用户名: 密码: 验证码:
流体动压滑动轴承静特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
径向滑动轴承被广泛应用于汽轮机、燃气轮机、齿轮箱等动力传输系统中,具有承载能力大、功耗小、耐冲击、抗振性好、运转精度高等突出特点。对滑动轴承的温升控制是保证滑动轴承承载能力、定位精度的必要条件,随着工程应用对高转速、高载荷滑动轴承的需求,滑动轴承轴瓦温升问题逐渐成为人们关心的焦点。本文以径向滑动轴承为研究对象,采用理论计算与试验相结合的方法,深入分析了滑动轴承的静特性及影响因素,为滑动轴承的优化设计提供了理论基础。本文主要工作内容如下:
     (1)论文详细介绍了滑动轴承静特性、润滑方式、油膜空穴、结构形式的国内外研究现状。建立了描述滑动轴承流场的输运方程,并考虑了滑动轴承油膜的空穴效应及润滑油的粘温效应,利用SIMPLE算法求解了控制方程,验证了网格独立性,并与以往学者的研究成果进行了对比。
     (2)论述了滑油粘性耗散、滑油粘温特性、滑油通流特性之间的耦合关系,分析了滑动轴承内滑油润滑冷却的换热机理,进一步通过对比计算说明在滑动轴承流场计算中,考虑滑油粘温效应的必要性及重要性。计算并分析了供油压力、供油温度、空穴压力对滑动轴承静特性的影响,以及油膜压力、轴瓦温度、空穴气相体积分数等参数的分布变化规律。
     (3)分析了周向凹槽和轴向微尺度凹槽对滑动轴承静特性的影响规律。结果表明,周向凹槽对滑动轴承的影响体现在两个方面,当凹槽深度小于毫米量级时,周向凹槽对静特性影响较小,当凹槽深度处于毫米量级时,影响较大,在承载区开有毫米量级周向凹槽会降低滑动轴承的静特性,而在非承载区开有毫米量级周向凹槽会提高滑动轴承的承载力。轴向微尺度凹槽会降低滑动轴承的静特性。
     (4)为了进一步研究周向凹槽结构变化对轴承静特性的影响机理,本文分析了滑动轴承中的二次流。首先研究了同心圆筒以及顶盖驱动流场中的涡结构,进一步分析了滑动轴承中的涡流,包括油膜流场的泰勒涡以及由于剪切流动在凹槽内形成的驱动涡。当滑动轴承轴瓦开有凹槽后,随着Re的增大,凹槽内开始出现Taylor涡旋,Taylor出现后滑动轴承的换热能力得到提高。由于受到主轴运动的剪切作用,当轴瓦周向凹槽尺度在毫米量级时,滑动轴承轴瓦凹槽内的产生驱动涡,使得流体产生向着与主轴转动相反方向的流动,这种反向回流运动使得凹槽在承载区时滑油流量减少,凹槽在非承载区时流量增加,当轴瓦周向凹槽尺度在微米量级时,没有发生反向流动现象。
     (5)在M2000-A型摩擦磨损试验机上进行了滑动轴承的试验研究。测量了轴承摩擦力矩和轴瓦最大温升值,并与理论计算结果进行了对比,分析了试验误差。
Hydrodynamic journal bearing is widely used in steam turbine, gas turbine, gearbox andother power transmission systems, it presents many characteristics such as high load capacity,low power dissipation, impact resistance, high anti-shaking, high-precision. Controlling thejournal bearing bush temperature within a range is a requirement for ensuring the journalbearing’s load capacity and location precision. As demand of higher speed and load capacityof journal bearing, the temperature rise of bush has become the focus of many scholars. Thisdissertation takes hydrodynamic journal bearing as research subject, the method of combiningexperiment and theoretical computation is applied, and Computational fluid dynamics (CFD)method has been used. The static characteristics and other factors affect static characteristicshave been studied deeply, this dissertation could provide the theory base for journal bearingoptimization design.
     The main content of the dissertation are flowed:
     (1) The hydrodynamic journal bearing static characteristics, lubrication method, andjournal bearing structural style have been reviewed. The transport equations for journalbearing flow field are given, cavitation effect and the temperature-viscosity effect of oil areconsidered, SIMPLE algorithm was applied to solve the governing equations. The gridindependency investigation has been carried out and the numerical results have beencompared with other scholars’ work, the model predictions agree well with test results.
