用户名: 密码: 验证码:
低剂量辐射反应基因的鉴定及CHD6基因的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究小于0.5Gy低剂量辐射对基因表达的影响规律,筛选并鉴定低剂量辐射反应基因,为发展低剂量辐射暴露的分子标志物奠定基础;探讨其中CHD6基因表达变化对细胞增殖、辐射敏感性的影响及其机理。
     方法:应用基因芯片技术对0.05、0.2和0.5Gy ~(60)Coγ射线照射正常人淋巴母细胞AHH-1的全基因组mRNA表达水平进行对比分析,RT-PCR、real-time PCR和Northern blot验证部分差异表达基因mRNA的表达水平;利用质粒介导的siRNA技术,建立CHD6基因表达抑制细胞模型,RT-PCR检测CHD6 mRNA的表达,细胞生长曲线和流式细胞技术分别检测细胞增殖及细胞周期的变化,荧光染色法检测细胞凋亡,细胞克隆形成率检测细胞辐射敏感性,GST-pull down检测CHD6相互结合蛋白。
     结果:1)在所分析的14,112个基因中发现,0.05Gy照射组差异表达2倍以上基因有43个,其中表达上调的有25个,表达下降的有18个;0.2Gy照射组差异表达显著的基因有83个,其中表达上调的有21个,表达下降的62个;0.5Gy照射组差异表达显著的基因有75个,表达上调的基因30个,表达下降的基因45个。
     2)RT-PCR对部分基因的辐射诱导表达进行了验证,包括0.05Gy照射组的BMPR2、CONNEXIN43、LYK5和NOL6基因表达上调,CCNB1IP1、SDPR、CCT5和KIAA0231基因表达下降;0.2Gy照射组的MAPK14、NDST1、CENPF和SELP基因表达上调,APOLLON、RNF2、VTN和PCDH18基因表达下降;0.5Gy照射组的STAT3、GPR56、MIZF、ATP9A、CAMKK2和CHD6基因表达上调,LCP1、XRCC4、RLF3基因表达下降。这些基因的表达变化与基因芯片的筛选结果一致。
     3)利用real-time PCR对其中的XPC基因的辐射诱导表达的剂量效应规律进行了细致的分析,结果表明,其mRNA表达水平具有显著剂量依赖性,在至少0.05~10Gy范围内,随剂量的升高而表达丰度上调。而且XPC基因表达在0.05Gy照射后10h和2Gy照射后4h分别达到最高值,而紫外线和顺铂对XPC基因mRNA表达水平无明显影响。MSN、LCP1和AK123575基因尽管也受低剂量辐射诱导表达,但剂量效应关系不明显。
     4)CHD6基因是本实验室以前通过差异显示PCR鉴定的一个0.5Gy辐射反应基因
Objective: To reveal the effects and regulation of low dose radiation on global gene transcription, and to screen and identify the differentially transcribed genes for developing novel molecular biomarkers or biodosimeter of ionizing radiation exposure; To investigate the roles of low dose responsive gene CHD6 on the proliferation and cellular radiosensitivity. Methods: cDNA microarray was used to detect the global transcriptional profiling of human lymphoblastoid AHH-1 cells at 4 h after exposure with ~(60)Co γ-ray at doses of 0.05, 0.2 and 0.5Gy. The expression changes of mRNA were confirmed by RT-PCR, real-time PCR and northern blot analysis. CHD6-silenced A549 cell model was generated by plasmid mediated siRNA technology. Growth curve, colony-forming ability, flow cytometry and fluorescent staining methods were used to measure the cell proliferation, radiosensitivity, cell cycle and apoptosis respetively. The interacting proteins of CHD6 were identified by GST-pull down and peptide mass fingerprint.
    Result: 1) Microarray containing the cDNA probes corresponding to 11,412 human genes was used. The results revealed that the transcription level of 43 genes were markedly alterated in 0.05Gy irradited cells, among which 25 genes were up-regulated and 18 genes were down-regulated. In 0.2Gy irradiated cells, 21 up-regulated genes and 62 down-regulated genes were screened. In 0.5Gy irradiated cells, a total of 75 differentially expressed genes were identified, there include 30 up-regulated genes and 45 down-regulated genes.
