用户名: 密码: 验证码:
大型风力机塔筒结构动力学与稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代大型风力机塔架采用薄壳型筒状高耸结构(以下简称塔筒),高度近100m,底部直径在5m以上,壁厚不到直径的1/100,属于典型的细长薄壳结构。塔筒底端固定,顶端自由且承受机舱和风轮的重力和气动载荷,该结构形式容易发生振动和失稳。随着机组的单机容量不断增大,重量和外型尺寸随之增大,塔筒的高度也随之增加,作用在塔筒上的重力载荷和气动载荷交变性和时变性更加显著。近年来,塔筒在风电机组运行过程中倒塌或失稳的事故时有发生。因此,塔筒结构动力学和稳定性研究对风电机组的可靠性和安全性至关重要。
     本文以某2.5MW风力机塔筒(φ5.8m×φ3.2m×95.2m)为研究对象,运用理论分析和数值模拟方法研究了塔筒的动力学特性、疲劳、屈曲稳定性。考虑到风是风力机机组运行过程中主要的载荷源,由风产生的气动载荷是塔筒动力响应、疲劳和屈曲稳定性的直接原因。首先,参照IEC标准对风况及风速分布进行理论分析,并借助风力机专门软件GH Bladed模拟风速的概率分布以及风湍流分布情况;其次,从理论上分析了机组各部件的载荷,主要是风轮所受的气动载荷,参照德国劳埃德船级社规范(GL2010)和Bladed原理手册,运用风力机专门软件GH Bladed模拟机组在各种工况(启动、正常发电、紧急刹车、停机等)下的载荷,并将气动载荷通过坐标变换等效转换到塔筒顶端;最后,将模拟所得到的载荷施加到ANSYS塔筒分析模型上进行动力学及动态响应分析、疲劳分析和屈曲稳定性分析。在研究过程中,得出了一些结论,总结如下:
     (1)在风力机塔筒的结构动力响应中,低阶模态占主要地位,高阶模态对响应的贡献很小,阶数越高,其贡献就越小。而且,由于结构阻尼的作用,响应中的高阶部分衰减也很快,故高阶模态可以忽略不计;
     (2)塔筒顶端机舱和风轮的总质量对塔筒的弯曲振动频率有较大影响,塔筒的振动频率随顶端质量的增大显著降低;
     (3)塔筒在机组运行过程伴随着瞬态动力学响应过程,来自风速变化和运行工况下的动载荷对塔筒产生巨大的瞬态应力和变形,其瞬时值远大于响应的叠加值,对塔筒产生瞬时冲击,易造成塔筒损坏;
     (4)在切出风速和额定风速条件下,塔筒损伤阵列主要集中在低应力副区域,不足以造成塔筒的失效;而在极限风速(70m/s)条件下,塔筒在高应力副区损伤较大,对塔筒的产生损伤破坏;
     (5)轴压载荷以及风轮传递给塔筒的横向载荷对塔筒的屈曲失稳起主要作用;塔筒为缺陷敏感型结构,底部开设门洞塔筒的屈曲性能有很大影响,相同载荷情况下,圆弧形门洞比矩形门洞有更好的屈曲性能;沿门洞边缘添加门框有助于提高塔筒的屈曲强度。
     本文从理论上对风力机组载荷进行了分析,并运用风力机专业软件Bladed对机组载荷的进行了模拟,获取了运行工况下的载荷。塔筒在典型工况下的动态响应表明塔筒在动力响应过程中的应力应变在材料的许可范围之内;塔筒的屈曲分析表明塔筒满足屈曲强度要求;不同风速工况下的疲劳分析表明塔筒的疲劳寿命满足设计寿命。
High-rise thin-shell tube structure is adoptted on modern large-scale wind turbine tower(hereinafter referred to as tower); the height is nearly100m, the bottom diameter beyond5m and the wall thickness less than1/100compared diameter, which belongs to typicalslender shell structure. For constraints boundary conditions, tower is fixed at the bottom,the top is free and bear loads form gravity and aerodynamic of nacelle and rotor, which isprone to cause vibration and instability. With increase of power capacity of wind turbine,the mass and geometric dimension of wind turbine are increasing, the height of tower isalso increasing, therefore, the gravity loads and aerodynamic loads on the tower are morevariable. In recent years, the accident of tower falling down as instability and bucklinghappened sometimes during operation. Therefore, the structural dynamic response andstability on tower are essential to wind turbine’s reliability and security.
