用户名: 密码: 验证码:
管件液压成形的加载路径理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车制造领域,与传统的冲压、焊接工艺相比,采用管件液压成形工艺制造的汽车零件具有重量轻、刚度好、强度大、耐撞性好、节约材料、结构紧凑、加工工序少等诸多优点。这很好地满足了汽车轻量化发展的要求。随着计算机控制技术和超高压液压控制技术的发展,管件液压成形技术已开始进入实用化的阶段。可以预见,该技术将有力地促进汽车、航空、航天、船舶等产业制造技术的进步。
     在管件液压成形过程中,由于管坯材料、模具形状和加载工艺条件的影响,管件容易产生整体屈曲、起皱、破裂等成形缺陷。因此,防止成形缺陷的产生并提高成形性能,已经成为各汽车制造企业增强竞争力的关键技术之一。在零件形状、模具条件和管坯材料已给定的情况下,合理控制内压力、轴向推力的大小以及两者间的匹配关系即加载路径是管件液压成形工艺的关键。近几年来很多学者在管件液压成形加载路径的控制方面开展了广泛的研究,取得了一定的成果。然而这些研究对加载路径的控制规律、加载路径变化对管件液压成形性影响的内在机理、合理加载路径的设计原则以及合理加载路径的设计方法等方面仍不够全面深入,研究结果还不能直接用于实际生产。
     本文以数值模拟为工具并结合试验对管件液压成形的加载路径问题开展深入研究。自主研制了一台计算机控制管件液压成形设备,设备最大成形内压力达到200MPa超高压,设备可同时实现内压力、轴向推力和轴向位移的联动精确控制;以典型的自由胀形件为例,研究了管件液压成形时避免各种缺陷产生的临界载荷变化规律以及不同因素对临界载荷的影响规律;从加载路径影响应力状态,应力状态影响成形性能的角度揭示了提高管件液压成形性能的加载机理,并确定了合理加载路径的设计原则;在此基础上,提出了基于自适应仿真与模糊控制相结合的加载路径设计方法,并将该方法应用于若干典型试验件的成形。
     本文主要研究内容和主要创造性工作包括以下几个方面:
     1、计算机控制管件液压成形设备研制
     本文自主研制了一台内压力达200MPa的计算机控制管件液压成形设备。对设备的整体结构、液压控制系统、计算机控制系统、模具与超高压密封系统等若干关键技术进行了探索性的研究;并通过大量的试验调试实现了设备在工艺控制精度上的先进性。为研究提供实验基础。
     2、管件液压成形的数值模拟与试验
     本文开展了提高管件液压成形数值模拟精度的三维有限元建模方法的研究,分析了进行数值模拟时仿真参数的选取原则,研究了采用动力显示有限元算法进行仿真计算时虚拟加载时间对管件液压成形预测精度的影响。通过仿真与试验结果的比较,为研究提供准确的数值模拟基础。在试验基础上,分析加载路径对管件液压成形结果影响的两个层面。提出了管件液压成形性的几种评价准则,并采用数值模拟和试验研究了几种典型的加载路径对圆形截面零件成形性的影响。
     3、管件液压成形的临界载荷变化规律研究
     将成形过程中发生密封泄漏以及管件发生屈曲、起皱、破裂等成形缺陷时对应的临界内压力、临界轴向推力加载关系曲线所围成的载荷区间称之为“临界加载窗口”(critical loading window diagram)。加载路径应该位于临界加载窗口内才可以成形零件。本文基于塑性稳定性理论和成形工艺特点建立了完整的自由胀形件临界加载窗口的理论模型,并通过试验验证该模型的正确性。分析了管坯尺寸、管坯材料、模具形状等参数对临界加载窗口的影响规律,从而实现根据材料、管坯尺寸和模具参数来约束加载路径的范围。从理论上解决了如何避免零件成形缺陷的产生问题。
     4、提高管件液压成形性的加载路径规律研究
     在临界加载窗口内,能成形零件的加载路径很多,但采用不同加载路径时零件的成形性不同。为确定合理的加载路径以提高管件液压成形性,本文对管件液压成形的塑性变形过程展开了进一步的理论研究。首先分析管件液压成形工艺过程中的应力应变特点,揭示应力状态对成形性能的影响规律,获得提高成形性能的理想应力状态。提出获得理想应力状态所需理想加载路径的基本构想,并以自由胀形件为例,从理论上建立理想加载路径的计算模型。利用获得的加载路径分别进行仿真与试验研究,根据仿真和试验结果,提出了合理加载路径的设计原则。从理论上解决了如何提高管件液压成形的成形性问题。
     5、基于自适应仿真与模糊控制相结合的加载路径设计方法研究
     根据合理加载路径的设计原则,如何有效地设计确定具体的加载路径轨迹仍然是一个难题。本文结合管件液压成形的工艺特点和合理加载路径的设计原则,提出一种基于自适应仿真与模糊控制相结合的管件液压成形加载路径设计方法。采用自适应仿真方法克服了传统仿真中反复试错的缺点,利用所建立的成形缺陷趋势评价函数,将当前的仿真结果及时地反馈给下一步的仿真计算,实现成形过程缺陷的“预发现、预纠正”,从而减少有限元模拟次数、提高效率。在成形缺陷趋势程度的识别和成形工艺参数的调整过程中,采用模糊逻辑控制的策略,从而更加合理地判断成形缺陷、调整工艺参数。本文最后对典型组合截面的试验件进行加载路径设计和试验验证,结果表明了该方法的正确、有效性,也表明了本文提出的加载路径设计原则的正确性。从实际上解决了具体加载路径设计的方法问题。
     本文的研究以理论推导、数值模拟为主,并结合大量试验数据的对比分析,自主研制了计算机控制管件液压成形设备,在前人研究的基础上揭示了提高管件液压成形性的内在机理和加载路径设计原则,提出了合理加载路径的设计方法,将依赖于试验和经验的加载路径设计上升为依据严密理论推理的科学过程,为管件液压成形的加载路径设计提供了理论指导和方法选择。
