucl. Eng. Des.212(2002)233–241.
    [68] Bazant Z P, Kaplan M F. Concrete at Temperatures: Material Properties andMathematical Models[J]. Longman Group Limited, Essex, England,1996.
    [69]王睿.活性粉末混凝土热工参数试验研究[D].哈尔滨工业大学硕士论文,2012.
    [70] Khaliq W, Kodur V R. Thermal and mechanical properties of fiber reinforcedhigh performance self-consolidating concrete at elevated temperatures[J].Cement and Concrete Research,2011,41(11):1112–1122.
    [71]刘红彬.活性粉末混凝土的高温力学性能与爆裂的试验研究[D].中国矿业大学博士论文,2012.
    [72] Lie T T. A Pocedure to Calculate Fire Resistance of Structural Members–.International Seminar on Three Decades of Structural Fire Safety[C], Feb,1983:139–153.
    [73]陆洲导.钢筋混凝土梁对火灾反应的分析[D].同济大学工程结构研究所,1989.
    [74] Castillo C, Durrani A J. Effect of transient high temperature on high-strengthconcrete[J]. ACI Materials Journal,1990,87(1):47–53.
    [75] Diederichs U, Jumppanen U M, Schneider U. High temperature properties andspalling behavior of high strength concrete[C]. Proceedings of the FourthWeimar Workshop on High Performance Concrete: Material Properties andDesign. Weimar: HAB,1995:219–236.
    [76] Hammer T A. Compressive Strength and E-modulus at Elevated Temperatures[R]. Trondheim:[s.n.],1995.
    [77] Furumura F, Abe T, Shinohara Y. Mechanical properties of high strengthconcrete at high temperatures[C]. Proceedings of the Fourth WeimarWorkshop on High Performance Concrete: Material Properties and Design.Weimar: HAB,1995:237–254.
    [78] British Standards Institution. EN.1992–1–2:2004Eurocode2: Design ofConcrete Structures-Part1.2: General Rules–Structural Fire Design[S].London: British Standards Institution,2004.
    [79] British Standards Institution. EN.1994–1–2:2005Eurocode4: Design ofComposite Steel and Concrete Structures-Part1.2: General Rules–structuralFire Design [S]. London: British Standards Institution,2005.
    [80] American Concrete Institute. ACI216.1–07:2007Code Requirements forDetermining Fire Resistance of Concrete and Masonry ConstructionAssemblies[S]. Farmington: American Concrete Institute,2007.
    [81] Concrete Association of Finland. RakMK B4:1991High Strength ConcreteSupplementary Rules and Fire Design[S]. Helsinki: Concrete Association ofFinland,1991.
    [82] Uysal M, Yilmaz K, Metin Ipek. Properties and behavior of self–compactingconcrete produced with GBFS and FA additives subjected to hightemperatures[J]. Construction and Building Materials,2012,28(1):321–326.
    [83] Ayd n S, Yaz c H, Baradan B. High temperature resistance of normal strengthand autoclaved high strength mortars incorporated polypropylene and steelfibers[J]. Construction and Building Materials,2008,22(4):504–512.
    [84] Noumowe A. Mechanical properties and microstructure of high strengthconcrete containing polypropylene fibres exposed to temperatures up to200°C.Cement and Concrete Research,2005,35(11):2192–2198.
    [85] Noumowe A N, Siddique R, Debicki G. Permeability of high-performanceconcrete subjected to elevated temperature (600°C)[J]. Construction andBuilding Materials,2009,23(5):1855–1861.
    [86] Xiao J Z, Falkner H. On residual strength of high-performance concrete withand without polypropylene fibres at elevated temperatures[J]. Fire SafetyJournal,2006,41(2):115–121.
    [87] Behnood A, Ghandehari M. Comparison of compressive and splitting tensilestrength of high-strength concrete with and without polypropylene fibersheated to high temperatures[J]. Fire Safety Journal,2009,44(8):1015–1022.
