用户名: 密码: 验证码:
航空发动机轮盘标准载荷谱编制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮盘是航空发动机的断裂关键件,其安全性和可靠性直接影响发动机和飞机的安全性和可靠性。有效评估轮盘材料性能、制造工艺、表面处理方法、结构细节设计以及发展可靠的寿命预测方法,对保证轮盘的安全性和可靠性具有重要意义。传统方法通常是采用等幅疲劳试验开展上述工作。但等幅疲劳试验无法反映轮盘实际使用载荷参量(如载荷次序、小幅循环等)对其疲劳损伤的影响等。因此,发展具有轮盘实际使用载荷特征的标准载荷谱,对上述工作的开展及最终提高轮盘的安全性和可靠性具有重要应用价值。
     本文主要开展了航空发动机冷端盘(如风扇和前几级压气机轮盘,主要考虑离心载荷)标准载荷谱编制方法的研究,主要工作包括:
     (1)对国内外标准载荷谱的发展现状进行了文献综述和分析,提出国内发展航空发动机轮盘标准载荷谱的必要性和重要意义。
     (2)对航空发动机冷端盘标准载荷谱编制方法进行了研究和分析,总结出冷端盘标准载荷谱编制的主要步骤和方法。要发展冷端盘的标准载荷谱,首先需要对航空发动机实测飞行载荷谱进行统计分析,主要内容包括:典型飞行任务剖面的选取和标准化处理、典型飞行任务剖面的任务段划分和载荷分类、确定性载荷的统计分析以及随机性载荷的统计分析。然后基于实测飞行载荷谱的统计分析结果生成冷端盘的标准载荷谱,主要内容包括:确定标准载荷谱长度和典型任务剖面的排列次序、单个任务剖面载荷序列的生成以及最终冷端盘标准载荷谱的生成。
     (3)基于上述航空发动机冷端盘标准载荷谱编制方法,对国内航空发动机实测飞行载荷谱进行了初步的统计分析,根据统计分析所选取的小载荷去除标准的不同,初步生成了几种不同的国内航空发动机冷端盘标准载荷谱。然后基于国内典型盘所使用的TC4合金的应力疲劳试验数据,对几种标准载荷谱及原始实测谱的疲劳损伤进行了分析,结果表明:小载荷去除标准选为3%最大载荷以内对标准载荷谱的疲劳损伤影响不大,由此生成的标准载荷谱可以较好地表征航空发动机冷端盘的实际使用载荷特征。
Aircraft engine disk is of fracture critical part and its safety and reliability is of significance to the safety and reliability of the entire engine and aircraft. Effectively evaluating the performance of disk materials, manufacturing processes, surface treatment methods, structural details of the design and development of reliable life prediction method are important for ensuring the safety and reliability of disks. It is well known that data and models that characterize the fatigue behavior of materials and structures under base-line constant amplitude loading may not be appropriate or sufficient to adequately assess their fatigue performance under irregular variable amplitude loading. From this point of view, fatigue testing should be carried out under a realistic, operational loading pattern. So developing a standardized fatigue test loading sequence for aircraft engine disks is valuable for evaluating the performance of disk materials, manufacturing processes, surface treatment methods, structural details of the design and development of reliable life prediction method.
     Study in this thesis is focused on the methods for generating a standardized fatigue test loading sequence for aircraft engine cold section discs. Three aspects of research have been accomplished as follow:
     (1) The development status of the standardized loading sequence is reviewed. It is realized that developing a standardized fatigue test loading sequence in China is of importance and necessary.
     (2)Through studying and analyzing the generating process for the standardized fatigue test loading sequence, it is concluded that quantitative analysis of aircraft engine’s operational mission profiles is important for generating a standardized fatigue test loading for cold section disks. The analysis procedure mainly comprises: selection and standardization of representative operational mission profiles, statistical analysis with respect to mission type, structure and content. The generating procedure for a standardized loading sequence main comprises: determination of sequence length and mission mix, sequence generation for a mission profiles based on statistical analysis results of representative operational mission profiles, and generation of whole standardized loading spectrum for aircraft engine cold section disks.