     (2) The bush temperature rise, oil film load capacity, friction moments, oil flow rateshave been calculated in this dissertation. Firstly, the heat transfer mechanism of journalbearing has been discussed, the results show that when calculating the flow field of thejournal bearing, the energy equation and viscosity-temperature effect could not be ignored.The effects of oil supply pressure, supply temperature, cavitation pressure have beenanalyzed.
     (3) The circumferential groove and micro transverse groove’s effects on journal bearingperformance have been simulated. For circumferential groove, the groove angle (location),groove width and groove depth in both load and unload zone have been considered. Thepressure distribution and other parameters have been given and discussed. When the circumferential groove is within a millimeter, the circumferential groove in unload zone couldenhance the cooling capacity.
     (4) In order to learn the mechanism of circumferential groove effects on journal baring staticperformance, the secondary flow in journal bearing flow field has been discussed. Theconcentric-cylinders Taylor flow and lid-driven flow have been simulated as a basic research,after that, the Taylor vortex in journal bearing flow field and the backflow vortex caused byshearing action in groove has been analyzed. The influential mechanism of circumferentialgroove is embodied in mass flow rate of the oil, a backflow vortex is generated incircumferential groove, which results in if the groove is in load zone, the oil mass flow rate isdecreased, if the groove is in unload zone, the flow rate is increased. When thecircumferential groove is microndimension, it affects very slightly. When there are microtransverse grooves in either load zone or unload zone, the friction coefficient of the journalbearing is increased.
     (5) An experimental study has been carried out by designing a new journal bearing whoseratio of height to radius is0.375, the experiment is done in friction and wear testing machineM2000-A. The maximum bush temperature and journal bearing friction torque have beenmeasured, the experiment results have been compared with CFD.
引文
[1]杨建刚,蔡霆,高亹.汽轮机轴承动力特性三维流固耦合分析模型.2004(8):147-151.
    [2]徐振忠,李应生.船舶齿轮减速器齿轮手册第二版.机械工业出版社.2000.
    [3] J霍林主编.上海交通大学摩擦学研究室译.机械工业出版社.1981.
    [4]成大先.机械设计手册.轴承.化学工业出版社.2005.
    [5]余放,王明为.舰船减速齿轮箱装置的加工与设计.国防工业出版社.2008.
    [6]富彦丽,马希直,朱均.圆轴承三维热流体动力润滑的研究.航空动力学报.2002(10):469-479.
    [7] M. Deligant, P. Podevin, G. Descombes. CFD model for turbocharger journal bearingperformances. Applied Thermal Engineering.2011(31):811-819.
    [8] M. Deligant, P. Podevin, F. Vidal, W. Tyminski, S. Guilain, H. Lahjaily,3D thermalsteady-state CFD analysis of power friction losses in a turbocharger’s journal bearing andcomparison with finite difference method and experimentation,12th EAEC, Bratislava2009.
    [9] P. Podevin, G. Descombes, V. Hara, A. Clenci, C. Zaharia, Performances of Turbochargersat Low Speeds. EAEC, Belgrade,2005.
    [10]温诗铸.摩擦学原理.清华大学出版社.2005.
    [11]董勋.润滑理论.上海交通大学出版社.1984.
    [12]张直明.滑动轴承的流体动力润滑,高等教育出版社.1982.
    [13]李强,郑水英,刘淑莲.计入JFO边界条件的滑动轴承性能分析.机械强度.2010(32):270-274.
    [14] Shiuh-Hwa Shyu, Yeau-Ren Jeng, Fuli Li. A Legendre collocation method forthermohydrodynamic journal-bearing problems with Elrod's cavitation algorithm.Tribology International.2008(41):493-501.
    [15]B. Vincent, P. Maspeyrot, J. Frene. Cavitation in Noncircular Journal Bearings. Wear.1997(207):122-127.
    [16]E.G. Olson, J.F. Booker. Hydrodynamic Analysis of Journal Bearings with StructuralInertia and Elasticity by a Modal Finite Element Method. Tribology Series.1997(32):661-673.