    [88] Poon C S, Shui Z H, Lam L. Compressive behavior of fiber reinforced highperformance concrete subjected to elevated temperatures. Cem. Concr. Res.,2004,34(12):2215–2222.
    [89] Lie T T, Kodur V R. Mechanical properties of fibre-reinforced concrete atelevated temperatures[C]. Internal Report, Institute for Research inConstruction, National Research Council Canada,1995.
    [90] Lau A, Anson M. Effect of high temperatures on high performance steel fibrereinforced concrete[J]. Cement and Concrete Research,2006,36(9):1698–1707.
    [91] Lie T T, Rowe T J, Lin T D. Residual strength of fire exposed RC columnsevaluation and repair of fire damage to concrete[J]. Detroit: AmericanConcrete Institute,1986:153–174.
    [92] Lie T T, Lin T D. Fire performance of reinforced concrete columns[J]. In:ASTM STP882. Fire Safety: Science and Engineering,1985:176–205.
    [93] Li L, Purkiss J A. Stress–strain constitutive equations of concrete material atelevated temperatures[J]. Fire Safety J,2005,40:669–686.
    [94] Hertz K D. Concrete strength for fire safety design[J]. Mag Concrete Res,2005,57(8):445–453.
    [95]时术兆,齐砚勇,严云,潘思娟.纤维增强活性粉末混凝土高温力学性能的实验研究[J].材料导报,2009,23(5):65–68.
    [96]康义荣.混杂纤维活性粉末混凝土高温残余力学性能的试验研究[D].北京交通大学硕士学位论文,2011.
    [97]陈强.高温对活性粉末混凝土高温爆裂行为和力学性能的影响[D].北京交通大学硕士学位论文,2010.
    [98] Liu C T, Huang J S. Fire Performance of Highly Flowable Reactive PowderConcrete[J]. Construction and Building Materials,2009,23(5):2072–2079.
    [99] Sideris K K. Mechanical characteristics of self-consolidating concreteexposed to elevated temeperatures[J]. ASCE J. Mater. Civ. Eng,2007,19(8):648–654.
    [100] Chan Y N, Peng G F, Anson M. Residual strength and pore structure ofhighstrength concrete and normal strength concrete after exposure to hightemperatures[J]. Cem. Concr. Compos.,1999,21(1):23–27.
    [101] Khoury G A. Compressive strength of concrete at high temperatures: areassessment[J]. Mag. Concr. Res.,1992,44(161):291–309.
    [102] Chang Y F, Chen Y H, et al. Residual stress–strain relationship for concreteafter exposure to high temperatures[J]. Cement and Concrete Research,2005,36(10):1999–2005.
    [103] Bazant P, Chern J C. Stress-induced thermal and shrinkage strains inconcrete[J]. J Eng Mech-ASCE1987,113(10):1493–1511.
    [104] Cheng F P, Kodur V K R, Wang T C. Stress–strain curves for high strengthconcrete at elevated temperatures[J]. Journal of Materials in Civil Engineering,2004,16(1):84–94.
    [105] Khoury G A. Strain components of nuclear-reactor-type concretes during firstheat cycle[J]. Nucl Eng Des,1995,156(1/2):313–32.
    [106] Schneider U. Modelling of concrete behaviour at high temperatures[C]. In:Anchor, R.D., Malhotra, H.L., Purkiss, J.A, Proceeding of internationalconference of design of structures against fire,1986.
    [107] Anderberg Y, Thelandersson S. Stress and deformation characteristics ofconcrete at high temperatures:2experimental investigation and materialbehaviour model. Bulletin54[C]. Sweden (Lund): Lund Institute ofTechnology,1976.
    [108] Taia Y S, Pan H H, Kung Y N. Mechanical Properties of Steel FiberReinforced Reactive Powder Concrete Following Exposure to HighTemperature Reaching800℃[J]. Nuclear Engineering and Design,2011,241(7):2416–2424.