     A2.5MW wind turbine tower is adopted as subject in this study. Theoretical analysisand numerical simulation method are used to study tower structure dynamic, fatigue andbuckling stability. Considering the wind is main source load during the operation of windturbine, aerodynamic load generated by wind is the direct cause of tower dynamicresponse, fatigue and buckling stability. First, the wind conditions and wind speeddistribution are analyzed in theoretical method refer to IEC standard, and wind speedprobability distribution and wind turbulence distribution are simulated in specializedwind turbine software-GH Bladed. Second, the loads of wind turbine components areanalyzed theoretically. According to German Lloyd (GL2010) and Bladed manualprinciple, the running loads under operating conditions (such as start, normal powergeneration, emergency brake, stopping, etc.) are simulated in GH Bladed,and theaerodynamic loads are transfer equivalently to the top of tower through coordinatetransformation matrix. Finally, tower dynamic response, fatigue and buckling stability areanalyzed in theory and simulated in ANSYS software. In the course of this study, someconclusions are summarized as follows:
     (1) In structural dynamic response of wind turbine tower, lower modal dominateresponse and contribution of higher modal is very tiny. Moreover, since the role ofstructural damping, high-level part of response decays quickly which is negligible.
     (2) Total gravity of nacelle and rotor on the top of tower has great impact on thefrequency of bending vibration, and the vibration frequency of tower is significantlyreduced with increase of gravity.
     (3) Tower accompanied by transient dynamic response during wind turbine operating;dynamic load on tower from wind and operating conditions produce large transient stressand deformation, and its instantaneous value is much larger than response superpositionvalue which cause instantaneous impact damage on tower.
     (4) In cut-out speed and rated wind speed, the tower damage array mainly happens inlow stress area which is not enough to cause the failure of tower; in limit wind speed, thedamage of tower happens in high-stress district which is damage to tower.
     (5) Axial compression load and lateral load of tower play a major role in towerbuckling. Tower tube is defect-sensitive structure, and opening at the bottom of towerhave significant impact on tower buckling. In the same load case, arc-shaped opening hasbetter buckling performance than rectangular opening.The frame along door edge ishelpful to improve tower buckling strength.
     In this paper, the loads of wind turbine are analyzed in theory, and running loads aregot by simulation in Bladed. The dynamic response of tower in typical operatingcondition shows that stress and strain meet the material mechanical scope; tower bucklinganalysis shows that tower buckling strength meets safety requirement; the fatigueanalysis in different wind speed conditions show that tower fatigue life satisfyrequirement of design life.
引文
[1]李俊峰.中国风电发展报告2011[M].北京:中国环境科学出版社,2011,11-12
    [2]2006BP世界能源统计年鉴[EB/OL].www.bp.com.cn,2006.06
    [3]2011BP世界能源统计年鉴[EB/OL].www.bp.com/statisticalreview,2011.06
    [4]刘铁男.中国能源发展报告2011[M].北京:经济科学出版社,2011,7-11
    [5] Steve Sawyer.全球风能展望2030[M].www.ewea.org,2010.10
    [6]中华人民共和国国民经济和社会发展第十二个五年规划纲要[EB/OL].www.ce.cn/macro/more/201103/16/t20110316_22304698.shtml,2011.03
    [7]何祚庥.发展风电是我国最现实的战略选择[EB/OL].www.china.com.cn/chinese/jingji/577576.htm,2004.06
    [8]施鹏飞.21世纪风力发电前景[J].中国电力,2000,2000(9):78-84
    [9]张树伟.碳税对我国电力结构演变的影响-基于CSGM模型的模拟[J].能源技术经济,2011,23(3)
    [10]石建鑫,陈玲玲.关于我国电力工业可持续发展的能源结构分析[J].科技情报开发与经济,2011,21(28)
    [11] BTM Consult Asps-Apart of Navigant Consulting.World Market Update2010
    [12]李峻峰,施鹏飞.中国风电发展报告2010[M].海口:海南出版社,2010,5-9
    [13] IEC61400-1.Wind turbine generator systems[S].2004,6-20.
    [14] GL2010.Guideline for the Certification of Wind Turbines[S].2010,243-255
    [15]李本立,宋宪耕.风力机结构动力学[M].北京:北京航空航天大学出版社,1999,134-171
    [16] PETERSEN J T.Kinematically nonlinear finite element model of a horizontal axiswind turbine[R].Copenhagen:Ris. National Laboratory,1990
    [17]陆萍,秦惠芳,栾芝云.基于有限元法的风力机塔架结构动态分析[J].机械工程学报,2002,38(9):127-130
    [18]李德源,刘胜祥,黄小华.大型风力机筒式塔架涡致振动的数值分析[J].太阳能学报,2008,29(11):1432-1437.