     (3) Based on the generating methods for a standardized loading spectrum, quantitative analysis of aircraft engine’s operational mission profiles in China is carried out. Several sequences have been generated based on different statistical analysis results of representative operational mission profiles with different omitting criterion for small cycles. Then based on the fatigue data of TC4 alloy, the fatigue life is predicted for these different sequences with different maximum stress. It is conclude that omitting small cycles with load range less than 3% of the max load have little influence to the fatigue damage of standardized loading spectrum..
引文
[1]陶春虎,钟培道.航空发动机转动部件的失效与预防,国防工业出版社,2004.
    [2]姚卫星.结构疲劳寿命分析.北京:国防工业出版社,2003.
    [3] Schutz Walter. Standardized stress-time histories-an overview, American Society for Testing and Materials,1989.
    [4]郦明.结构抗疲劳设计.北京:机械工业出版社, 1987.
    [5] Heuler. P Schutz .W,The significance of standardized load sequences, Materialwiss Werkstofftechnik 1988.
    [6] A.A.Ten Have,Final Definition of A Standardized Fatigue Test Loading Sequence for Tactical Aircraft Cold Section Engine Discs, NLR TR 87054 L.1987.
    [7] Gassner E, Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau, Deutsche Luftwacht, Ausgabe Luftwissen, 1939.
    [8] Schiitz.D Lowak.H, De Jonge.J.B, A standardized load sequence for flight simulation tests on transport aircraft wing structures, LBF-Report FB-106,NLR-Report TR 73,1973
    [9] H Heuler P. Klatschke. Generation and use of standardized load spectra and load-time histories, International Journal of Fatigue Vol.27, .974-990. 2005.
    [10] J. Schijve A. M. Vlutters, Ichsan.J. C. Provo Kluit. Crack Growth in aluminium alloy sheet material under flight-simulation loading, Int. J. Fatigue 7 No. 3. 127-136. 1985
    [11] J. B. De Jonge A. Nederveen. Effect of gust load alliviation on fatigue and crack growth in Alclad 2024-T3, ASTM-STP 714 170-184. 1980
    [12] Schijve J. The Significance of Flight Simulation Fatigue Tests, Durability and Damage Tolerance in Aircraft Design Proc. 13th ICAF Symp, EMAS, Warley, U.K 1985
    [13] Gray I. G. Fatigue Crack Propagation Programme for the A 320 Wing, New Materials and Fatigue Resistant Aircraft design Proc. 14th ICAF Symp, EMAS, Warley, U.K 1987.
    [14] W. Aicher J. Branger, G. M. Van Dijk, Description of a Fighter Aircraft Loading Standard for Fatigue Evaluation‘FALSTAFF’, Common Report of F+ W Emmen,1976.
    [15]第三机械工业部第六研究院,飞机强度规范参考资料(一), 1982.
    [16] 900 Ceat-Report M 7681, Centre d’Essais Aeronautique de Toulose, 1980.
    [17] Perrett B. H. E. An Evaluation of a Method of Reconstituting Fatigue Loading from Rainflow Counting, New Materials and Fatigue Resistant Aircraft Design .1987.
    [18] Gerharz J. J, Standardized Fatigue and Environmental Loading Sequence for Durability Evaluation of Composity Components in Fighter Aircraft (ENSTAFF), LBF-Report No. FB- 179,1987.
    [19] P. R. Edwards J. Darts, Standardized Fatigue Loading Sequences for helicopter Rotors (Helix and Felix), RAE TR 84084, Part 1 and 2, 1984.
    [20] D. Schiitz H. G. Kobler, W. Schutz, M. Hiick, Helicopter Fatigue Life Assessment, 1981.