In automobile manufacturing industry, tube hydroforming (THF) will offer several advantages as compared to conventional manufacturing via stamping and welding. These advantages include: weight reduction, improved structural strength and stiffness, part consolidation, lower tooling cost due to fewer parts, fewer secondary operations. These advantages satisfy the requirements of the development of lightweight car. The THF technology has now been used in industry with the development of the computer and the super-high hydraulic pressure controlling technology. It can be forecast that the manufacturing technology of the automobile industry, aeronautics and astronautics industry, and shipbuilding industry will be improved by this technology.
     Because the effects of the material, the die shape and the loading condition, the forming workpieces may be limited by the failure modes of buckling, wrinkling and bursting during the THF process. To avoid the forming failures and improve pats’formability is a key technology for improving the competence of the enterprise. For a given part shape, die condition and tube material, the key technology is to reasonably control the internal pressure, the axial force and its relationship, that is loading path. Lots of literature research into the loading paths of the THF process, and achieved some usable results. But few efforts have been put into the rules of the loading paths, the mechanism of improving the formability by controlling the loading paths, the design principle and the design method of the reasonable loading paths.
     This dissertation studies on the loading paths of the THF through FEM and experiments methods. Firstly, a computer controlling THF equipment has been research and developed, its maximal internal pressure is 200MPa. The internal pressure, the axial force and the axial displacement can be controlled accurately. Then, the variation laws of the critical loading for avoiding different forming failures and the effect of different conditions on the critical loading forces for the free bulge process are studied. Thirdly, the mechanism of improving the formability by controlling the loading paths are analyzed from the view that stress station has effect on the formability, and the loading path has effect on the stress station. After that, the design principle for the reasonable loading paths is proposed. Based on this analysis, a design method integrated the adaptive simulation and the fuzzy logical control is proposed. At last, the method is used for some typical experiment parts.
     The main content of this thesis can be divided into five parts:
     1. Research and develop a computer controlling THF equipment
     A computer controlling THF equipment has been research and developed, its maximal internal pressure is 200MPa. The dissertation takes an exploratory study on the key technique of the integral structure, the hydraulic controlling system, the computer controlling system, the THF die system and the sealing system and so on. Then equipment is verified to be precise through quantities of experiments. It is the experiment tool for research.
