用户名: 密码: 验证码:
基于锥形无轴承异步电机的五自由度转子系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无轴承电机除具有普通磁悬浮轴承无摩擦、无磨损以及无需润滑的优点外,还具有电动机的旋转驱动功能,因此与传统的“磁轴承+电动机”结构相比,其结构简单,轴向尺寸短,更易于实现高速和大功率运行。
     为控制转子的五个自由度,现有的无轴承电机,一般需要配置磁轴承,磁轴承的存在,增加了系统无功损耗和转子轴向长度,制约了转子的临界转速及轴功率输出。
     针对上述配置磁轴承转子系统的固有缺陷,并进一步发挥无轴承电机的优势,本文提出一种新型的五自由度转子系统,由两台锥形无轴承异步电机构成,可实现转子五个自由度的主动控制和旋转驱动,系统中无需磁轴承,具有转子长度短、效率高、结构简洁、可靠性高等诸多优点。
     针对所设计的五自由度转子系统,本文从悬浮力分析入手,对其机电结构和控制系统进行了全面深入的研究,主要包括如下几点:
     在分析悬浮力产生原理的基础上,建立了基于气隙磁密的悬浮力解析模型,以及基于气隙磁链和电感的径向悬浮力解析模型;分析了悬浮绕组转子电流对悬浮力的影响,得出了悬浮绕组定子电流与励磁电流之比随频率的变化规律,并研究了给定悬浮力与实际悬浮力偏差的补偿方法。
     提出一种转矩绕组气隙磁密幅值(或气隙磁链幅值)的差动控制方法,对轴向悬浮力进行了线性化;设计了转子径向位移控制子系统、转子轴向位移控制子系统以及转速控制子系统之间的解耦控制策略,并给出了控制系统的总体结构图,最后通过仿真验证了所提出控制策略的有效性。
     结合异步电机、锥形异步电机以及传统无轴承异步电机的设计方法,提出了所设计五自由度转子系统的机电结构设计流程,给出了机电结构设计的主要限制条件和设计方法,并以额定功率、额定转速、最大径向及轴向悬浮力为优化目标,设计出实验样机。
     建立了描述转子运动状态的广义坐标系,分析了转子的受力情况和耦合特性,推导出计及刚性转子倾斜的五自由度动力学模型,设计了集中控制系统和分散控制系统,并进行了仿真研究,给出了转子在高速运转时,采用交叉反馈控制补偿陀螺力矩的控制系统结构。
     为了取消转子位移传感器,进一步简化系统机械结构、缩短转子轴向长度,基于两相绕组等效模型,分析了在高频信号激励下,转子位移对转矩绕组及悬浮绕组的自感及其互感的影响,提出一种五自由度转子位移自检测方法,该方法适用于本文提出的“基于锥形无轴承异步电机的五自由度转子系统”,最后通过仿真验证了该方法的可行性。
     设计了控制系统硬件电路,并基于双DSP(数字信号处理器)编制了解耦控制程序,给出了实验样机的机械结构与绕组分布方式,测定了样机在水平放置时两套绕组轴线与水平轴之间的夹角,搭建了“基于锥形无轴承异步电机的五自由度转子系统”实验平台,并实现了其直接转矩控制和静态悬浮实验。
Bearingless motors can provide the driving torque without friction, abrasion and lubrication,by comparison with the conventional motors suspended with magnetic bearings, bearinglessmotors have the merits of more sample structure, shorter rotor, higher rotational speed andoutput power.
     However, in order to actively control five-DOF of the rotors, the conventional bearinglessmotors would work with magnetic bearings. This approach increases power loss of entiresystem and the length of rotor, and the output power and critical rotational speed will be solimited.
     In order to avoid the inherent defects of the above rotor systems equipped with magneticbearings, and further make full use of bearingless motor, in this dissertation, a novel5-DOFactively controlled rotor system that combines two bearingless induction motors with conicalair-gap (5-DOF Rotor System Based on Conical Bearingless Asynchronous Motors,5-DOFCBAM) is presented. The5-DOF CBAM has obvious advantages of short rotor, highefficiency, simple structure and high reliability, and the rotor can be fully leviated and drivedwithout any magnetic bearing.
     Basing on the analysis of magnetic levitation forces of5-DOF CBAM, theelectro-mechanical structure and control system are fully and deeply researched in followingaspects.