    [21] A.A.Ten Have, WISPER and WISPERX-final definition of two standardised fatigue loading se2uences for wind turbine blades, NLR Report CR 91476L,Amsterdam,1991.
    [22] Sonsino Cm Kla¨Tschke H, Schu¨Tz W, Hu¨Ck M, Standardized load sequence for offshore structures-wave action standard history-WASH 1, LBF-Report No.FB-181,1988.
    [23] Schu¨Tz W Kla¨Tschke H, Hu¨Ck M, Sonsino Cm., Standardized load sequence for offshore structures-WASH I, Fatigue Fract Eng Mater Struct, 1990.
    [24] Brune M Zenner H,Improvement of life prediction for components of steel mill drives, Germany, Report ABF40.1,1990.
    [25] Schutz D Klatschke H, Steinhilber H, Heuler P, Schutz W, Standardized load sequences for car wheel suspension components,car loading standard-CARLOS.LBF-Report No.FB-191,1999
    [26] Schu¨Tz D Kla¨Tschke H, Heuler P, Standardized multiaxial load sequences for car wheel suspension components-car loading standard-CARLOS multi, LBF-Report No.FB-201,1994.
    [27] Schutz D Klatschke H, Heuler P, Standardized load sequences for car powertrains with manual gears-car loading standard-CARLOS PTM, LBF-Report No.7558,1997.
    [28] Ge Breitkopf. Basic approach in the development of TURBISTAN, a loading standard for fighter aircraft engine disks, American Society for Testingand Materials 1989.
    [29] Bergmann Jw Schu¨Tz W, Standardised load sequence for hot turbine and compressor discs of military aircraft, Report TF-2809,IABG Ottobrunn,Germany, 1990.
    [30] Heuler P Schu¨Tz W. A review of standardized load-time histories for fatigue research and application .Int J Fatigue 2002.
    [31] P.Heuler. Generation and use of standardized load spectra and load-time histories, International Journal of Fatigue 2005.
    [32]甘学东,战斗机标准疲劳载荷谱编制及疲劳寿命预测.硕士学位论文.西安.西北工业大学.1996.
    [33]航空工业部发动机管理局WP-6发动机寿命研究报告,1988.
    [34]程德金.模糊数学在飞行试验数据处理中的应用.飞行力学.1994
    [35]国防科工委批准,航空燃气涡轮喷气、涡轮风扇发动机通用规范, 1987.
    [36]美国军用标准,航空发动机结构完整性大纲, 1984.
    [37]宋迎东,高德平.飞行任务剖面的主成份聚类方法研究,航空动力学报2002.
    [38]任若恩,王惠文,多元统计数据分析-理论、方法、实例,北京:国防工业出版社,1997.
    [39]唐守正,多元统计分析方法,北京:中国林业出版社,1986.
    [40] Matsuishi.M Endo.T. Fatigue of metals subjected to varying stress.,Japan Society of Mechanical Engineers 1968.
    [41]宋迎东,高德平.发动机航线类综合载荷谱研究,推进技术2000.
    [42]宋迎东,高德平.发动机机动飞行类综合载荷谱研究,航空动力学报2002.
    [43]宋鹏晨.航空发动机载荷谱模型与载荷组合研究,硕士学位论文南京南京航空航天大学.2006.
    [44] Cycle counting methods for the estimation of fatigue life,Engineering Science Data Unit 2006.
    [45] C.H.Mcinnes P.A.Meehan. Equivalence of four-point and three-point rainflow cycle counting algorithms,International Journal of Fatigue 2008.
    [46] A.K.Khosrovaneh N.E.Dowling. Fatigue loading history reconstruction based on the rainflow technique, Int J Fatigue 1990.
    [47] N.E.Dowling C.A.Calhoun, A.Arcari. Mean stress effects in stress-life fatigue and the Walker equation, Fatigue&Fracture of Engineering Materials&Structures (2009).
    [48]胡绪腾,宋迎东.总应变—应变能区分法,机械工程学报43 (2007) 219~224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700