    [17]T. Jezy. Cavitation Effects on the Dynamies of Journal Bearings. Applied Meehanies andEngineering.2005(10):515-526.
    [18]Xiaoli Wang, Junyan Zhang, Hui Dong. Analysis of bearing lubrication under dynamicloading considering micropolar and cavitating effects. Tribology International.2011(44):1071-1075.
    [19]王基,吴新跃,朱石坚.镶嵌式径向滑动轴承静特性分析.海军工程大学学报.2003(2):50-54.
    [20]张清雷,卢修连,朱均.边界条件对滑动轴承性能的影响.润滑与密封.2005(5):13-15.
    [21]潘菁菁,苏荭,王小静,张直明.基于质量守恒边界条件的动载滑动轴承性能分析.润滑与密封.2005(3):41-43.
    [22]M K.P. Gertzos, P.G. Nikolakopoulos, C.A. Papadopoulos. CFD analysis of journalbearing hydrodynamic lubrication by Binghamlubricant. Tribology International.2008(41):1190-1204.
    [23]彭娅玲,张志国,陈汝刚等. CFD辅助船舶艉部水润滑轴承设计的研究.润滑与密封.2008(5):72~76.
    [24]Zenglin Guo, Toshio Hirano, R.Gordon Kirk. Application of Computational FluidDynamic Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearingand Squeeze Film Damper. Journal of Engineering for Gas Turbines and Power,2005(127):445-451.
    [25]Amir Jourak. CFD Analysis of a Journal Bearing with a Microgroove on the Shaft.Master Thesis. Lulea University of Technology.2008.
    [26]Bogdan R. Kucinschi, Abdollah A. Afjeh. A Lattice-Boltzmann Approach to Fluid FilmLubrication. ASME Journal of Tribology.2010(32):1-6.
    [27]Bernard J. Hamrock, Steven R. Schmid, BoO. Jacobson. Fundamentals of Fluid FilmLubrication. McGraw-Hill Companies. New York.2004.
    [28]D. Vijayaraghavan. An Efficient Numerical Procedure for Thermohydrodynamic Analysisof Cavitating Bearing. Trans. ASME Journal of Tribology.1996(118):555-563.
    [29]D. Vijayaraghavan, T. G. Keith. Development and Evaluation of Cavitation Algorithm.Tribology Transactions.1989(32):225-233.
    [30]A. Kumar, J. F. Booker. A Finite Element Cavitation Algorithm. ASME Journal ofTribology.1991(113):276-286.
    [31]A. K. Singhal, H.Y. Li, M.M. Athavale, and Y. Jiang. Mathematical Basis and Validationof the Full Cavitation Model.ASME FEDSM'01, New Orleans, Louisiana,2001.
    [32]P.J. Zwart, A.G. Gerber, and T. Belamri. A Two-Phase Flow Model for PredictingCavitation Dynamics. In Fifth International Conference on Multiphase Flow, Yokohama,Japan,2004.
    [33]G.H. Schnerr and J. Sauer. Physical and Numerical Modeling of Unsteady CavitationDynamics. In Fourth International Conference on Multiphase Flow, New Orleans, USA,2001.
    [34]L. Roy. S. K. Laha. Steady state and dynamic characteristics of axial grooved journalbearings. Tribology International.2009(42):754-761.
    [35]D. E. Brewe. Theoretical Modeling of the Vapor Cavitation in Dynamically LoadedJournal Bearings. Journal of Tribology.1986(108):628-638.
    [36]D. C. Sun, D. E. Brewe. Simultaneous Pressure Measurement and High-SpeedPhotography Study of Cavitation in a Dynamically Loaded Journal Bearing. ASMEJournal of Tribology.1993(115):88-95.
    [37]San Andrés, L., and O. de Santiago, Dynamic Response of Squeeze Film DampersOperating with Bubbly Mixtures. ASME Journal of Gas Turbines and Power.2002(126):408-415.
    [38]San Andrés, L., and S. Diaz, Flow Visualization and Forces from a Squeeze Film Damperwith Natural Air Entrainment. ASME Journal of Tribology.2003(125):325-333.
    [39]Diaz, S., and L. San Andrés. Pressure Measurements and Flow Visualization in a SqueezeFilm Damper Operating with a Bubbly Mixture. ASME Journal of Tribology,2002(124):346-350.