    [109]胡海涛,董毓利.高温时高强混凝土强度和变形的试验研究[J].土木工程学报,2002,35(6):44–47.
    [110] Kodur V K R, Wang T C, Cheng F P. Predicting the Fire Resistance Behaviorof High Strength Concrete Columns[J]. Cement&Concrete Composites,2004,26(2):425–430.
    [111]吴波,袁杰,王光运.高温后高强混凝土力学性能的试验研究[J].土木工程学报,2000,33(2):8–12.
    [112] Lee J, Xi Y P, Willam K, Jung Y H. A multiscale model for modulus ofelasticity of concrete at high temperatures[J]. Cement and Concrete Research,2009,39(9):754–762.
    [113] Kim G Y, Kim Y S, Lee T G. Mechanical properties of high-strength concretesubjected to high temperature by stressed test[J]. Transactions of NonferrousMetals Society of China,2009,19(1):669–686.
    [114] BSI: Structural Use of Concrete[S]. British Standards Institution. BS8110.1985.
    [115] Olivito R S, Zuccarello F A. An experimental study on the tensile strength ofsteel fibre reinforced concrete[J]. Composites: Part B,2010,41(3):246–255.
    [116] Kalifa P, Menneteau F D, Quenard D. Spalling and Pore Pressure in HPC atHigh Temperatures[J]. Cement and Concrete Research,2000,30(12):1915–1927.
    [117] Ba ant Z P. Analysis of Pore Pressure, Thermal Stresses and Fracture inRapidly Heated Concrete[A]. Proceedings of International Workshop on FirePerformance of High-strength Concrete (NIST Special Publication919)[C].Gaithersburg: NIST,1997:155–164.
    [118] Ali F. Is high strength concrete more susceptible to explosive spalling thannormal strength concrete in fire?[J]. Fire Mater,2002,26(3):127–130.
    [119] Kodur V R, McGrath R. Fire endurance of high strength concrete columns[J].Fire Technology,2003,39(1):73–87.
    [120] Ali F, Nadjai A, Silcock G, Abu-Tair A. Outcomes of a major research on fireresistance of concrete columns[J]. Fire Saf. J.,2004,39(6):433–445.
    [121] Kalifa P, Chéné G, Gallé C. High-temperature behavior of HPC withpolypropylene fibers from spalling to microstructure[J]. Cem. Concr. Res.,2001,31(10):1487–1499.
    [122] Bangi M R, Horiguchi T. Effect of fibre type and geometry on maximum porepressures in fibre-reinforced high strength concrete at elevatedtemperatures[J]. Cement and Concrete Research,2012,42(2):459–466.
    [123] Bilodeau A, Kodur V K R, Hoff G C. Optimization of the type and amount ofpolypropylene fibres for preventing the spalling of lightweight concretesubjected to hydrocarbon fire[J]. Cement&Concrete Composites,2004,26(2):163–174.
    [124] Noumowe A. Mechanical properties and microstructure of high strengthconcrete containing polypropylene fibres exposed to temperatures up to200℃[J]. Cement and Concrete Research,2005,35(11):2192–2198.
    [125] Chen B, Juanyu L. Residual strength of hybrid-fibre-reinforced high-strengthconcrete after exposure to high temperatures[J]. Cement and ConcreteResearch,2004,34(6):1065–1069.
    [126] Han C, Hwang Y, Yang S, Gowripalan N. Performance of spalling resistanceof high performance concrete with polypropylene fibres content and lateralconfinement[J]. Cement and Concrete Research,2005,35(9):1747–1753.
    [127] Kalifa P, Menneteau F D, Quenard D. Spalling and pore pressure in HPC athigh temperatures[J]. Cement and Concrete Research,2000,30(12):1915–1927.
    [128] Phan L T, Carino N J. Review of mechanical properties of HSC at elevatedtemperature[J]. Journal of Materials in Civil Engineering, American Societyof Civil Engineers,1998,10(1):58–64.
