用户名: 密码: 验证码:
长江中下游地区高温热害对水稻的影响评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,全球气候正经历着以变暖为主要特征的显著变化,温度的升高改变了农业生产环境条件,高温导致的农业气象灾害对农作物的影响也日益突出,如何确保国家粮食安全及农业生产快速稳定发展,是我国农业面临的一个挑战。在此背景下,研究气候变化引起的高温热害对我国农业生产的影响具有较强的现实意义。本研究以长江中下游地区的气象资料和水稻生长发育观测资料为基础,用统计分析方法探讨了水稻高温热害发生的强度、频率和时空变化规律,确定了水稻高温热害危害较大的时段;并对WOFOST作物模型水稻遗传参数进行了调整检验,建立了水稻模型区域应用数据库,同时,还根据高温对水稻生长发育过程的影响,对模型进行了适当改进;应用改进后的模型,模拟不同发育时段高温热害对早稻和中稻生长发育和产量的影响,并以水稻减产率作为高温热害评估指标,模拟实际气象条件和平均气象条件下的水稻产量,对比分析模拟结果,评估了长江中下游地区高温热害对水稻的影响程度。得到的初步结论如下:
     1、高温热害天气主要集中在长江中下游南部大部分地区。日最高气温≥35℃的高温天气多发生在湖南、江西和浙江三省,主要高值区在江西省的贵溪、樟树、吉安及浙江省的丽水、金华等地;日平均气温≥30℃的高温天气发生日数除以上地区值较大外,在湖北省的嘉鱼、黄石等地区出现日数也较多。高温天气的多发年份有1966年、1967年、1971年、1978年、1988年、1994年、1995年以及2003年等。
     2、在水稻发育各阶段,当发生相同强度高温热害时,早稻减产程度依次为灌浆期最大,花期次之,孕穗期最小;中稻在温度达30℃时,各发育期减产与早稻相同,在温度为35℃时,当高温持续日数达3日开始,开花期减产程度开始大于灌浆期。随着高温持续日数增加,早稻和中稻孕穗期产量减幅较小,而开花期和灌浆期减产则显著增加。当发生相同持续日数高温热害时,早稻减产仍是灌浆期最大,孕穗期最小;中稻在高温强度小于34℃时,各发育阶段减产情况与早稻近似,当高温强度达34℃时开始,开花期减产程度略大于灌浆期,孕穗期减产仍为最小,所以温度强度较大的高温对中稻花期的影响更为严重。随着高温强度增加,早稻产量损失逐渐增加;中稻在温度较低时,减产幅度也随温度增加明显,但当高于某一温度后,减产幅度的增加减小。在不同强度和持续日数的高温影响下,一日的高温天气对早稻和中稻减产影响不大,随着高温强度和持续日数的增加,各发育阶段产量损失基本成线性关系递减。在相同生长条件下,早稻和中稻孕穗期受高温影响减产较小,开花期和灌浆期受高温影响减产较大,中稻的减产幅度一般要略大于早稻,且中稻更易遭受较严重的高温热害影响。
     3、对比分析平均气象条件及实际气象条件下的水稻产量,从时间变化上来看,早稻减产率波动变化较为明显,减产年份占研究总年份的52.2%,产量减少较多的几个年份是67年、71年、78年、88年和94年;中稻减产率波动要小于早稻,但减产年份要明显多于早稻,占总年份的69.6%,产量损失较明显的年份是67年、78年、94年、95年、03年及06年。从空间分布来看,在60年代,长江中下游北部部分地区,早稻有5~6年出现了减产,在70、80和90年代,减产出现年数大部分地区均在3~4年之间,到2000年以后,研究地区东北部大部分地区又有5~6年出现了减产;中稻在60年代,大部分地区减产年数出现较多,南部部分地区有7~9年出现减产,在70年代和90年代,在北部大部地区有5~6年出现减产,在80年代,西部大部分地区则出现了3~4年的减产,到2000年以后,研究区域东部部分地区又出现了5~6年的减产。
     4、高温天气多发的典型年份,水稻产量损失十分显著,无论早稻还是中稻减产率值最高均达30%以上,且减产区域多以重度灾害分布为主。其中,1967年高温对中稻产量的影响要大于早稻;1978年早稻和中稻受高温影响减产区域比较接近;1994年高温对早稻产量的影响范围明显大于中稻,而2003年则是中稻受高温影响程度明显大于早稻。在相同的高温年份,中稻的最大减产率值一般要大于早稻。因此总的来说,高温热害对中稻的不利影响大于早稻。
The currently global climate has being experienced a significant change characterized as warming up. Varying temperature changed the environmental conditions of agricultural production, and the agro-meteorological disasters which were induced by high temperature effect on crop yield was also increasingly prominent. How to ensure national food security and the stable development of agricultural production was a challenge facing humanity. In this context, it has strong practical significance to assess the impact of climate change caused by hot damage on agricultural production in China. This paper based on the meteorological data of the lower and middle reaches of Yangtze River and the growth period data of rice. Applying statistical analysis, the intensity, frequency and temporal-spatial variation of hot damage was investigated and the high-risk period of high temperature was defined. In order to establish the regional model database, field observations were used to calculate and calibrate the cultivar genetic parameters by put into WOFOST