    [40]陈淑江.螺旋油楔滑动轴承润滑机理的理论与试验研究.博士论文.山东大学.2007.
    [41]杨莹.螺旋油楔滑动轴承空穴特性的理论与试验研究.博士论文.山东大学.2010.
    [42]Chen, X.Y. Sun, M.L. Experimental investigation of time-dependent cavitation in anoscillatory squeeze film. Science in China Ser. G Physics. Mechanics&Astronomy.2004(47):107-112.
    [43]Sun, M.L., Zhang, Z.M.ect. Experimental Study of Cavitation in an Oscillatory OilSqueeze Film. Tribology Transactions.2008(51):341-350.
    [44]吴晓玲主编.润滑设计手册.化学工业出版社.2006.7.
    [45]王丽丽,葛培琪,路长厚,王珉.螺旋槽流体动压滑动轴承数值分析.润滑与密封.2005(172):24-27.
    [46]王立刚,曹登庆,王晋麟等.椭圆轴承-转子系统的稳定性与分岔.航空动力学报.2008(33):263-269.
    [47]王鸷,任兴民,康朝晖等.浮环轴承轴颈与浮环同步进动之油膜特性研究.机械科学与技术.2011(30):265-269.
    [48]徐华,姜歌东,丛红等.四瓦可倾瓦径向滑动轴承动力特性的试验研究.摩擦学学报.2001(21):385-389.
    [49]G. H. Jang, D. I. Chang. Analysis of a Hydrodynamic Herringbone Grooved JournalBearing Considering Cavitation. ASME Journal of Tribology.2000(122):103-109.
    [50]G. H. Jang, J. W. Yoon. Nonlinear Dynamic Analysis of a Hydrodynamic Journal BearingConsidering the Effect of a Rotating or Stationary Herringbone Groove. ASME Journal ofTribology.2002(124):297-304.
    [51]A. Harnoy, M. M. Khonsari,Hydro-Roll. A Novel Bearing Design with Superior ThermalCharaeteristies. Tribology Transactions.1996(39):455-461.
    [52]Stanislaw Strzeleeki. Maximum Film Pressure and Temperature of Two-lobe JournalBearings with Different Bush Profiles. Lubrication Science.2000(12):253-264.
    [53]P. J. Ogrodnik, M. I. Goodwin, M. P. Roaeh. Novel Variable Impedance Hydrodynamicoil film Bearing Part l: Theoretieal Modeling. Journal of Engineering Tribology.1996(210):55-63.
    [54]P. J. Ogrodnik, M. I. Goodwin, M. P. Roaeh. Novel Variable Impedance HydrodynamicOil-film Bearing:Part2:Experimental Identification of the Steady State and DynamicCharacteristics. Journal of Engineering Tribology.1996(210):65-74.
    [55]Florin Dimofte. Wave Journal Bearing with Compressible Lubricant-Part1: the WaveBearing Concept and a Comparison to the Plain Circular Bearing. STLE TribologyTransactions.1995(38):153-160.
    [56]Florin Dimofte. Wave Journal Bearing with Compressible Lubricant-Part2: AComparison of the Wave Bearing with a Wave-groove Bearing and a Lobe Bearing.STLE Tribology Transactions.1995(38):364-372.
    [57]J. K. Martin. Mathematieal Model and Numerical Solution Technique for a NovelAdjustable Hydrodynamic Bearing. International Journal for Numerieal Methods inFluids.1999(30):845-864.
    [58]F. Hendriks, B.S. Tilley, J. Billingham, P. Dellar, and R. Hinch. Dynamics of the Oil-AirInterface in Hard Disk Drive Bearings, IEEE Trans. on Magnetics,2005(41):2884-2886.
    [59]M. E. Nicoleta, F. Dimofte. T. G. Keith. A Stability Analysis for a HydrodynamicThree-wave Journal Bearing. Tribology International.2008(41):434-442.
    [60]王进礼,蔡林等.用气液两相流体冷却润滑的滑动轴承.专利号:200910072175.
    [61]张文明,孟光,陈迪.微转子系统径向气体轴承特性.机械工程学报.2008(44):25-33.