     The mathematical models of levitation forces based of air-gap flux magnetic densities andflux linkages are deduced, and the effect of rotor current generated by levitation windings onlevitation forces and the ratio of levitation windings stator current and excitation currentvarying with frequency are analyzed, and the compensation method for the error of givenevitation force and actual evitation force is so proposed.
     A special differential control method of air-gap flux density amplitude (or air-gap fluxlinkage amplitude) generated by torque windings is proposed, to realize the linearization ofaxial controllable magnetic force. The interaction of radial displacement control subsystem,axial displacement control subsystem and speed control subsystem is analyzed, and thedecoupling control strategy is designed. In order to validate the models of magnetic levitationforces and control method, a simulation model is built, and the simulation results so obtainedare satisfactory.
     Combining the design methods of induction motors, conical induction motors andtraditional bearingless induction motors, a design flow of electro-mechanical structure for5-DOF CBAM is proposed, and the limiting condition and design method are given.Moreover, a prototype is designed according to the design goal of rating power, rotational speed and maximum levitation forces.
     The generalized coordinate system for rotor is established to describe the state of motion,with the state of inclined rotor considered. The5-DOF dynamics model of rigid rotor isdeduced by analyze the magnetic force and coupling characteristics in there dimension. Thestructures of centralized control system and distributed control system are designed andsimulated, and aiming at the situation of work at high speed, the structure of cross feedbackcontrol system using to compensate the effect of gyroscopic moment is designed.
     In order to cancel the displacement sensors, simplify the mechanical structure of system,and shorten the rotor, the effect of rotor displacements on self inductance and mutualinductance of torque windings and levitation windings is analyzed, on the basis of theequivalent model of two-phase windings. A rotor displacement self-sensing method in alldirection is further proposed for5-DOF CBAM. Filially, the effectiveness of this method isvalidated by simulation results.
     The circuits of the control system are designed, and the decoupling control program basedon double DSPs (Digital Singnal Processor) is compiled. The mechanical structure andwindings distribution are given, and the angles between the axes of2-pole and4-polewindings and horizontal axis are mensured when the prototype of5-DOF CBAM is placedhorizontally. The experimental platform for5-DOF CBAM is built, and the speed regulationusing DTC (Direct Torque Control) and static levitation are accomplished.
引文
[1] Fukao T. The evolution of motor drive technologies-development of bearinglessmotors[J].Proceedings of3rd International Power Electronics and Motion Control Conference,2000,1:33-38.
    [2] Oshima M,Miyazawa S,Deido T,et al.Characteristics of a permanent magnet type bearinglessmotor[J].IEEE Transactions on Industry Applications,1996,32(2):360-370.
    [3]邓智泉,何礼高,严仰光.无轴承交流电机的原理及应用[J].机械科学与技术,2002,21(5):730-733.
    [4]邓智泉,严仰光.无轴承交流电动机的基本理论和研究现状[J].电工技术学报,2000,15(2):29-35.
    [5]谢宝昌,任永德,王庆文.磁悬浮电机及其应用的发展趋势[J].微电机,1999,32(6):28-30.
    [6] Hemrnna P K.Radial active magnetic bearing:UK,l478868[P].1973-12-20.
    [7] Hemrnna P K.A radial active magnetic bearing have a rotating drive:UK,l500809[P].1974-2-9.
    [8] Bichsel J.The bearingless electrical machine[C].International Symposium on Magnetic SuspensionTechnology,Washington D C,USA,1991.
    [9] Chiba A,Furuichi R,Aikawa Y,et al.Stable operation of induction-type bearingless motor underloaded conditions[J].IEEE Transactions on Industry Applications,1997,33(4):919-924.
    [10] Chiba A,Fukao T.Optimal design of rotor circuits in induction type bearingless motors[J].IEEETransactions on Magnetics,1998,34(4):2108-2110.
    [11] Kobayashi K,Yamashita M,Chiba A,et al.Principles of self-excitation at radial force windingterminals in bearingless induction motors with a squirrel cage rotor[C].Conference Record of the2000IEEE Industry Applications Conference,Rome,Italy,2000,1:235-240.
    [12] Kiryu K,Chiba A,Fukao T.A radial force detection and feedback effects on bearinglessmotors[C].Conference Record of the2001IEEE Industry Applications Conference,Thirty-Sixth IASAnnual Meeting,Chicago,USA,2001,1:64-69.