     2. Simulation and experiment study on THF
     This dissertation studies the three-dimensional FEM modeling method to improve the THF simulation precision, and put forward some guidelines for parameters selection of simulation process. The effect of the virtual time on the prediction precision in the THF process is analyzed when the dynamical explicit FEM is used. Through the comparison between experimental and simulation results, the FEM tool for the research is achieved. Then, two effects of the loading paths on the forming results are analyzed based on some experiment results. On the basis of the study above, this dissertation studied on the effect of several typical loading paths on the tube hydroformability, using numerical simulation and experiments.
     3. Study on the variation laws of the critical loading in THF
     The critical loading window diagram (CLWD) is a diagram that is enclosed by the loading path of the critical internal pressure and the critical axial force, which are the critical loading when failures such as buckling, wrinkling or bursting have happened. The loading paths for forming a part should lies within the CLDW. Based on the plasticity theory and THF technology, this dissertation constructs the whole theoretical model for the CLWD, which is validated through experiments. Then, the effect laws of tube size, material and die shape on the CLWD are analyzed, and then put forward the selection range for different material, different tube size and die parameters, which limit the bound of the loading paths and avoid the forming failures of TFH. The CLWD can answer the question of how to avoid the forming failures from the theory.
     4. Study on the loading paths that improves the tube hydroformability
     In CLWD, there are many loading paths for selection, but there is great differences formability for the hydroformed tubes between different loading paths are selected. To select an appropriate loading path, this dissertation studies the tube plastic deformation process in THF with theoretical methods, analyzes the stress and strain characteristics in hydroformed parts and finds the effect of the stress station on the formability. Then, obtains the ideal stress states for improving the formability in THF process. This dissertation proposes the basic concept to obtain the ideal loading path that leads to the ideal stress states in hydroformed parts, and then the theoretic model of the ideal loading path for the free bulge process are studied. According to the simulation and experiment results at different loading paths, this dissertation also put forward the design principle of reasonable loading paths, which answer the question of how to improve the formability of the tube from the theory.
     5. Study on loading paths design method based on the combination of adapted simulation and fuzzy logical control
     How to obtain the reasonable loading path is still difficult for people, although its design principle is known. Based on the characteristic of THF technology and the design principle of loading paths, this dissertation put forward a design method for reasonable loading path, this method integrated the adaptive simulation and fuzzy logical control. The adaptive simulation avoids the try-and-error process of conventional loading path design method, it constructs a target function that assesses the defects tendency in hydroformed process, and then returns the simulation results to the next simulation step. In this way, the program can predict and rectify the forming process defects, which means fewer simulations and higher efficiency. In the identification of forming results and the modification of the process parameters, the fuzzy logical control method is used. In this way, more reasonable prediction of forming defects and adjustment of process parameters can be achieved. To validate the efficiency of the loading path design method, several experiments are used in the end. From the results, it’s found that the design principal and the design method for loading path proposed in this dissertation are right and advanced. This method can answer the question of how to design the loading path in industry.
     This dissertation studies on the loading paths of THF mainly through theoretical deduction, numerical simulation and large amounts of experiments. The THF equipment, the mechanics of hydroforming, the design principle and the design method of loading path are researched into in this dissertation. It transforms the loading path design process that depended on experiments and experiences to a refined theoretical deduction process. Which provides theories guidance and a new method for the loading path design in THF.
引文
1. M.Kleiner, S.Chatti and A.Klaus. Metal forming techniques for lightweight construction Journal of Materials Processing Technology[J]. Volume 177, Issues 1-3, 3 July 2006, P: 2-7.
    2. 韩英淳, 于多年, 马若丁. 汽车轻量化中的管材液压成形技术[J]. 汽车工艺与材料, 2003(8), P: 23-27.
    3. F. Dohmann and Ch. Hartl. Tube hydroforming—research and practical application. Journal of Materials Processing Technology[J]. Volume 71, Issue 1, 1 November 1997, P: 174-186.
    4. L.H.Lang, Z.R.Wang, D.C.Kang, et al. Hydroforming highlights: sheet hydroforming and tube hydroforming. Journal of Materials Processing Technology[J]. Volume 151, Issues 1-3, 1 September 2004, P: 165-177.
    5. Ch. Hartl. Research and advances in fundamentals and industrial applications of hydroforming. Journal of Materials Processing Technology[J]. Volume 167, Issues 2-3, 30 August 2005, P: 383-392.