crop model. Then, according to the impacts of high temperature on rice growth, the crop model was improved appropriately. In Different growth periods with the impact of hot damage, the improved model was used to simulate the yield of early rice and medium rice. Meanwhile, the rice yield in both actual weather conditions and average weather conditions were simulated to be contrasted. Using the yield reduction rate as the hot damage evaluation index, the paper assessed the impact of high temperature damage for rice in the lower and middle reaches of Yangtze River. The main results in the article would be presented as following:
     1. Frequent damage of high temperature weather was occurred in most parts of the southern Yangtze River, but in the western and northeastern regions were relatively less. The high temperature days of maximum temperature≥35℃were more in Hunan, Jiangxi and Zhejiang provinces, and the main high-value areas were in Guixi, Zhangshu, Ji’an of Jiangxi and Lishui, Jinhua of Zhejiang. In addition to the above areas, the high temperature days of average temperature≥30℃also occurred frequently in Jiayu, Huangshi of Hubei. High temperature year is mainly in 1966, 1967, 1971, 1978, 1988, 1994, 1995 and 2003.
     2. During all developmental stages of rice, when the same intensity hot damage occurred, the level of early rice production cuts were filling stage the maximum, flower stage the second and booting stage the minimum. When the temperature was 30℃, yield decline of both medium rice and early rice were the same. While when the temperature rises to 35℃and the high temperature continuously over 3 days, the medium rice yield of flowering stage was more sensitive to continuous days of higher temperature, and the drop in yield should be greater than the degree of filling stage. As the number of high temperature days continued to increase, the early and medium rice yield of booting stage reduced little, while the yield of flowering and filling stage decreased more significantly. When the same frequency heat damage occurred, the production cuts of early and medium rice were larger than that at filling stage. But when the temperature was high than 34℃, the falling yield of medium rice at flowering stage was greater than that at filling stage, which means that higher temperature strength greater impact on medium rice at flowering period. With the high temperature strength increased, yield loss of early rice also gradually increased. While for medium rice, when temperature was low, the yield reduction increased significantly, but when it is beyond some temperature, the increase in yield reduction would reduce. Under the same growth conditions, the reduced production rate of medium rice was generally larger than early rice, and medium rice was more vulnerable to more serious high temperature weather.