    [13] Nussbaumer T,Karutz P,Zurcher F,et al.Magnetically levitated slice motors—an overview[J].IEEETransactions on Industry Applications,2011,47(2):754-766.
    [14] Warberger B,Kaelin R,Nussbaumer T,et al.50Nm/2500W bearingless motor for high-puritypharmaceutical mixing[J].IEEE Transactions on Industrial Electronics,2012,59(5):2236-2247.
    [15] Warberger B,Reichert T,Nussbaumer T,et al.Design considerations of a bearingless motor forhigh-purity mixing applications[C].2010International Symposium on Power Electronics ElectricalDrives Automation and Motion,Pisa,Italy,2010:1454-1459.
    [16] Okada Y,Yamashiro N,Ohmori K,et al.Mixed flow artificial heart pump with axial self-bearingmotor[J].IEEE/ASME Transactions on Mechatronics,2005,10(6):658-665.
    [17] Kanebako H,Okada Y.New design of hybrid-type self-bearing motor for small, high-speedspindle[J].IEEE/ASME Transactions on Mechatronics,2003,8(1):111-119.
    [18] Okada Y,Shimizu K,Ueno S.Vibration control of flexible rotor by inclination control magneticbearings with axial self-bearing motor[J]. IEEE/ASME Transactions on Mechatronics,2001,6(4):521-524.
    [19] Quang D N,Ueno S.Sensorless speed control of a permanent magnet type axial gap self-bearingmotor using sliding mode observer[C].10th International Conference on Control, Automation,Robotics and Vision,Hanoi,Vietnam,2008:1600-1605.
    [20] Quang D N,Ueno S.Modeling and control of salient-pole permanent magnet axial-gap self-bearingmotor[J].IEEE Transactions on Mechatronics,2011,16(3):518-526.
    [21] Quang D N,Ueno S.Axial position and speed vector control of the inset permanent magnet axial gaptype self bearing motor[C].2009IEEE/ASME International Conference on Advanced IntelligentMechatronics,Singapore,2009:130-135.
    [22] Chen L,Hofmann W.Analysis of radial forces based on rotor eccentricity of bearingless switchedreluctance motors[C].2010XIX International Conference on Electrical Machines,Rome,Italy,2010.
    [23] Chen L,Hofmann W.Speed regulation technique of one bearingless8/6switched reluctance motorwith simpler single winding structure[J]. IEEE Transactions on Industrial Electronics,2012,59(6):2592-2600.
    [24] Nenninger K,Amrhein W,Silber S.Bearingless Single-Phase Motor with Fractional PitchWindings[C].Seventh International Symposium on Magnetic Bearings (ISBM),Zurich,Switzerland,2000:371-375.
    [25] Bramerdorfer G,Jungmayr G,Amrhein W,et al.Bearingless segment motor with halbachmagnet[C].2010International Symposium on Power Electronics Electrical Drives Automation andMotion,Pisa,Italy,2010:1466-1471.
    [26] Khoo W K S.Bridge configured winding for polyphase self-bearing machines[J].IEEE Transactionson Magnetics,2005,41(4):1289-1294.
    [27] Khoo W K S,Garvey S D.Practical implementation of the bridge configured winding for self-bearingmachines[C].2005International Conference on Power Electronics and Drives Systems,KualaLumpur,Malaysia,2005,2:1146-1151.
    [28] Ren Z H,Stephens L S.Force characteristics and gain determination for a slotless self-bearingmotor[J].IEEE Transactions on Magnetics,2006,42(7):1849-1860.
    [29] Ren Z H,Stephens L S,Radun A V.Improvements on winding flux models for a slotless self-bearingmotor[J].IEEE Transactions on Magnetics,2006,42(7):1838-1848.
    [30]邓智泉,张宏荃,王晓琳等.基于气隙磁场定向的无轴承异步电机非线性解耦控制[J].电工技术学报,2002,17(6):19-24.
    [31]邓智泉,王晓琳,张宏荃等.无轴承异步电机的转子磁场定向控制[J].中国电机工程学报,2003,23(3):89-92.
    [32]朱熀秋,郝晓红,张婷婷等.基于微分几何的无轴承电机神经SMVS解耦控制[J].控制工程,2011,18(1):9-13.
    [33]朱熀秋,左文全,吕艳博等.密封泵中无轴承永磁同步电动机的试验研究[J].排灌机械工程学报,2011,9(6):471-476.