    2) The expression changes of a number of genes, as indicated in the microarray analyses, were further confirmed by semi-quantitative RT-PCR, including the upregulation of BMPR2, CONNEXIN43, LYK5, NOL6 genes, and downregulation of CCNB1IP1, SDPR, CCT5, KIAA0231 genes induced by 0.05Gy; upregulation of MAPK14, NDST1, CENPF, SELP genes, and downregulation of APOLLON, RNF2, VTN, PCDH18 genes induced by 0.2Gy; upregulation of STAB, GPR56, MIZF, ATP9A, CAMKK2, CHD6 genes, and downregulation of LCP1, XRCC4, RLF3 by 0.5 Gy irradiation.
    3) Using quantitative real-time PCR, we also revealed that the expression level of XPC
引文
1. Lucky TD. Physiological benefits from low levels of ionizing radiation. Health Phys, 1982, 43(6): 771-776.
    2. Zhou PK, Xiu XY, Sun WZ, et al. Cultured mouse SR-1 cells exposed to low doses of gamma-rays become less susceptible to the induction of mutagenesis by radiation as well as bleomycin. Mutagenesis, 1993,8(2): 211-217.
    3. Zhou PK, Xiang XQ, Sun WZ, et al. Adaptive reponse to mutagenesis and its molecular basis in a human T-cell leukemia line primed with a low dose of gamma-rays. Radiat Environ Biophys, 1994, 33(3): 211-217.
    4. Zhou PK, Rigaud O. Down-regulation of the human CDC16 gene after exposure to ionizing radiation: A possible role in the radioadaptive response. Radiat Res, 2001,155(1): 43-49.
    5. Hosoi Y, Miyachi H, Matsumoto Y, et al. Induction of interleukin-1 beta and interleukin-6 mRNA by low doses of ionizing radiation in macrophages. Int J Cancer. 2001, 96 (5): 270-276.
    6. Robson T, Joiner MC, McCullough W, et al. A novel human stress-related gene with a potential role in induced resistance. Radiat Res. 1999,152 (5): 451-461.
    7. Sadekova S, Lehnert S, Chow TYK. Induction of PBP47/Crp.75 a member of the hsp70 family, by low dose of ionizing radiation: a possible role in induced radioresistance. Int J Radiat Biol. 1997, 72 (6): 653-660.
    8. Zhou PK, Rigaud O. Down-regulation of the human CDC16 gene after exposure to ionizing radiation: a possible role in the radioadaptive response. Radiat Res. 2001,155 (1): 43-49.
    9. Akerman GS, Rosenzweig BA, Domon OE, et al. Alterations in gene expression profiles and the DNA-damage response in ionizing radiation-exposed TK6 cells. Environ Mol Mutagen. 2005,45(2-3):188-205.
    10. Coleman MA, Yin E, Peterson LE, et al. Low-dose irradiation alters the transcript profiles of human lymphoblastoid cells including genes associated with cytogenetic radioadaptive response. Radiat Res. 2005,164(1): 369-382.11.周平坤,隋建丽。低剂量辐射诱导新基因的转录调控和初步功能分析。中华放射医学与防护杂志。2002,22(2):73-76.
    12.孙志增,徐勤枝,隋建丽等。辐射诱导转录因子RIGb cDNA对HeLa细胞增殖的抑制作用.中国生物化学与分子生物学报。2005,21(3):384-389.
    13.周平坤,隋建丽,耿煜等。辐射诱导基因LRIGx的细胞周期特异性及编码产物同源性分析表达。中国生物化学与分子生物学报。2002,18(3):272-276.
    14. Stecca C, Gerber GB. Adaptive response to DNA-damaging agents. Biochem Pharmacol, 1998, 55(7): 941-951.
    15. Sasaki MS, Ejima Y, Tachibana A, et al. DNA damage response pathway in radioadaptive response. Mutat Res, 2002, 504(1-2): 101-118.
    16. Marples B. Is low-dose hyper-radiosensitivity a measure of G2-phase cell radiosensitivity? Cancer Metastasis Rev. 2004, 23(3-4): 197-207.
    17. Llorca O, Martin-Benito J, Gomez-Puertas P, et al. Analysis of the Interaction Between the Eukaryotic Chaperonin CCT and Its Substrates Actin and Tubulin. J Struct Biol, 2001, 135(2): 205-218.
    18. Gustincich S, Vatta P, Gomppi S, et al. the Human Serum Deprivation Response Gene (SDPR) Maps to 2q32-q33 and Codes for a Phosphatidylserine-binding Protein. Genomics, 1999, 57(1): 120-129.