     3. Compared the rice yield in average weather conditions with actual weather conditions. Changing from the time, the fluctuation of yield reduction rate of early rice was more significant. The years of obvious early rice yield loss were 1967, 1971, 1978, 1988 and 1994. While the fluctuation of medium rice yield was less than that of early rice, but the number of years in which yield declined was much more than that of early rice. The medium rice yield were reduced in1967, 1978, 1994, 1995, 2003, and 2006. Changing from the spatial distribution, in parts of the northern Yangtze River region, the underproduction of early rice presented between 5~6 years in the 60s. And in the 70’s, 80’s and 90’s, the underproduction of most districts occurred between 3~4 years, moreover the south areas has 7~9 years to present the yield loss. After the 2000 the most regions of northeast experienced production cuts between 5~6 years. In the 60's, medium rice yield was most seriously affected between 7~9 years in the south region. In the 70’s and 90’s, the cut yield occurred in parts of northern areas between 5~6 years. And there was 3~4 years of yields reduction in most west area in 80’s. Up to 2000, production cut between 5~6 years appeared in the eastern region.
     4. In these years which high temperature weather occurred more frequently, yield reduction rate of both early rice and medium rice were more than 30% and there were significant regions of severe disasters. In addition, high temperature days in 1967 had more serious influences on medium rice yield than that of early rice. In 1978, the hot damage regions of early rice were close to that of medium rice. In 1994, high temperature effect on early rice yield was stronger than medium rice yield. While the high temperature in 2003 affected medium rice more seriously than early rice. Generally, in the same high temperature year, the maximum yield reduction rate of medium rice was larger than early rice.
引文
Baker D M. GOSSYM, a simulation of cotton crop growth and yield[J]. South Carolina: South Carolina Agriculture Experiment Station. 1983, 125.
    Berry J A, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants [J]. Annual Review of Plant Physiology, 1980, 31: 491-543.
    Brouwer R, de Wit C T. A simulation model of plant growth with special attention to root growth and its consequences [A]. W J Whittington(Eds): Root Growth[C]. Proceedings of the 15th easter school in Agricultural Science. University of Nottingham. Butterwords. London, 1969, 224-244.
    de Wit C T. Photosynthesis of leaf canopies[J]. Agricultural Research Report, 1965, 663, 1-56.
    de Wit C T. Simulation of assimilation , respiration and transpiration of crops[M] . Simulation Monographs. Wageningen: Pudoc, 1978, 141.
    Duncan W G, Loomis R S, Williams W A, et al. A model for simulation photosynthesis in plant communities [J]. Hilgardia, 1967, 38: 181-205.
    Goudriaan, J. Crop micrometeorology : a simulation study[M]. Simulation Monographs. Wageningen: Pudoc, 1977, 249.
    IPCC, 2001: Climate Chance 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of International Panel on Climate Change [Houghton J T, Ding Y H, Griggs D G, et al.]. Cambridge: Cambridge University Press, 2001.
    IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.
    Jin Z Q , Ge D K, Chen H , et al . Assessing t he impact s of climate change on rice production and strategies for adaptation in southern China/ / Peng S , Ingram K T , Neue H U. Climate Change and Rice. Los Banos , Manila , Philippines : IRRI ,1995 : 303-313
    Kropff M J, van Laar H H, ten Berge H F M. ORYZA 1: A basic model for irrigated low land rice production [J]. IRRI, Philippines, TPE2WAU & AB-DLO, Wageningen, poduc, 1993
    Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice [J]. Plant Production Science, 2000, 3(4): 430-434.
    Mc Cree K J. Equation for Rate of Dark Respiration of White Clover and Grains or Ghumas Function of Dry weight[J]. Photosyn the Ticrate and Temperature. Crop Science, 1974, 14(4):509-514.
    Ones C A, Kiniry J R. CERES - Maize: A Simulation model of maize growth and development[J]. College station, US: Texas A&M Univ. press, 1986.
    Penning de Vries F W T, Brunsting A H M, van Laar H H. Products, requirements and efficiency of biosynthesis: a quantitative approach [J]. Journal of Theoretical Biology. 1974, 45: 339-377.
    Penning de Vries, F W T, Jansen D M , Bakema A. Simulation of ecophysiological processes of growth in several annual crops [M]. Simulation Monographs. Wageningen: Pudoc, 1989, 271.