    [34]卜文绍,黄声华,万山明.无轴承二极电机麦克斯韦磁悬浮力解析模型[J].电机与控制学报,2006,10(5):443-446.
    [35] Bu W S,Huang S H,Wan S M,et al.General analytical models of inductance matrices of four-polebearingless motors with two-pole controlling windings[J].IEEE Transactions on Magnetics,2009,45(9):3316-3321.
    [36]王宝国,王凤翔.磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析[J].中国电机工程学报,2002,22(5):105-108.
    [37]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算[J].电工技术学报,2002,17(5):6-9.
    [38] Chiba A.,Fukao T,Rahman M A.Vibration suppression of a flexible shaft with a simplifiedbearingless induction motor drive[J]. IEEE Transactions on Industry Applications,2008,44(4):745-752.
    [39] Akamatsu D T,Chiba A,Fukao, T,et al.An improved rotor resistance identification for bearinglessinduction motors[C].2005IEEE International Conference on Electric Machines and Drives,SanAntonio,USA,2005:1981-1987.
    [40]黄守道,蔡国洋,高剑.无轴承异步电机的定子磁场定向解耦控制[J].湖南大学学报,2007,34(5):34-38.
    [41] Oshima M,Miyazawa S,Deido T,et al.Characteristics of a permanent magnet type bearinglessmotor[J].IEEE Transactions on Industry Applications,1996,32(2):360-370.
    [42]刘贤兴,孙宇新,朱熀秋等.无轴承永磁同步电动机的发展、应用和前景[J].中国机械工程,2004,15(17):1594-1597.
    [43] Kusayanagi H,Takemoto M,Tanaka Y,et al.Basic characteristics of a permanent-magnet typebearingless motor with positive salient pole[C].2007International Conference on Electrical Machinesand Systems,Seoul,Korea,2007:1698-1703.
    [44] Takemoto M,Suzuki H,Chiba A,et al.Improved analysis of a bearingless switched reluctancemotor[J].IEEE Transactions on Industry Applications,2001,37(1):26-34.
    [45] Cao X, Deng Z Q. A full-period generating mode for bearingless switched reluctancegenerators[J].IEEE Transactions on Industry Applications,2010,20(3):1072-1076.
    [46]刘泽远,邓智泉,曹鑫等.全周期无轴承开关磁阻发电机的设计[J].中国电机工程学报,2011,31(12):77-83.
    [47] Oshima M.Magnetic suspension characteristics of a bearingless brushless DC motor[C].IEEE Powerand Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the21stCentury,Pittsburgh,PA,2008.
    [48]贾磊,朱熀秋,徐亚超.无轴承无刷直流电动机原理、控制及应用综述[J].微电机,2009,42(4):62-65.
    [49] Grabner H,Amrhein W,Silber S,et al.Nonlinear feedback control of a bearingless brushless DCmotor[J].IEEE Transactions on Mechatronics,2010,15(1):40-47.
    [50] Nakagawa M,Asano Y,Mizuguchi A,et al.Optimization of stator design in a consequent-pole typebearingless motor considering magnetic suspension characteristics[J]. IEEE Transactions onMagnetics,2006,42(10):3422-3424.
    [51]仇志坚,邓智泉,王晓琳等.新型交替极无轴承永磁电机的原理与实现[J].中国电机工程学报,2007,27(33):1-5.
    [52] Yamada T,Nakano Y,Asama J,et al.Outer rotor consequent-pole bearingless motor with improvedstart-up characteristics[J].IEEE Transactions on Magnetics,2008,44(11):4273-4276.
    [53] Silber S,Amrhein W,Bosch P,et al.Design aspects of bearingless slice motors[J].IEEE Transactionson Mechatronics,2005,10(6):611-617.
    [54]徐龙祥,朱小春,姚凯.片状无轴承磁电机的研究[J].中国电机工程学报,2006,26(6):141-145.
    [55] Bartholet M T,Nussbaumer T,Kr henbühl D,et al.Modulation concepts for the control of atwo-phase bearingless slice motor utilizing three-phase power modules[J].IEEE Transactions onIndustry Applications,2010,46(2):831-840.
    [56]王凤翔,王宝国,徐隆亚.一种新型混合转子结构无轴承电动机磁悬浮力的矢量控制[J].中国电机工程学报,2005,25(5):98-103.