    [129] Phan L T, Carino N J. Mechanical Properties of High Strength Concrete atElevated Temperatures[C]. NISTIR6726, Building and Fire ResearchLaboratory, National Institute of Standards and Technology, Gaithersburg,Maryland, March2001.
    [130] Phan L T, Carino N J. Effects of test conditions and mixture proportions onbehavior of high strength concrete exposed to high temperatures[J]. ACIMaterials Journal, American Concrete Institute,2002,99(1):54–66.
    [131] Phan L T, Lawson J R, Davis F R. Effects of elevated temperature exposureon heating characteristics, spalling, and residual properties of highperformance concrete[J]. RILEM Materials and Structures Journal,2001,34(236):83–91.
    [132] Hertz K. Heat Induced Explosion of Dense Concretes[C]. Institute of BuildingDesign, Report No.166, Technical University of Denmark,1984.
    [133] Diederichs U, Jumppanen U M, Penttala V. Behavior of high strengthconcrete at high temperatures[C]. Report#92, Helsinki University ofTechnology,1989.
    [134] Diederichs U, Jumppanen U M, Schneider U. High temperature properties andspalling behavior of high strength concrete[C]. Proceedings, Fourth WeimarWorkshop on High Performance Concrete: Material Properties and Design,Hochschule für Architektur und Bauwesen. Weimar, Germany, October4-5,1995:219–236.
    [135] Hertz K. Heat Induced Explosion of Dense Concretes[D]. Report No.166,Institute of Building Design, Technical University of Denmark,1984.
    [136] Sullivan P J E, Sharshar R. Performance of concrete at elevated temperatures(as measured by the reduction in compressive strength[J]. Fire Technology,1992,28(3):240–250.
    [137] Morita T, Saito H, et al. Residual Mechanical Properties of High StrengthConcrete Members Exposed to High Temperature[C]. Part1. Test on MaterialProperties, Summaries of Technical Papers of Annual Meeting, ArchitecturalInstitute of Japan, Niigata,August,1992(in Japanese).
    [138] Felicetti R, Gambarova P G, et al. Residual Mechanical Properties ofHigh-Strength Concretes Subjected to High-Temperature Cycles[C].Proceedings,4th International Symposium on Utilization ofHigh-Strength/High-Performance Concrete, Paris, France,1996:579–588.
    [139] Noumowe A N, Clastres P. Thermal Stresses and Water Vapor Pressure ofHigh Performance Concrete at High Temperature[C]. Proceedings,4thInternational Symposium on Utilization of High–Strength/High–Performance,Paris, France,1996.
    [140] Phan L T. Fire performance of high strength concrete[C]. A Report of theState-of the-art, Building and Fire Research Laboratory, National Institute ofStandards and Technology, Maryland,1996.
    [141]过镇海.混凝土的强度和本构关系—原理与应用[M].北京:中国建筑工业出版社,2004:33–38.
    [142]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2000:93–103.
    [143] Ding Y N, Azevedo C, Aguiar J B, Jalali S. Study on residual behaviour andflexural toughness of fibre cocktail reinforced self compacting highperformance concrete after exposure to high temperature[J]. Construction andBuilding Materials,2012,26(1):21–31.
    [144]李敏.高强混凝土受火损伤及其综合评价研究[D].东南大学博士学位论文,2005:78–79.
    [145]李海艳.活性粉末混凝土高温爆裂及高温后力学性能研究[D].哈尔滨工业大学博士学位论文,2012.
    [146] Debicki G, Haniche R, Delhomme F. An experimental method for assessingthe spalling sensitivity of concrete mixture submitted to high temperature[J].Cement and Concrete Composites,2012,34(8):958–9632.
    [147] Matesova D, Bonen D, Shah S P. Factors affecting the resistance ofcementitious materials at high temperatures and medium heating rates[J].Mater Struct,2006,39(9):455–469.