    19. Hillier LD, Lermon C, Becker M, et al. Generation and Analysis of 280, 000 Human Expressed Sequence Tags. Genome Res, 1996, 6(9): 807-828.
    20. Utama B, Kennedy D, Ru K, et al. Isolation and Characterization of a New Nucleolar Protein, Nrap, That is Conserved from Yeast to Humans. Genes Cells, 2002, 7(2): 115-32.
    21. Iglesias JM, Morgan RO, Jenkins NA, et al. Comparative Genetics and Evolution of Annexin A13 as the Founder Gene of Vertebrate Annexins. Mol Biol Evol, 2002, 19(5): 608-618.
    22. Azzam EI, de Toledo SM, Little JB. Expression of connexin43 is highly sensitive to ionizing radiation and other environmental stresses. Cancer Res, 2003, 63(21): 7128-7135.
    23. Kim IY, Lee DH, Lee DK, et al. Restoration of Bone morphogenetic protein receptor type Ⅱ expression leads to a decreased rate of tumor growth in bladder transitional cell carcinoma cell Line TSU-Pr1. Cancer Res, 2004, 64 (20): 7355-7360.24. Van Laethem A, Van Kelst S, Lippens S, et al. Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J, 2004,18(15): 1946-1948.
    25. Lim S, Zou Y, Friedman E. The transcriptional activator Mirk/Dyrk1B is sequestered by p38alpha/beta MAP kinase.J Biol Chem, 2002,277(51): 49438-49445.
    26. Dufourcq P, Couffinhal T, Alzieu P, et al. Vitronectin is up-regulated after vascular injury and vitronectin blockade prevents neointima formation. Cardiovasc Res, 2002, 53(4):952-62.
    27. Hollier B, Harkin DG, Leavesley D, et al. Responses of keratinocytes to substrate -bound vitronectin: growth factor complexes. Exp Cell Res, 2005, 305(1): 221-32.
    28. Hyde C, Hollier B, Anderson A, et al. Insulin-like growth factors (IGF) and IGF-binding proteins bound to vitronectin enhance keratinocyte protein synthesis and migration. J Invest Dermatol, 2004,122(5):1198-1206.
    29. Molla M, Gironella M, Salas A, et al. Role of P-selectin in radiation-induced intestinal inflammatory damage. Int J Cancer, 2001, 96(2): 99-109.
    30. Tsujino K, Kodama A, Kanaoka N, et al. Expression of pulmonary mRNA encoding ICAM-1, VCAM-1, and P-selectin following thoracic irradiation in mice.Radiat Med, 1999, 17(4): 283-287.
    31. Hallahan DE, Virudachalam S. Accumulation of P-selectin in the lumen of irradiated blood vessels.Radiat Res, 1999,152(1): 6-13.
    32. Hallahan DE, Staba-Hogan MJ, Virudachalam S, et al. X-ray-induced P-selectin localization to the lumen of tumor blood vessels.Cancer Res, 1998,58(22): 5216-20.
    33. Grijzenhout MA, Aarts-Riemens MI, Akkerman JW, et al. Ultraviolet-B irradiation of platelets induces a dose-dependent increase in the expression of platelet activation markers with storage. Br J Haematol, 1993, 83(4): 627-32.
    34. Ma YQ, Plow EF, Geng JG. P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils. Blood, 2004, 104(8): 2549-2556.
    35. Sithanandam G, Fornwald LW, Fields J, et al. Inactivation of ErbB3 by siRNA promotes??apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene, 2005, 24(11): 1847-59.
    36. Walters DK, Jelinek DF. A role for Janus kinases in crosstalk between ErbB3 and the interferon-alpha signaling complex in myeloma cells. Oncogene, 2004,23(6):1197-1205.
    37. Caron RW, Yacoub A, Zhu X, et al. H-RAS V12-induced radioresistance in HCT116 colon carcinoma cells is heregulin dependent.Mol Cancer Ther, 2005,4(2): 243-255.
    38. Lewis DA, Zweig B, Hurwitz SA, et al. Inhibition of erbB receptor family members protects HaCaT keratinocytes from ultraviolet-B-induced apoptosis. J Invest Dermatol, 2003,120(3): 483-488.
    39. Zhou X, Wang R, Fan L, et al. Mitosin/CENP-F as a negative regulator of activating transcription factor-4. J Biol Chem, 2005, 280(14):13973-13977.
    40. Yang Z, Guo J, Chen Q, et al. Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol Cell Biol, 2005, 25(10): 4062-4074.