    [57] Ueno S,Kato T.A novel design of a Lorentz-force-type small self-bearing motor[C].2009International Conference on Power Electronics and Drive Systems,Taibei,China,2009:926-931.
    [58] Grochmal T R,Forbrich C P,Lynch A F.Nonlinear bearing force and torque model for a toothlessself-bearing servomotor[J].IEEE Transactions on Magnetics,2008,44(7):1805-1814.
    [59] Chiba A,Power D T,Rahman M A.Characteristics of a bearingless induction motor[J].IEEETransactions on Magnetics,1991,27(6):5199-5201.
    [60] Chiba A, Power D T, Rahman M A. No load characteristics of a bearingless inductionmotor[C].Conference Record of the1991IEEE Industry Applications Society Annual Meeting,Dearborn,USA,1991,1:126-132.
    [61] Chiba A,Power D T,Rahman M A.Analysis of no-load characteristics of a bearingless inductionmotor[J].IEEE Transactions on Industry Applications,1995,31(1):77-83.
    [62] Nomura S,Chiba A,Nakamura F,et al.A radial position control of induction type bearingless motorconsidering phase delay caused by the rotor squirrel cage[C].Conference Record of the1993IEEEPower Conversion Conference,Yokohama,Japan,1993:438-443.
    [63] Suzuki T,Chiba A.,Azizur Rahman M,et al.An airgap flux oriented vector controller for stablemagnetic suspension during high torque acceleration in bearingless induction motors[C].ConferenceRecord of the1999IEEE Industry Applications Conference, Thirty-Fourth IAS Annual Meeting,Phoenix,USA,1999,3:1543-1550.
    [64] Suzuki T,Chiba A.,Azizur Rahman M,et al.An air-gap-flux-oriented vector controller for stableoperation of bearingless induction motors[J]. IEEE Transactions on Industry Applications,2000,36(4):1069-1076.
    [65]年珩,贺益康.感应型无轴承电机磁悬浮力解析模型及其反馈控制[J].中国电机工程学报,2003,23(11):139-144.
    [66]王晓琳,邓智泉.无轴承异步电机磁场定向控制策略分析[J].中国电机工程学报,2007,27(27):77-82.
    [67]朱广泽,邓智泉,王晓琳.无轴承异步电机解耦控制策略[J].电机与控制学报,2007,11(6):573-577.
    [68] Laiho A,Sinervo A,Orivuori J,et al.Attenuation of harmonic rotor vibration in a cage rotor inductionmachine by a self-bearing force actuator[J]. IEEE Transactions on Magnetics,2009,45(12):5388-5398.
    [69] Iiyama Y,Soutome K and Chiba A.A novel middle-point current-injection type bearingless motor forvibration suppression[C].2010IEEE Energy Conversion Congress and Exposition,Atlanta,USA,2010:1693-1698.
    [70] Chiba A and Santisteban J A.A PWM harmonics elimination method in simultaneous estimation ofmagnetic field and displacements in bearingless induction motors[C].2011IEEE International ElectricMachines&Drives,Niagara Falls,Ontario,2011:1042-1047.
    [71] Reichert T,Nussbaumer T and Kolar J W.Bearingless300-W PMSM for bioreactor mixing[J].IEEETransactions on Industry Electronics,2012,59(3):1376-1388.
    [72] Zürcher F,Nussbaumer T and Gruber W.Comparison of2-and3-phase bearingless slice motorconcepts[J].Journal of System Design and Dynamics,2009,3(3):1-12.
    [73] Hijikata W,Mamiya T,Shinshi T,et al.Cost-effective magnetic bearing system using a single-usemagnet-less rotor for an extracorporeal centrifugal blood pump[C].Twelfth International Symposiumon Magnetic Bearings (ISBM),Wuhan,China,2010:654-659.
    [74] Schneeberger T,Nussbaumer T and Kolar J W.Magnetically levitated homopolar hollow-shaftmotor[J].IEEE/ASME Transactions on Mechatronics,2010,15(1):97-107.
    [75] Onunma H and Masuzawa T.Magnetically suspended pumps for artificial heart[J].Biocybernetics andBiomedical Engineering,2007,27(1/2):133-137.
    [76]朱俊,邓智泉,王晓琳等.单绕组无轴承永磁薄片电机的原理和实现[J].中国电机工程学报,2008,28(33):68-74.