    [19] BOSSANYI E A.GH Bladed:Theory manual[M].Bristol:Garrad Hassan&Partners Ltd,2007,9-22
    [20] RACHID Y, ISMAIL E B,TRITSCH J B, et al. Dynamic study of a wind turbineblade with horizontal axis[J].European Journal of Mechanics-A/Solids,2001,20(2):216-225
    [21] MURTAGH P J, BASU B, BRODERICK B M. Mode acceleration approach forrotating wind turbine blades[J].Journal of Multi-Body Dynamics,2001,21(8):241-252
    [22] PALUCH B, BERLU P. A computer-aided approach of loads prediction forHAWT based on flexible multibody dynamics[C].Proc. of1999EWEC, Nice,March1999, France:James&James (Science Publishers) Ltd,1999:270-273
    [23] LEE D, HODGES D H, PATIL M J. Multi-flexible-body dynamic analysis ofhorizontal axis wind turbines[J].Wind Energy,2002,2002(5):281-300
    [24] Wind Turbine Dynamics [A].2006Wind Program Peer Review.NREL,2006
    [25] E.KaVak Akpinar, S.Akpinar. An assessment on seasonal analysis of wind energycharacteristics and wind turbine characteristics[J].Energy Conversion andManagement,46(2005),1848-1867
    [26] Wim Bierbooms,PoWen Cheng.Stochastic gust model for design calculations ofwind turbines[J].Journal of wind Engineering and Industrial Aerodynamics,2002,90(11):1237-1251
    [27] Grant, M.Mo, X.Pan, P.Parkin. An experimental and numerical study of thevortex filaments in the wake of an operational, horizontal-axis wind turbine[J].Journal of wind Engineering and Industrial Aerodynamics,2000,85(2):177-189
    [28] M.O.L.Hansen, S.Voutsinas.State of the art in wind turbine aerodynamicsand aero elasticity[J].Progress in Aerospace Sciences,2006,42(4):285-330
    [29] N.Bazeos,G.D.Hatzigeorgiou,I.D.Hondros.Static,seismic and stabilityanalyses of a prototype wind turbine steeI tower[J].Engineering Structures,24(2002):1015-1025
    [30] P.J.Murtagh,B.Basu,B.M.Broderick.Along-wind response of a windturbine tower with blade coupling subjected to rotationally sampled windloading[J].Engineering Structures,2005,27(8):1209-1219
    [31] Lobtiz DW. A. Nanstran-based computer program of structal dynamic analysis ofhorizontal axis wind turbine[C].Proceedings of Horizontal Axis Wind TurbineTechnology Workbench, Department of Energy and NACA Lewis, Cleveland,1984
    [32] Peter Hague Madsen, Kirk Pierce, Marshall Buhl. Predicting Ultimate Loads forWind Turbine Design [C]. AIAA/ASME Wind Energy Symposium, Reno, Nevada,January,2009,11-14
    [33] M.D.Pandey, H.J.Sutherland. Probabilistic analysis of list data for the estimationof extreme design loads for wind turbine components[C]. In a collection of the2003ASME Wind Energy Symposium. At the AIAA Aerospace Meeting, Reno.Nevada.USA.January2003
    [34] Patrick Ragan, Lance Manuel. Statistical extrapolation methods for estimatingwind turbine extreme loads[C]. In A collection of the2007ASME Wind EnergySymposium. At the AIAA Aerospace Meeting. Reno. Nevada. USA. January2007.American Institute of Aeronautics and Astronautics. AIAA-2007,12-21
    [35] J. Peeringa Comparison of extreme load extrapolations using measured andcalculated loads of a MW wind turbine [C].European Wind Energy Conference2009.Marseille, France,16-19March2009
    [36]窦秀荣.水平轴风力机气动性能及结构动力学特性研究[D].济南:山东工业大学博士学位论文,1995,74-79