    6. Nader Asnafia, Tomas Nilsson, Gunnar Lassl. Tubular hydroforming of automotive side members with extruded aluminium profiles. Journal of Materials Processing Technology[J]. 142 (2003), P: 93–101.
    7. H.-U.Lucke, Ch.Hartl, T.Abbey. Hydoforming. Journal of Maternals Process technology[J]. 115(2001), P: 87-91.
    8. Soo-Ik Oh, Byung-Hee Jeon, Hyun-Yong Kim, et al. Recent developments in hydroforming technology. Journal of Materials Processing Technology[J]. 98 (2000), P: 251-258.
    9. S.H. Zhang. Developments in hydroforming. Journal of Materials Processing Technology[J]. 91 (1999), P: 236–244.
    10. Muammer Koc, Taylan Altan. An overall review of the tube hydroforming (THF) technology. Journal of Materials Processing Technology[J]. 108 (2001), P: 384-393.
    11. M. Ahmetoglu, K. Sutter, X.J. Li, T. Altan. Tube hydroforming: current research, applications and need for training. Journal of Materials Processing Technology[J]. 98 (2000), P: 224-231.
    12. Klaus Siegert, Markus Haèussermann, Bruno Loèsch, et al. Recent developments in hydroforming technology. Journal of Materials Processing Technology[J]. 98 (2000), P: 251-258.
    13.Kristoffer Trana. Finite element simulation of the tube hydroforming process-bending, preforming and hydroforming. Journal of Materials Processing Technology[J]. Volume 127, Issue 3, 3 October 2002, P: 401-408.
    14. J.E. Grey, A.P. Devereaux, W.N. Parker, Apparatus for making, wrought metal T's, US Patent 2,203, 868 June (1939).
    15. F.J. Fuchs, Hydrostatic pressure – its role in metal forming, Mech. Eng. (April 1966), P: 34-40.
    16. Muammer Koc. Taylan Altan. An overall review of the tube hydroforming (THF) technology, Journal of Materials Processing Technology[J]. 108 (2001), P: 384-393.
    17. Ken-ichi Manabe and Masaaki Amino. Effectsof process parameters and material properties on deformation process in tube hydroforming. Journal of Materials Processing Technology[J]. 123(2002), P: 285-291.
    18. Yingyot Aue-U-Lan, Gracious Ngaile, Taylan Altan. Optimizing tube hydroformingusing process simulation and experimental verification. Journal of Materials Processing Technology[J]. 146 (2004), P: 137-143.
    19. J.C.Genlin, C.Labergere, Numerical control strategies for the hydroforming of thin walled metallic tubes. Numisheet 2002[A]. October 21-25, 2002, Jeju Island, Korea, P: 499-504.
    20. Muammer Ko?. Investigation of the effect of loading path and variation in material properties on robustness of the tube hydroforming process. Journal of Materials Processing Technology[J]. Volume 133(2003), P: 276-281.
    21. L.Gao, S.Motsch, M.Strano.Classification and analysis of t tube hyddorforming processes with respect to adaptive FEM simulations. Journal of Materials Processing Technology[J]. 129(2002), P: 261-267.
    22. 杨兵, 张卫刚, 林忠钦等. 管件液压成形技术在汽车制造中的应用研究. 机械设计与研究[J]. 2004, 10, P: 65-67.
    23. F.Dohman, C.Hartl. Finite element analysis of forming hollow camshafts using internal high pressure. Int.Conf on Modelling and simulation in Metallurgical Engineering and Materials Science[A]. Beijing, 11-13, June, 1996, P:640- 646.
    24. C.C.Bruggemann, S .Shah. Hydroforming process overview and applications. The 2th Inthenational conference on innovations in hydroforming[A]. Ohio, USA, 1997,B, P:1-14.
    25. F.Klaas. Innovations in high-pressure hydroforming. Proceedings of 2th International Conference on Innovations in Hydroforming[A]. Ohio, USA, 1997, C, P: 1-31.
    26. H.Cherek. Part cost reductions in the hydroforming processes. Proceedings of 21h International Conference on Innovations in Hydroforming[A]. Ohio, USA, 1997, G, P:1-10.