    [77] Redemann C,Meuter P,Ramella A,et al.30kw bearingless canned motor pump on the testbed[C].Seventh International Symposium on Magnetic Bearings (ISBM),Zurich,Switzerland,2000:189-194.
    [78] Ren Z H and Stephens L S.Closed-loop performance of a six degree-of-freedom precision magneticactuator[J].IEEE Transactions on Mechatronics,2005,10(6):666-674.
    [79] Asama J,Amada M,Tanabe N,et al.Evaluation of a bearingless PM motor with wide magneticgaps[J].IEEE Transactions on Energy Conversion,2010,25(4):957-964.
    [80] Amada M,Tanabe N,Asama J,et al.Suspension characteristics of a consequent-pole type bearinglessPM motor with wide magnetic gaps[C].2008IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the21st Century,Pittsburgh,USA,2008.
    [81] Yajima S,Takemoto M,Tanaka Y,et al.Total efficiency of a deeply buried permanent magnet typebearingless motor equipped with2-pole motor windings and4-pole suspension windings[C].2007IEEE Power Engineering Society General Meeting,Tampa,USA,2007.
    [82] Miyamoto N,Enomoto T,Amada M,et al.Suspension characteristics measurement of a bearinglessmotor[J].IEEE Transactions on Magnetics,2009,45(6):2795-2798.
    [83] Asama J,Miyamoto N,Enomoto T,et al.A novel design of a thrust magnetic bearing with acylindrical-shaped rotor[C].2009IEEE Power&Energy Society General Meeting,Calgary AB,Canada,2009.
    [84] Ohsawa m,Mori s,Satoh t.Study of the induction type bearingless motor[C].Seventh InternationalSymposium on Magnetic Bearings (ISBM),Zurich,Switzerland,2000:389-394.
    [85]孙玉坤,费德成,朱熀秋.基于α阶逆系统五自由度无轴承永磁电机解耦控制[J].中国电机工程学报,2006,26(1):120-126.
    [86]陆钰珊,王超,刘贤兴.五自由度磁悬浮电机的数字控制系统[J].电机控制与应用,2008,35(11):27-31.
    [87]王晓琳,邓智泉,严仰光.一种新型的五自由度磁悬浮电机[J].南京航空航天大学学报,2004,36(2):210-214.
    [88] Imoberdorf P,Zwyssig C,Round S D.Combined Radial-Axial Magnetic Bearing for a1kW,500,000rpm Permanent Magnet Machine[C].Twenty Second Annual IEEE Applied Power ElectronicsConference,Anaheim,USA,2007:1434-1440.
    [89]孙玉坤,朱志莹.三自由度混合磁轴承最小二乘向量机逆模辨识与解耦控制[J].中国电机工程学报,2010,30(15):112-117.
    [90]朱熀秋,张仲,诸德宏等.交直流三自由度混合磁轴承结构与有限分析[J].中国电机工程学报,2007,27(12):77-81.
    [91]赵筱赫,刘贤兴,薛剑锋.一种新型三自由度交直流混合磁轴承原理及有限元分析[J].微电机
    [92]李冰,邓智泉,严仰光.一种新颖的永磁偏置三自由度电磁轴承[J].南京航空航天大学学报,2003,35(1):81-85.
    [93]诸德宏,张维煜,刁小燕等.支承高速电机的混合磁轴承结构参数设计与分析[J].机械设计,2010,27(8):73-78.
    [94] Blumenstock K A.Combination radial and thrust magnetic bearing:US,6,359,357B1[P].2002-3-19.
    [95] Soong W L,Lyons J P,Kliman G B.Combined radial and axial magnetic bearings:US,5,729,066[P].2002-3-19.
    [96] Fang J,Sun J,Liu H,et al.A novel3-DOF axial hybrid magnetic bearing[J].IEEE Transactions onMagnetics,2010,46(12):4034-4045.
    [97] Quang D N,Ueno S.Analysis and control of nonsalient permanent magnet axial gap self-bearingmotor[J].IEEE Transactions on Industrial Electronics,2011,58(7):2644-2652.
    [98] Quang D N,Ueno S.Improvement of sensorless speed control for nonsalient type axial gapself-bearing motor using sliding mode observer[C].2010IEEE International Conference on IndustrialTechnology,Vi a del Mar,Chile,2010:373-378.
    [99] Ishikawa T,Matsuda K,Kondo R,et al.5-DOF controlled self-bearing motor [J].Journal of SystemDesign and Dynamics,2009,3(4):483-493.