    [62]D. L. Cabrera, N. H. Woolley, D. R. Allanson. Film Pressure Distribution inWater-lubricated Rubber Journal Bearings. Proc. IMechE. Part J: Engineering Tribology.2003(219):125-132.
    [63]温诗铸.润滑理论研究的进展与思考.摩擦学学报.2007(27):497-503.
    [64]闫通海.气液两相流体冷却润滑技术及其应用.哈尔滨:哈尔滨工程大学出版社.1995.12.
    [65]杨和中,刘厚飞. TURBOLUB油气润滑技术(一).润滑与密封.2003(1):107-110.
    [66]Cai Lin, Wang Jinli, Zheng Hongtao. A Numerical Study on Oil-air Lubrication ofCooling a Hot Rotating Cylinder. International Journal of Digital Content Technology andits Applications.2011(5):332-339.
    [67]Cheng-Hsien Wu,Yu-Tai Kung. A parametric study on oil/air lubrication of a high-speedspindle. Precision Engineering.2005(29):162-167.
    [68]B.Tasdelena, T.Wikblomb, S.Ekeredc. Studies on minimum quantity lubrication (MQL)and air cooling at drilling. Journal of materials processing technology2008(200):339–346.
    [69]Takashi Ueda, Akira Hosokawa, Keiji Yamada. Effect of Oil Mist on Tool Temperature inCutting. ASME Journal of Manufacturing Science and Engineering.2006(128):130-135.
    [70]B.R. Hohn, K. Michaelis, H. P. Otto. Minimised gear lubrication by a minimum oil/airflow rate. Wear2009(266):461–467.
    [71]K. Ramesh, S.H.Yeo, Z.W.Zhong, Akinori Yui. Ultra-high-speed thermal behavior of arolling element upon using oil–air mist lubrication. Journal of Materials ProcessingTechnology.2002(127):191–198.
    [72]谢军,蒋书运,王兴松等.高速滚动轴承油气润滑试验研究.润滑与密封.2006(9):114-119.
    [73]蒋天合,张保.油气润滑应用在高速轴承中的试验研究.机械制造与自动化.2008(37):29-32.
    [74]王建文,安琦.油气润滑最佳供油量研究轴承.2009(1):39-42.
    [75]王建文,巩彬彬,刘俊等.滚动轴承油气润滑性能的试验研究.华东理工大学学报(自然科学版).2007(33):436-440.
    [76]Stanley I. Pine,Hans R. Signe, Erwin V. Zaretsky. Comparison Between Oil-Mist andOil-Jet Lubrication of High-Speed, Small-Bore, Angular-Contact Ball Bearings.Tribology Transactions.2001(44):462-473.
    [77]S.H. Yeo, K. Ramesh,Z.W. Zhong. Ultra-high-speed grinding spindle characteristicsupon using oil/air mist lubrication. International Journal of Machine Tools&Manufacture,2002(42):815-823.
    [78]罗传林.油气二相流动静压滑动轴承电主轴承载性能研究.广东工业大学工学硕士学位论文.2006.5.
    [79]Lin Cai, Jinli Wang. et al. An Experiment Study on Oil-Air Lubrication of SlidingFriction Element. Applied Mechanics and Materials.2010(34):181-185.
    [80]Nikolajsen, J. L. The effect of aerated oil on the load capacity of a plain journal bearingASME, Tribol. Trans.1999(42):58–62.
    [81]Nikolajsen, J.L. Viscosity And density models for aerated oil in fluid film bearings[J].ASME, Tribol.Trans.1999(42):186–191.
    [82]M. J. Goodwin, D Dong, HYu, J L Nikolajsen. Theoretical and experimental investigationof the effect of oil aeration on the load-carrying capacity of a hydrodynamic journalbearing. Proc. IMechE Vol.221Part J: J. Engineering Tribology.2007(221):779-786.
    [83]Song CHOI, Kyung Woong KIM. Analysis of bubbly Lubrication in Journal Bearings.JSME International Journal. Series C,2002(45):802-808.
    [84]Sang Myung Chun. Aeration effects on the performance of a turbocharger journal bearing.Tribology International.2008(41):296–306.
    [85]Chun, Sang Myung. A parametric study on bubbly lubrication of high-speed journalbearings. Tribology International,2002(35):1-13.