    Penning de Vries, F W T, Jansen D M , Bakema A. Simulation of ecophysiological processes of growth in several annual crops [M]. Simulation Monographs. Wageningen: Pudoc, 1989, 271.
    Resurrection A P. Effect of temperature during ripening on grain quality of rice [J]. Soil Science and Plant Nutrition, 1977, 23(1): 109-l12.
    Ritchie J T, Other S. Description and performance of CERES-Wheat: a user - Oriented wheat yield model. Willis W O. ARS wheat yield project. US: USEA - ARS, ARS - 38, 1985, 159-175.
    Ritchie J T. IBSNAT and CERES - Rice model[J]. Weather and rice, IRRI, 1987, 271-282.
    Spiettsr C J T. van Keulen H and van Kraalingen D W G. A simple and universal crop growth simulator: SURCOS87[J]. In: Rabbinge R, Ward S A and van Laar H H et al. Simulation and systems management in crop protection. Simulation Monographs, Pudoc, Wageningen, The Netherlands, 1989: 147-181.
    Supit I, Hooijper A A, van Diepen C A, et al. System description of the WOFOST6.0 crop simulation model implemented in CGMS[M], volume 1: theory and algorithms. The Winand Starting Centre for Integrated Land , Soil and Water Research (SC-DLO), Wagenningen, the Netherlands. 1994: 1-144.
    Van Keulen H , Seligman N G and Benjamin R W. Simulation of water use and herbage growth in arid regions - A re-evaluation and further development of the model Arid Crop[J]. Agric. Syst., 1981, 6: 159-193.
    Van Keulen H, and Seligman N G. Simulation of water use, nutrition and growth of a spring wheat crop[J]. Simulation Monographs, Pudoc, Wageningen, The Netherlands, 1987: 310.
    Van Keulen H. Simulation of water ues and herbage growth in arid regions[J]. Simulation Monographs, Pudoc, Wageningen. 1975: 175.
    van Keulen H. Simulation of water use and herbage growth in arid regions [M]. Simulation Monographs. Wageningen: Pudoc, 1986, 479.
    Williams J R, Jones C A, Kiniry J R, et al. The EPIC crop growth model [J]. Transactions of the ASAE, 1989, 32: 497-511.
    XU D Q, SHEN Y K. Photosynthetic efficiency and crop yield [A]. Pessarakli M. Handbook of plant and crop Physiology [C]. New York: Marcel Dekker, 2002: 821-834.
    陈宏金.作物生长模拟模型研究进展综述[J].农业装备技术, 2006, 32(6): 26-28.
    程方民,钟连进,孙宗修.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响[J].中国农业科学, 2003, 36(5): 492-501.
    程向红,程林,查旭光,等.桐城单季稻高温热害调查及应对措施[J].农技服务, 2009, (8):58, 60.
    崔读昌.气候变暖对水稻生育期影响的情景分析[J].应用气象学报, 1995, 6(3): 361-365.
    丁一汇,任国玉,中国气候变化科学概论[M].北京:气象出版社, 2008: 2.
    杜华平.作物生长模拟研究浅析[J].上海农业科技, 1993, (3): 2-4.
    丰庆河,张建平,王向东,等.作物模拟研究的进展[J]. 2002, 25,增刊: 17-20.
    高亮之,金之庆,黄耀,等.水稻计算机模拟模拟优化决策系统(RCSODS)[M].北京:农业科技出版社, 1992.
    高亮之,金之庆,黄耀,等.作物模拟与栽培优化原理的结合-RCSODS[J].作物杂志, 1994(3): 4-7.
    高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育的计算机模型[J].中国农业气象, 1989, 10(2): 3-10.
    高亮之,金之庆,郑国清,等.小麦栽培模拟优化决策系统(WCSODS) [J].江苏农业学报, 2000, 16(2): 65-72.
    高亮之,金之庆.中国不同类型水稻生育期的农业气象生态模式及其应用[J].农业气象, 1982, 8(2): 1-8.
    高素华,王培娟.长江中下游高温热害及对水稻的影响[M].北京:气象出版社, 2009.