    [100] Yamamoto N,Takemoto M,Ogasawara S,et al.Experimental estimation of a5-axis active controltype bearingless canned motor pump[C].2011IEEE International Electric Machines&DrivesConference,Niagara Falls, Ontario,2011:148-153.
    [101] Takemoto M,Iwasaki S,Miyazaki H,et al.Experimental evaluation of magnetic suspensioncharacteristics in a5-axis active control type bearingless motor without a thrust disk for wide-gapcondition[C].2009IEEE Energy Conversion Congress and Exposition,San Jose,USA,2009.
    [102] Jansen R,Kascak P,Dever T.Magnetic suspension and drive system for rotating equipment:US,11,068,560[P].2006-9-28.
    [103] Kascak P,Jansen R,Dever T.Conical bearingless motor/generator:US,11,451,927[P].2006-10-26.
    [104] Kascak P, Jansen R, Dever T. Control system for bearingless motor-generator: US,7,456,537[P].2008-12-25.
    [105] Kascak P,Jansen R,Dever T,et al.Bearingless five-axis rotor levitation with two pole pair separatedconical motors[C].IEEE Industry Applications Society Annual Meeting,Houston,USA,2009.
    [106] Kascak P E.Fully levitated rotor magnetically suspended by two pole-pair separated conicalmotors[D].Cleveland:Case Western Reserve University,2010.
    [107] Kascak P,Jansen R,Dever T,et al.Motoring performance of a conical pole-pair separatedbearingless electric machine [C].2011IEEE Energytech,Cleveland,USA,2011.
    [108] Kascak P,Jansen R,Dever T,et al.Levitation performance of two opposed permanent magnetpole-pair separated conical bearingless motors[C].2011IEEE Energy Conversion Congress andExposition,Phoenix,USA,2011.
    [109] Hiromi T,Katou T,Chiba A,et al.A novel magnetic suspension force compensation in a bearinglessinduction motor with a squirrel cage rotor[C].Conference Record of the2005IEEE IndustryApplications Conference,Fourtieth IAS Annual Meeting,2005,3:1561-1566.
    [110]邓智泉,王晓琳,李冰等.无轴承异步电机悬浮子系统独立控制的研究[J].中国电机工程学报,2003,23(9):107-111.
    [111]贺益康,年珩,阮秉涛.感应型无轴承电机的优化气隙磁场定向控制[J].中国电机工程学报,2004,24(6):116-121.
    [112]王宇,邓智泉,王晓琳.无轴承异步电机的直接转矩控制技术研究[J].中国电机工程学报,2008,28(21):80-84.
    [113]陈振,刘向东,戴亚平等.采用预期电压矢量调制的PMSM直接转矩控制[J].电机与控制学报,2009,13(1):40-46.
    [114]刘述喜,王明渝.基于快速空间矢量调制算法的三电平直接转矩预测控制系统[J].电工技术学报,2009,24(2):35-41.
    [115]傅丰礼,唐孝镐.异步电动机设计手册(第2版)[M].北京:机械工业出版社,2006.
    [116]冯信华.锥形异步电动机[M].武汉:华中理工大学出版社,1996.
    [117]曹建荣,虞烈,陈全世.磁悬浮电动机刚性转子径向位置的控制[J].电工技术学报,2004,19(3):15-20.
    [118]张钢,殷庆振,蒋德得等.5自由度磁悬浮轴承—转子系统非线性动力学研究[J].机械工程学报,2010,46(20):15-21.
    [119]虞烈,刘恒.轴承—转子系统动力学[M].西安:西安交通大学出版社,2001.
    [120] Kuwajima T,Nobe T,Ebara K,et al.An estimation of the rotor displacements of bearingless motorsbased on a high frequency equivalent circuits[C].Proceedings of4th IEEE International Conferenceon Power Electronics and Drive Systems,Denpasar,Indonesia,2001,2:22-25.
    [121]程兆刚,卢健康,曹昌平等.一种无传感器磁悬浮轴承感应电动机转子位置检测方法研究[J].微电机,2008,41(5):90-93.
    [122] Tera T,Yamauchi Y,Chiba A.Performances of bearingless and sensorless induction motor drivebased on mutual inductances and rotor displacements estimation[J].IEEE Transactions on IndustrialElectronics,2005,53(1):187-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700