    41. Yang ZY, Guo J, Li N, et al. Mitosin/CENP-F is a conserved kinetochore protein subjected to cytoplasmic dynein-mediated poleward transport. Cell Res, 2003 ,13(4):275-283.
    42. Hussein D, Taylor SS.Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis. J Cell Sci, 2002,115(17): 3403-3414.
    43. Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, et al. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell, 2005, 7(1): 39-49.
    44. Bengtsson J, Eriksson I, Kjellen L. Distinct effects on heparan sulfate structure by different active site mutations in NDST-1. Biochemistry, 2003,42(7): 2110-2115.
    45. Nakayama K, Natori Y, Sato T, et al. Altered expression of NDST-1 messenger RNA in puromycin aminonucleoside nephrosis. J Lab Clin Med, 2004,143(2): 106-114.
    46. Nishi R, Okuda Y, Watanabe E, et al.Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol, 2005, 25(13): 5664-5674.
    47. Yang A, Miron S, Mouawad L, et al. Flexibility and Plasticity of Human Centrin 2 Binding to the Xeroderma Pigmentosum Group C Protein (XPC) from Nuclear Excision Repair.??Biochemistry, 2006,45(11): 3653-3663.
    48. Trego KS, Turchi JJ. Pre-steady-state binding of damaged DNA by XPC-hHR23B reveals a kinetic mechanism for damage discrimination. Biochemistry, 2006,45(6): 1961-1969.
    49. Shimizu Y, Iwai S, Hanaoka F, et al. Xeroderma pigmentosum group C protein interacts physically and functionally with thymine DNA glycosylase. EMBO J. 2003,22(1): 164-73.
    50. Hosoi Y, Miyachi H, Matsumoto Y, et aL Induction of interleukin-1 beta and interleukin-6 Mrna by low doses of ionizing radiation in macrophages. Int J Cancer, 2001, 96(5): 270-276.
    51. Robson T, Joiner MC, McCullough W, et al. A novel human stress-related gene with a potential role in induced resisance. Radiat Res, 1999,152 (5): 451-461.
    52. Hunter CP. Gene silencing: shrinking the Black Box of RNAi. Current Biology. 2000,10(4): 137-140.
    53. Farr M, Strube J, Geppert HG, et al. Pregnancy-associated plasma protein-E (PAPP-E). Biochim Biophys Acta 2000,1493(3): 356-362.
    54. Nese Kavak Z, Basgul A, Elter K, et al. The efficacy of first-trimester PAPP-A and free betahCG levels for predicting adverse pregnancy outcome. J Perinat Med. 2006, 34(2): 145-148.
    55. Suzuki K, Sata F, Yamada H, et al.Pregnancy-associated plasma protein-A polymorphism and the risk of recurrent pregnancy loss. J Reprod Immunol. 2006,13. [Epub ahead of print]
    56. Nakamura T, Itadani H, Hidaka Y, et al. Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem Biophys Res Commun. 2000, 279(2): 615-620.
    57. Morse, K L, Behan J, Laz TM, et al. Cloning and characterization of a novel human histamine receptor. J Pharmacol Exp Ther. 2001,296(3): 1058-1066.
    58. Liu C, Ma X, Jiang X, et al. Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol Pharmacol. 2001,59(3): 420-426.
    59. Hofstra CL, Desai PJ, Thurmond RL, et al. Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther. 2003,305(3): 1212-1221.
    60. Nakaya M, Takeuchi N, Kondo K. Immunohistochemical localization of histamine receptor subtypes in human inferior turbinates. Ann Otol Rhinol Laryngo. 2004,113(7): 552- 557.61. Thurmond R L, Desai PJ, Dunford PJ, et al. A potent and selective histamine H4 receptor antagonist with anti-inflammatory properties. J Pharmacol Exp Ther. 2004, 309(1): 404-413.
    62. Gantner F, Sakai K, Tusche MW, et al. Histamine H4 and H2 receptors control histamine-induced interleukin-16 release from human CD8CT cells. J Pharmacol Exp Ther. 2002,303(1): 300-307.
    63. Daugherty B L. Histamine H4 antagonism: a therapy for chronic allergy? Br. J. Pharmacol. 2004,142(1): 5-7.
    64. Fung-Leung, WP, Thurmond RL, Ling P, et al. Histamine H4 receptor antagonists: the new antihistamines? Curr Opin Investig Drugs. 2004, 5(11): 1174-1183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700