    国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2000.
    黄策,王天铎.水稻群体物质生产过程的计算机模拟[J].作物学报, 1986, 12(1): 1-8.
    黄耀,高亮之.水稻群体物质生产的农业气候计算机模拟及最适季节[J].中国农业气象, 1988, (1): 4-6.
    黄义德,曹流俭,武立权,等. 2003年安徽省中稻花期高温热害的调查与分析[J].安徽农业大学学报2004, 31(4): 385-388.
    霍治国,王石立,等.农业和生物气象灾害[M].北京:气象出版社, 2009.
    蒋之埙,黄仲青,杨惠成,等.关于江淮稻区2003年早中稻花期热害的调查研究[J].安徽农业科学, 2004, 32(4): 607-609.
    金之庆.全球气候变化对中国粮食生产影响的模拟研究[学位论文].南京:南京农业大学, 1996: 90-93.
    鞠晓慧,屠其璞,李庆祥.我国太阳总辐射气候学计算方法的再讨论[J].南京气象学院学报, 2005, 28(4): 516-521.
    康雯瑛,焦建丽,王君.太阳总辐射计算方法对比分析[J].气象与环境科学, 2008, 31(3):33-37.
    李临颖,吴元中,段项锁.辐射增温效应对水稻叶片温度及光合速率的影响[J].应用气象学报, 1993, 4(2): 250-254.
    李泽周.温度对水稻生育和产量的影响[J].湖北农业科学, 1983, (12): 36-39.
    丽水地区气象台农气组.从丽水的高温气候讨论高温对早稻抽穗扬花期的危害条件[J].浙江气象, 1979, (00): 66-73.
    刘长友,陈爱丽,巴图,等.从IPCC第四次评估报告看全球气候变化及防灾减灾对策[J].防灾科技学院学报, 2008, 10(4): 140-141.
    马玉平,王石立,张黎.针对华北小麦越冬的WOFOST模型改进[J].中国农业气象, 2005, 26(3): 145-149.
    农学系水稻栽培课题组.高温对杂交水稻开花结实的影响[J].西南农学院学报, 1984,(1): 25-30.
    戚昌瀚,殷新佑,刘桃菊,等.水稻生长日历模型(RICAM)的调控决策系统(RICOS)研究:Ⅰ水稻调控决策系统(RICOS)的系统设计[J].江西农业大学学报, 1994, 16(4): 323-327.
    戚昌瀚.水稻生长日历模拟模型综合报告[J].江西农业大学学报, 1991, 13(专辑): 1-6.
    强惠葱,陈正发,强刚.高温热害对繁昌县水稻生产的影响及防御补救措施[J].农技服务, 2007, 24(6):59-60.
    秦大河,陈振林,罗勇,等.气候变化科学的最新认知[J].气候变化研究进展, 2007, 3(2): 63-73.
    秦大河,罗勇.全球气候变化的原因和未来变化趋势[J].科学对社会的影响, 2008, (2): 16-20.
    秦大河.气候变化的事实与影响及对策[J].中国科学基金, 2003(1): 1-3.
    森谷国男.水稻高温胁迫抗性遗传育种研究概况[J].徐正进译.杂交水稻, 1992, 1: 47-48.
    森田敏.高温对水稻成熟的影响:根据人工气象室温度处理试验的分析[J].谢国禄摘译.国外作物育种, 2001, 22(2): 19.
    上海植物生理研究所人工气候室.高温对早稻开花结实的影响及其防治Ⅱ.早稻开花期高温对开花结实的影响[J].植物学报,1976,18(4):321—329.
    史军,丁一汇,崔林丽.华东地区夏季高温期的气候特征及其变化规律[J].地理学报, 2008, 63(3): 237-246.
    谭中和,蓝泰源,任昌福,等.杂交籼稻开花期高温危害及其对策的研究[J].作物学报, 1985: 103-108.