    [148] Kanema M, de Morais M V G, et al. Thermohydrous transfers in a concreteelement exposed to high temperature: experimental and numericalapproaches[J]. Heat Mass Transf,2007,44(2):149–164.
    [149] Reis M, Neves I, et al. High–temperature compressive strength of steel fiberhigh strength concrete[J]. Joumal of Materials in civil Engineering,2001,3(13):230–234.
    [150] Peng G F, Yang W W, et al. Explosive spalling and residual mechaniealproperties of fiber–toughened high-performance conerete subjected to hightempratures[J]. Cement and Conerete Researeh,2006,36(4):723–727.
    [151] Hognestad E, Hanson N W, McHenry D. Concrete Stress Distribution inUltimate Strength Design[J]. ACI Journal, Proceeding,1955,52(4):455–479.
    [152] Saenz L P. Discussion of Equation for the Stress-strain Curves of Concrete byDesayi and Krishnan[J]. ACI Journal,1964,61(9):381–393.
    [153] GB50010-2002混凝土结构设计规范.中国建筑工业出版社.2002:41–42.
    [154] Khennane A, Baker G. Uniaxial model for concrete under variabletemperature and stress[J]. ASCE, Journal of Engineering Mechanics,1993,119(8):1507–1525.
    [155] Comites Euro-International Du Beton. Fire Design of Concrete Structures-inaccordance with CEB/FIP Model Code90. CEB Bulletin D'Information No.208(Switzerland, July1991).
    [156] Dougill J W. Some effects of thermal volume changes on the properties andbehavior of concrete[J]. The Structure of Concrete, Cement and ConcreteAssociation, London,1968:499–513.
    [157] Roux F J P. Concrete at elevated temperature[D]. PhD Thesis, University ofCape Town,1974.
    [158] Fu Y F, Wong Y L, Poon C S, Tang C A, Lin P. Experimental study ofmicro/macro crack development and stress–strain relations of cement-basedcomposite materials at elevated temperatures[J]. Cem. Concr. Res.,2004,34(5):789–797.
    [159] Taerwe L R. Influence of steel fibres on strain–softening of high strengthconcrete[J]. ACI Mater,1992,88(6):54–60.
    [160] Nataraja M C, Dhang N, Gupta A P. Stress–strain curves for steel fibrereinforced concrete under compression[J]. Cem. Concr. Compos,1999,21(5/6):383–390.
    [161] FIB Bulletin38. Fire design of concrete structures–materials, structures andmodelling, The International Federation for Structural Concrete(fib–fédération internationale du béton),2007(Switzerland).
    [162] Mehta P K, Monteiro P J M. Concrete: structure, properties and materials[C].2nd ed. New Jersey: Prentice Hall International,1993:130–139.
    [163] Chen W F. Plasticity in Reinforced Concrete[M]. McGraw-Hill, New York,1982:400–474.
    [164] Lau A, Anson M. Effect of high temperatures on high performance steel fibrereinforced concrete[J]. Cement and Concrete Research,2006,36(9):1698–1707.
    [165] Hannant D S. Fiber Cements and Fiber Concretes[M]. Wiley, New York,1987:210–219.
    [166] Ayd n S, Yaz c H, Baradan B. High temperature resistance of normal strengthand autoclaved high strength mortars incorporated polypropylene and steelfibers[J]. Construction and Building Materials,2008,22(4):504–512.
    [167] Noumowe A N, Siddique R, Debicki G. Permeability of high–performanceconcrete subjected to elevated temperature (600°C)[J]. Construction andBuilding Materials,2009,23(5):1855–1861.
    [168] Xiao J Z, Falkner H. On residual strength of high-performance concrete withand without polypropylene fibres at elevated temperatures[J]. Fire SafetyJournal,2006,41(2):115–121.
    [169] Chan S Y N, Peng G F, Anson M. Residual strength and pore structure ofhigh-strength concrete and normal-strength concrete after exposure to hightemperatures [J]. Cement and Concrete Composites,1999,21(1):23–27.