    27 G. Holzinger, Mit IHU zu hochprazisen Leichtbauteilen, STAHL, 1/2000, Seiten, P: 58-59.
    28. M. Ahmetoglu, T Altan, Tube hydroforming: state-of-the-art and future trends, Journal of Materials Processing Technology[J]. 98 (2000). pp. 25-33.
    29. H.Jochem. Activator assisted forming technologies. 3rd International Conference on Hydroforming[A], Germany, October. 28-29th, 2003, P:1- 6.
    30. F.Horton. Hydroforming application trends in automotive structures. 3rd International Conference on Hydroforming[A], Germany, October. 28-29th, 2003, P:7- 13.
    31. M.Y.Lee, S.M.Sohn, C.Y.Kang, S.Y.Lee. Study on the hydroforming process for automobile radiator support members. Journal of Materials Processing Technology[J]. 130-131,2002, P:115-120.
    32. Wolfgang Zimmennan, Ulrich Lucke H. Reducing part costs for hydroforming. TPJ, Hydroforming[A]. Jurnal, Nov./Dec, 1998, P:98-102.
    33. Klaus Siegert, Markus Haèussermann, Bruno Loèsch, Ralf Rieger. Recent developments in hydroforming technology. Journal of Materials Processing Technology[J]. 98 (2000), P: 251-258.
    34. 福村卓巳, 山本知弘, 不用大型压床实现内高压成形[J].プレス技术, 2001, (7).
    35. Tom Driggera. Controlling tube hydroforming. Forming and Fabricating[J]. 2001 (3 ) .
    36. 李志杰, 玛军, 胡伟民.三通胀形压力控制及密封方法.管道技术与设爷[J]. 2000(1), P:12-14
    37. 何祝斌、滕步刚、苑士剑、王仲仁. 锻压技术[J]. 2001,( 3), P: 38-40.
    38. 苑世剑, 王仲仁, 轻量化结构内高压成形技术, 材料科学与工艺[J]. 1999, (增刊), P:139-142.
    39. 苑世剑. 内高压成形技术现状与发展趋势, 金属成形工艺[J]. 2003. (4), P:32-34.
    40. 苑世剑, 苗启斌, 王仲仁. 轿车后轴纵臂内高压成形研究, 金属成形工艺[J].2004 (3), P:1-3.
    41. 李伟.内高压成型设备液压控制系统研究, 哈尔滨工业大学硕士学位论文, 2004.6.
    42. D.M. Woo, Tube-bulging under internal pressure and axial force, J. Eng. Mater. Technol[J]. (October 1973), P: 219-223.
    43. G. Powel, B. Avitzur, Forming of tube by hydraulic pressure, in: Proceedings of the NAMRC[A]. Ontario, Canada, May 14-15, 1973, P:65-83.
    44. K. Manabe, H. Nishimura, Influence of material properties in, forming of tubes, Bander Bleche Rohre 9 (1983).
    45. S. Fuchizawa, Infuence of strain hardening exponent on the deformation of thin-walled tube of finite length subjected to hydrostatic external pressure, Adv. Technol. Plasticity[J]. 1 (1984), P: 297-302.
    46. S. Fuchizawa, Infuence of plastic anisotropy on deformation of thin walled tubes in bulge forming, Adv. Technol. Plasticity[J]. 2 (1987), P: 727-732.
    47. T.M.Srinivasan. Tublar Hydrofrorming:Correlation of experimental and simulation resuls. Siciety of automotive engineers[A].inc 9980448. P: 280-286.
    48. B.Carleer, G. van der Kevie, L. de Winter, B. van Veldhuizen, Analysis of the effect of material properties on the hdroforming process of tubes, Journal of Materials Processing Technology[J]. 104 (2000), P:158-166.
    49. G.T.Kridli. Investigation of thickness variation and corner filling in tube hydroforming. Journal of Materials Processing Technology[J]. 133 (2003), P: 187-196.
    50. Rich Davies, Glenn Grant, Darrell Herling, etc. Formability investigation of aluminum extrusions under hydroforming conditions. Society of Automotive Engineers of America [A], 2000-01-2675.P: 950-958.