    汤圣祥,闵绍楷.水稻品种改良技术讲座(9)耐逆境育种[J].中国稻米, 1998, (3): 38-39.
    唐永红,张嵩午,高如嵩,等.温度对稻米品质的时段效应分析[J].中国农业气象, 1997, 18(1): 9-12.
    陶启波,严昀,石继权.农作物高温热害及其防御措施浅析[J].安徽农学通报, 2004, 10(6): 56-57.
    田小海,松井勤,李守华,等.水稻花期高温胁迫研究进展与展望[J].应用生态学报, 2007,18(11): 2632-2636.
    汪寿康,汪更文,汪又佳. 2003年水稻高温热害情况的调查[J].安徽农学通报, 2004, 10(1): 27,35.
    汪寿康,汪更文,汪又佳. 2003年水稻高温热害情况的调查.安徽农学通报, 2004, 10(1): 27, 35.
    王春乙,王石立,霍治国,等.近10年来中国主要农业气象灾害监测预警与评估技术研究进展[J]. 气象学报, 2005, 63(5): 659-671.
    王维金.作物栽培学[M].北京:科学技术文献出版社, 1998.
    魏丽.“高温逼熟”和“小满寒”对江西省早稻产量的影响[J].气象,1991,17(10): 47-49.
    邬定荣.华北平原气象因子时空变异对作物产量和水分利用的影响, [博士学位论文].北京:中国科学院, 2005.
    西山岩男,赵贵彬,凌天行.水稻高温障碍的研究[J].国外农学-水稻, 1982, (5): 17-20.
    夏明元,戚华雄.高温热害对四个不育系配制的杂交组合结实率的影响[J].湖北农业科学, 2004, (2): 21-22.
    谢晓金,李秉柏,李映雪,等.长江流域55年水稻花期高温热害初探[J].江苏农业学报, 2009, 25(1): 28-32.
    熊振民,蔡洪法.中国水稻[M].北京:中国农业科技出版社, 1992: 273-383.
    徐云碧,石春海,申宗坦.热害对早稻结实率的影响[J].浙江农业科学,1989,(2): 51-54.
    许传祯,元生朝,蔡士玉.高温对杂交水稻结实率的影响[J].华中农学院学报, 1982(2): 1-8.
    严力蛟,王兆骞,杜建生,等.水稻生长模拟模型的组建与验证[J].生物数学学报, 1998, 13(2): 223-229.
    杨太明,陈金华.江淮之间夏季高温热害对水稻生长的影响[J].安徽农业科学2007, 35(27): 8530-8531.
    杨晓春,林瑞坤,吴振海.水稻高温热害的研究进展[J].福建农业科技, 2006, (2): 68-69
    张彬,芮雯奕,郑建初,等.水稻开花期花粉活力和结实率对高温的响应特征[J].作物学报, 2007, 33(7): 117-118.
    张桂莲,陈立云,雷东阳,等.水稻耐热性研究进展[J].杂交水稻, 2005, 20(1): 1-5.
    张养才,何维勋,李世奎.中国农业气象灾害概论[M].北京:气象出版社, 1991: 272-282, 348-353.
    张宇,王馥棠.气候变暖对我国水稻生产可能影响的数值模拟试验研究[J].应用气象学报, 1995, 6(增刊): 19-25.
    赵海燕,姚凤梅,张勇,等.长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析[J].中国农业科学, 2006, 39(9): 1765-1771.
    郑建初,张彬,陈留根,等.抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异[J].江苏农业学报,2005, 21(4): 249-254.
    中国农业科学院.中国稻作学[M].北京:中国农业出版社, 1986.
    周曙东,周文魁.气候变化对长三角地区农业生产的影响及对策[J].浙江农业学报2009, 21(4):307-310.
    周曾奎, 1994年江淮地区持续高温干旱的环流特征[J].气象, 1996, (7): 40-42.
    朱昌兰,肖应辉,王春明,等.水稻灌浆期耐热害的数量性状基因位点分析[J].中国水稻科学, 2005 , 19(2): 17-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700