    [37] Jan van der Tempel, David-Pieter Molenaar.Wind Turbine Structural Dynamics–A Review of the Principles for Modern Power Generation, Onshore andOffshore[J]. Wind Engineering,2002,26(4).211-220
    [38] G. Bir, J.Jonkman.Modal Dynamics of Large Wind Turbines with DifferentSupport Structures [C]. ASME27th International Conference on OffshoreMechanics and Arctic Engineering (OMAE2008) Estoril,Portugal,June15–20,2008
    [39]黄东胜,王朝胜,邹富顺等.风力机塔架模态分析及应用[J].装备制造技术,2009
    [40] S.Timoshenko著,张福范译.弹性稳定理论[M].北京:科学出版社,1958,429-444
    [41] Donnell L. Stability of thin tubes under torsion[R].NACA Rep,1933,No.479
    [42] Karmen V, Tsien H S. The buckling of thin cylinders under axial compression[J].J Aeron Soc,1941(8):303
    [43] Donnell L, Wan C C. Effect of imperfection on buckling of thin cylinders andcolumns under axial compression[J].JAM,1950
    [44] Stein M. The influence of prebuckling deformation and stresses on buckling ofperfect cylinders[R].NACA TR-190,1964
    [45] Stein M. Some resent advance in the investigation of shell buckling [C].AIAA,1968(6):23-39
    [46] Anton Hubner, Matthias Albiez, Dietmar Kohler, Helmut Saal. Buckling of longsteel cylindrical shells subjected to external pressure [J].Thin-Walled Structures,45(2007),1035–1043
    [47] Xiaoqing Zhang, Qiang Han. Buckling and postbuckling behaviors of imperfectcylindrical shells subjected to torsion[J].Thin-Walled Structures,45(2007),1035–1043
    [48] Kim S E, Kim C S. Buckling Strength of the Cylindrical Shell and TankSubjected to Axically Compressive Loads[J].Thin-Walled Strutures,40(2002)
    [49] Tafreshi A, Bailey C G. Instability of Imperfect Composite Cylindrical Shellsunder Combined Loading[J].Composite Structures,80(2007),49-64
    [50] N.J. Mallon, R.H.B. Fey, H. Nijmeijer. Dynamic stability of a thin cylindricalshell with top mass subjected to harmonic base-acceleration[J].InternationalJournal of Solids and Structures,45(2008),1587–1613
    [51]陈兴华.轴压圆柱壳结构稳定性数值分析与优化[D].北京:北京工业大学硕士学位论文,2009
    [52]宋昌永,吴开成.平底圆柱钢筒仓稳定设计方法比较[J].浙江大学学报(工学版),2004,38(8):978-983
    [53]赵世林,李德源,黄小华.风力机塔架在偏心载荷作用下的屈曲分析[J].太阳能学报,2010,31(7)
    [54]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003,75-76
    [55]王学颜.结构疲劳强度设计与失效分析[M].北京:兵器工业出版社,1992
    [56]刘胜祥,李德源.风波联合作用下的风力机塔架疲劳特性分析[J].太阳能学报,2009,30(10)
    [57]查小鹏.高耸结构风致疲劳安全预警的理论和方法[D].武汉:武汉理工大学博士学位论文.2008,8-15
    [58] D.勒古里雷斯著,施鹏飞译.风力机的理论与设计[M].北京:机械工业出版社.1987,31-33
    [59] Tony Burton著,武鑫译.风能技术[M].北京:科学出版社.2007,38-41
    [60]邹经湘,王本利,王世忠.结构动力学[M].哈尔滨:哈尔滨工业大学出版社,1996,137-146
    [61]王勖成.有限单元法[M].北京:清华大学出版社,2003,5-7
    [62]李人宪.有限元法基础[M].北京:国防工业出版社,2004,3-6
    [63] ANSYS, Inc.Theory reference for ANSYS and ANSYS Workbench[Z].2007,921-931
    [64] E.A.Bossanyi.GH Bladed3.67用户手册[R].Garrad Hassan Partner Ltd,2005
    [65]正野重方.动力气象学(中译本)[M].北京:科学出版社,1960,3-7
    [66] Daniels G E. Terrestrial Environment (Climatic) Criteria Guidelines for Use inAerospace Vehicle Development. N74-16292,1973
    [67]倪振华.振动力学[M].西安:西安交通大学出版社,1986,280-286
    [68]王介龙,陈彦,薛克宗.风力发电机耦合转子/机舱/塔架的气弹响应[J].清华大学学报(自然科学版),2002,2(2):211-215
    [69]吕钢.基于有限元法的水平轴风力机塔架动态响应与优化问题研究[D].兰州:兰州理工大学,2009,33-34.
    [70]赵阳,金锋.轴压作用下矩形开口圆柱壳的稳定性[J].工程设计学报,2004,11(5)
    [71] DNV-RP-C202.Buckling strength of shells[S].2004,10-17
    [72] DIN18800-4.Structural Steel work analysis of safety against buckling shell[S].1990,13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700