    51.Ken-ichi Manabe, Masaaki Amino, Effects of process parameters and material properties on deformation process in tube hydroforming, Journal of Materials Processing Technology[J]. 123 (2002),P: 285–291.
    52. M.Strano, T.Altan. An inverse energy approach to determine the f lows tress of tubular materials for hydroforming applications. Journal of Materials Processing Technology[J]. 2004(146), P: 92-96.
    53.T.Sokolowski, K.Gerke, M.Ahmetoglu, T.Altan. Evaluation of tube formability and material characteristics hydraulic bulge testing of tubes. Journal of Materials Processing Technology[J]. 2000(98), P:34-40.
    54. C.Hielscher. Tube testing for the production of complex hydroforming parts. Int. Conf on Hydroforming, Germany, Nov.6-7th, 2001, P: 63-84.
    55. L.Filice, L.Fratini, F.Micari. Tube hydroforming: experimental tests for formabilitye valuation. Advanced Technology of Plasticity, Proceedings of the 7 th ICTP[A]. Yokohama, Japan, October. 27th November.1st ,2002, P:1477-1482.
    56. M.Strano, T.Altan. An inverse energy approach to determine the flows tress of tubular materials for hydroforming applications. Journal of Materials Processing Technology[J]. 2004(146), P: 92-96.
    57. Muammer Koc, Taylan Altan, An overall review of the tube hydroforming (THF) technology, Journal of Materials Processing Technology[J]. 108 (2001), P: 384-393.
    58. F.Dohmann,Ch.Hartl. Hydroforming-a method to manufacture light-weight parts. Journal of materials processing Technology[J]. 60(1996), P: 669-676.
    59. Z.C.Xia, Bursting for Tubular Hydroforming. Society of Automotive engineers[A]. Inc. 2000-01-0770.
    60. C.L.Chow. Bursting for fixed tubular and restrained hydroforming Journal of materials processing thechnology[J]. 130-131(2002), P: 107-114.
    61. Muammer Koc. Prediction of forming limits and parameters in the tube hydroforming process. International Journal of Machine Tools & Manufacture[J]. 42 (2002), P: 123–138.
    62. N.Boudeau, A.Lejeune, Influence of material and process parameters on thedevelopment of necking and bursting in flange and tube hydroforming. Journal of Materials Processing Technology[J]. 125–126 (2002), P: 849–855.
    63. Sungate Kim.Analytical study for tube hydroforming . Journal of material processing Technology[J]. 128(2002), P: 232-239.
    64. G.Nefussi, A.Combescure. Coupled buckling and plastic instability for tube hydroforming. International Journal of Mechnical Science[J]. 2002(44), P: 899-914.
    65. H.L.Xing, A.Makinouchi. Numerical analysis and design for tubular hydroforming. International Journal of Mechanical Science[J]. 2001(43), P: 1009-102.
    66. D.E.Green. Experimental determination of tube forming limits. 3rd International Conference on Hydroforming[A]. Fellbach, Germany, October.28-29th, 2003, P: 299-314.
    67. 戴昆, 何祝斌, 王仲仁. 管材内压液力成形的稳定性分析, 塑性工程学报[J]. 2000, 4(7), P: 49-52.
    68. 李洪洋. 内高压成形的应力应变分析与台阶轴内高压成形的研究, 哈尔滨工业大学博士学位论文, 2002.10.
    69. M.E. Limb, J. Chakrabarty, S. Garber, P.B. Mellor, The forming of, axisymmetric and asymmetric components from tube, in: Proceedings of the 14th International MTDR Conference[A], 1973, P: 799-805.
    70. K. Manabe, S. Mori, K. Suzuki, H. Nishimura, Bulge forming of thin-walled tubes by micro-computer controlled hydraulic press, Adv. Technol. Plasticity 1 (1984), P: 279-284.
    71. S. Thiruvarudchelvan, A theory for the bulging of aluminum tubes using urethane rod, J. Eng. Technol. (February 1989).
    72. W. Tonghai, S. Sheng, M. Dexiu, The research of tube bulging using polyurethane under compound external forces and its application, Adv. Technol. Plasticity (1993), P: 494-499.
    73. D. Schmoeckel, C. Hessler, B. Engel, Pressure control in hydraulic tube forming, Ann. CIRP 41 (1) (1992), P: 311-314.