    [86]王丽丽,葛培琪,路长厚.液体动压径向滑动轴承供油压力对静特性的影响.润滑与密封.2005(2):26-29.
    [87]邹文辉,徐华,周建军,马希直.轴向槽轴承的绝热瞬态特性分析.润滑与密封.2005(4):33-36.
    [88]李建,程先华.动静压支承滑动轴承性能分析.上海交通大学学报.2006(40):26-30.
    [89]苏红,毛军,薛琳.一种复合式滑动轴承的试验研究.北方交通大学学报.2003(8):11-14.
    [90]王晓力,朱克勤.计入应力偶效应和空化效应的滑动轴承热流体动力润滑数值研究.2002(19):160-164.
    [91]吕延军,张永芳,季丽芳.可倾瓦轴承-转子系统非线性动力行为.振测试与诊断.2010(30):539-543.
    [92]田丰君,车小红,杨志刚等.双向支撑超声波悬浮轴承的设计.光学精密工程.2009(17):813-818.
    [93]常秋英,孟永刚,温诗铸,杨沛然.径向可倾瓦轴承的热弹流润滑分析.机械工程学报.2002(38):77-82.
    [94]刘大全,张文,郑铁生.粘温效应下椭圆瓦轴承动特性系数一维模型算法分析.水动力学研究与进展.2006(21):147-154.
    [95]L. Costa, A. S. Miranda, M. Fillon and J. C. P. Claro. An analysis of the influence of oilsupply conditions on the thermohydrodynamic performance of a single-groove journalbearing. Journal of Engineering Proceedings of the Institution of Mechanical. Part J:Tribology Engineers.2002(147):133-144.
    [96]F. P. Brito, A. S. Miranda. Experimental Investigation of the Influence of SupplyTemperature and Supply Pressure on the Performance of a Two Axial GrooveHydrodynamic Journal Bearing. Proceedings of IJTC2006: STLE/ASME InternationalJoint Tribology Conference. San Antonio, TX, USA.2006(10):1-9.
    [97]A. Arab Solghar, F. P. Brito, J. C. P. Claro, and S. A. Gandjalikhan Nassab. Anexperimental study of the influence of loading direction on the thermohydrodynamicbehaviour of twin axial groove journal bearing. Journal of Engineering Proceedings of theInstitution of Mechanical. Part J: Tribology Engineers.2011(225):245-254.
    [98]Amit Chauhan, Rakesh Sehgal, Rajesh Kumar Sharma. Thermohydronamics analysis ofelliptical journal bearing with different grade oils. Tribology International.2010(43):1970-1977.
    [99]L. Roy. Thermo-hydrodynamic Performance of Grooved oil Journal Bearing. TribologyInternational.2009(42):1187-1198.
    [100] H. C. Garg. Vijay Kumar, H. B. Sharda. Performance of slot-entry hybrid journalbearings considering combined influences of thermal effects and non-Newtonianbehavior of lubricant. Tribology International.2010(43):1518-1531.
    [101] Nicoleta M. Ene, Florin Dimofte, Theo G. Keith Jr. A Stability analysis for ahydrodynamic three-wave journal bearing. Tribology International.2008(41):434-442.
    [102] Sami Naimi, Mnaouar Chouchance, Jean-Louis Liger. Steady state analysis of aHydrodynamic short bearing supplied with a circumferential groove. Comptes RendusMecanique.2010(338):338-349.
    [103] T. Syverud, Experiment investigation of the temperature fade in the cavitation zoneof full journal bearing, Tribology International,2001(34):859-870.
    [104]刘顺隆,郑群.计算流体力学.哈尔滨工程大学出版社.1998.
    [105]陶文铨.计算传热学的近代进展.北京:科学出版社,2000.
    [106] Ferron, J., Frene, J. and Boncompain, R. A study of the thermohydrodynamicperformance of a plain journal bearing. Comparison between theory and experiments.Trans. ASME, J. Lubrication Technol.,1983(105):422-428.
    [107] S.V.帕坦卡著,张政译.传热与流体流动的数值计算.北京:科学出版社,1992.
    [108]周先桃,潘家祯,陈理清.湍流泰勒涡流特性的数值模拟.华东理工大学学报.2006(32):617-622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700