    [170] Rashad A M, Bai Y, Basheer P A M, Collier N C, Milestone N B. Chemicaland mechanical stability of sodium sulfate activated slag after exposure toelevated temperature[J]. Cement and Concrete Research,2012,42(2):333–343.
    [171] Nimityongskul P, Daladar T U. Use of coconut husk ash, corn cob ash andpeanut shell ash as cement replacement[J]. Journal of Ferrocement,1995,25(1):35–44.
    [172] Zeiml M, Leithner D, Lackner R, Mang H A. How do polypropylene fibersimprove the spalling behavior of in-situ-concrete?[J]. Cement and ConcreteResearch,2006,36(5):929–942.
    [173] Garboczi E, Snyder K, Douglas J, Thorpe M. Geometrical percolationthreshold of overlapping ellipsoids[J]. Phys. Rev. E: Stat. Phys., Plasmas,Fluids, Relat. Interdiscip. Top.52,1995:819–828.
    [174] Bakhtiyari C S, Allahverdi A, et al. Self-compacting concrete containingdifferent powders at elevated temperatures–Mechanical properties andchanges in the phase composition of the paste[J]. Thermochimica Acta,2011,514(1/2):74–81.
    [175] Demirel B, Kele temur O. Effect of elevated temperature on the mechanicalproperties of concrete produced with finely ground pumice and silica fume[J].Fire Safety Journal,2010,45(6/8):385–391.
    [176] Taylor H F W. Cement Chemistry[M]. Academic Press, New York,1990.
    [177] Peng G F, Chan S Y N, Anson M. Decomposition in hardened cement pastesubjected to elevated temperatures up to800°C[J]. Advances in CementResearch,2001,13(2):47–52.
    [178] Peng G F, Huang Z S. Change in microstructure of hardened cement pastesubjected to elevated temperatures[J]. Constr. Build. Mater.2008,22(4):593–599.
    [179] Dweck J, Buchler P M, Coelho A C V, Cartledge F K. Hydration of a Portlandcement blended with calcium carbonate[J]. Thermochim Acta,2010,346(1/2):105–113.
    [180] Ukrainczyk N, Ukrainczyk M, ipu i J, Matusinovi T. XRD and TGAinvestigation of hardened cement paste degradation[C]. In:11th Conf. onMaterials, Processes, Friction and Wear, MATRIB’06, Vela Luka,2006:243–249.
    [181] Poon C S, Azhar S, Anson M, Wong Y L. Comparison of the strength anddurability performance of normal and high strength pozzolanic concretes atelevated temperatures[J]. Cement and Concrete Research,2001,31(9):1291–1300.
    [182] Pons G, Mouret M, et al. Mechanical Behaviour of Self-compacting Concretewith Hybrid Fibre Reinforcement[J]. Materials and Structures,2007,40(2):201–210.
    [183] Sahmaran M, Yurtseven A, Yaman I O. Workability of Hybrid FiberReinforced Self-compacting Concrete[J]. Building and Environment,2005,40(12):1672–1677.
    [184]焦楚杰,孙伟,秦鸿根,李丽.聚丙烯-钢纤维高强混凝土弯曲性能试验研究[J].建筑技术,2004,35(1):48–49.
    [185] de Rivaz B. Utilisation des bétons de fibres métalliques dans les voussoirspréfabriqués de tunnel[C]. Journée technique sur l’utilisation des bétons defibres métalliques dans le domaine des structures, éléments structuraux etproduits, initialement armés ou précontraints, Paris, France;25Juin2008:39–55.
    [186] Chen B, Liu J. Residual strength of hybrid-fiber reinforced high strengthconcrete after exposure to high temperature[J]. Cement Concrete Res,2004,34(6):1065–1069.
    [187] Suhaendi S L, Takashi H. Effect of short fibers on residual permeability andmechanical properties of hybrid fibre reinforced high strength concrete afterheat exposition[J]. Cement Concrete Res,2006,36(9):1672–1678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700