    74. W. Rimkus. Design of load-curves for hydroforming applications. Journal of Materials Processing Technology[J]. 108 (2000), P: 97-105
    75. L.Gao.Classification and analysis of thue hydroforming processes with respect to adaptive FEM simulations.Journal of material processing technology[J].129(2002), P: 261-267.
    76. F.C. Lin, C.T. Kwan. Application of abductive network and FEM to predict an acceptable product on T-shape tube hydroforming process. Computers and Structures[J]. 82 (2004), P: 1189-1200.
    77. J.C.Genlin,C.Labergere,Numerical control strategies for the hydroforming of thin walled metallic tubes. Numisheet 2002[A]. October 21-25,2002,Jeju Island,Korea, P: 499-504.
    78. Kuang-Jau Fann, Pou-Yuan Hsiao. Optimization of loading conditions for tube hydroforming. Journal of Materials Processing Technology[J]. 140 (2003), P: 520–524.
    79. Jae-Bong Yang, Byung-Hee Jeon, Soo-Ik Oh. Design sensitivity analysis and optimization of the hydroforming process. Journal of Materials Processing Technology[J]. 113 (2001), P: 666–671.
    80. Matteo Strano,Suwat Jirathearanat,Shiuan-Guang Shr, Taylan Altan, Virtual process development in tube hydroforming,J. Mater. Process. Technol[J]. 146 (2004), P: 130-136.
    81. Yingyot Aue-U-Lan,Gracious Ngaile,Taylan Altan. Optimizing tube hydroforming using process simulation and experimental verification. J. Mater. Process. Technol[J]. 146 (2004), P: 137-143.
    82. 李洪洋, 戴昆, 苑世剑等. 方截面轻体件的内高压成形研究.锻压技术[J].2001( 1),P: 31-32.
    83. 郎利辉, 苑世剑, 王仲仁. 内高压液力成形缺陷产生及其失效分析.塑形工程学报[J]. 2001, 8(4) , P: 30-35.
    84. 苑世剑, 苗启斌, 王仲仁. 轿车后轴纵臂内高压成形.金属成形工艺[J]. 2004, 22(3), P: 1-3.
    85. 王小松, 内高压成形过程起皱行为研究, 哈尔滨工业大学博士学位论文, 2005.6.
    86. 赵长财, 周磊, 张庆. 薄壁管液压胀形加载路径研究, 中国机械工程[J]. 2003, 13, P: 1807-1809.
    87. 赵长财, 刘涛等有限长薄壁管胀形研究. 塑性工程学报[J]. 1997, 4(l), P: 36-14.
    88. 田仲可. 薄壁结构件塑性成形技术研究, 西北工业大学博士学位论文, 2002.7.
    89. R.Hill, A theory of the yielding and plastic flow of anisotropic metal, proc.Roy. Soc.London, A1993, 1948, P: 193-281
    90. F.Barlat and J.Lian, Plasticity Behavior and stretchability of sheet metals, Int. Journal of Plasticity[J]. 1989, Vol.51, P: 51-66.
    91. Belytschko, Contact-impact by the pinball algorithm with penalty and lagrangian methods,Int. J. Num. Meth. Eng.[J]. 1991,31, P: 547-572.
    92. M. Imaninejad, G. Subhash, A. Loukus. Experimental and numerical investigation of free-bulge formation during hydroforming of aluminum extrusions. Journal of Materials Processing Technology[J]. 147 (2004), P: 247–254.
    93. Lee Jong-Kil, Park Dong-Woon, Oh soo-Ik, Simulation of deep drawing of square cup using an elasto-plastic finite element method, In: Proc Numisheet96[A].Detroit, 1996, P: 120-127.
    94. F.Vollertsen, M.Plancak. On possibilities of the determination of the coefficient of friction in hydroforming of tubes. Journal of Materials Processing Technology[J]. 125-126(2002), P: 412-420.
    95. F. Dohmann. Hydroforming- a Method to Manufacture Lightweight Parts. Journal of Materials Processing Technology[J]. 1996, 60, P: 669-676.
    96. E.Chu, Yu Xu. Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling and bursting analyses of aluminum tubes, International Journal of mechanical Sciences[J]. 46 (2004), P: 263-283.
    97. Muammer koc, Taylan Altan. Prediction of forming limits and parameters in the tube hydroforming process, Internal Journal of Mechine Tools & Manufacture[J]. 42(2002), P: 123-138.
    98. S.Timoshenko, Theory of Plates and Structures[M]. McGraw-Hill, New York, 1945.
    99. Daniel E.Green. Summary report of a/sp hydroforming work. Industrial Research &Development Institute (IRDI)[A]. 649 Prospect Blvd, Canada L4R 4L3 , P: 1-38.
    100. Nader Asnafi. Analytical modelling of tube hydroforming. Thin-Walled Structures[J]. 34 (1999), P: 295–330.
    101. Nader Asnafi , Anders Skogsgardh. Theoretical and experimental analysis of stroke-controlled tube hydroforming. Materials Science and Engineering[J]. A279 (2000), P: 95–110.
    102. 赵长财, 周磊, 张庆. 薄壁管液压胀形加载路径研究, 中国机械工程[J]. V14(13),2003( 7), P: 1086-1090.
    103. 周磊, 薄壁管液压胀形成形理论及试验研究, 燕山大学硕士学位论文, 2002 年 5月.
    104. 周秉倜. 薄壳弹塑性稳定性理论[M]. 北京, 国防工业出版社, 1979.
    105. 吴洪飞, 苑世剑, 王仲仁. 轴压柱壳弹塑性稳定性分析的通用方程推导. 哈尔滨工业大学学报[J]. 2002(2), P: 35-39.
    106. L.H.Donnell, Effect of imperfections on buckling of thin cylinders under externalpressure, Journal of Applied Mechanics[J]. 23(1956), P: 569.
    107. Woo DM. Determination of Stress/Strain characteristics of Tubular Materials. Journal of Metals[J].1968, 96, P: 357-359.
    108. 李洪洋. 内高压成形的应力应变分析与台阶轴内高压成形的研究, 哈尔滨工业大学博士学位论文, 2002.10.
    109. 王连东, 张涛.确定汽车桥壳液压胀形极限成形系数的初探.燕山大学学报[J]. 2001(7), P: 205-208.
    110. 汪大年.金属塑性成形原理[M]. 北京:机械工业出版社, 1986, 92-122.
    111. 林冶平, 锻压变形力的工程计算[M]. 北北京:机械工业出版社, 1986, 52-58.
    112. 苑世剑, 苗启斌, 王仲仁.轿车后轴纵臂内高压成形.金属成形工艺[J]. 2004, 22(3), P: 1-3.
    113. 刘钢, 谢文才, 苑世剑等. 大截面差空心件内高压成形研究. 材料科学与工艺[J]. 2004(8), P: 398-401.
    114. Mehdi Imaninejad, Ghatu Subhash, Adam Loukus. Influence of end-conditions during tube hydroforming of aluminum extrusions. International Journal of Mechanical Sciences[J]. 46 (2004), P: 1195-1212.
    115. 王立新著, 王迎军译.模糊系统与模糊控制教程[M]. 北京:清华大学出版社.2003, P: 124~132.
    116. 李友善, 李军.模糊控制理论及其在过程控制中的应用[M]. 北京:国防工业出版社,1993,6.
    117. 涂承宇, 涂承媛.模糊控制理论与实践[M]. 北京:地震出版社, 1998.
    118. 张文修, 梁广锡.模糊控制与系统[M]. 西安交通大学出版社, 1998.
    119. Matteo Strano, Suwat Jirathearanat, Shiuan-Guang Shr, Taylan Altan.Virtual process development in tube hydroforming.J. Mater. Process. Technol[J]. 146 (2004), P: 130–136.
    120. P. Ray, B.J. Mac Donald.Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis. Finite Elements in Analysis and Design[J]. 41 (2004), P: 173–192.
    121. 施阳, 严卫生, 李俊等.MATLAB语言精要及动态仿真工具SIMULINK[M]. 西安:西北工业大学出版社, 1997.
    122. 杨志涌, 刘瑞桢等.掌握和精通MATLAB[M]. 北京:北京航空航天大学出版社, 1997.
    123. 姚东, 王爱民, 冯峰.MATLAB命令大全[M]. 北京:人民邮电出版社, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700