用户名: 密码: 验证码:
沪宁高速公路团雾发生规律研究及一次复杂性大雾过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大雾天气给沪宁高速公路交通带来了重大威胁,特别是该线镇江段的“团雾”天气严重地影响了全线的畅通,也危及了交通运输的安全。为了更加准确地预报区域性大雾和局地性团雾天气的生消,确保公路交通的安全,科学、系统而全面地理解雾的形成及维持机制是非常必要的。本文对2006年至2009年期间该公路上发生的团雾和大雾过程进行了统计分析,探讨了团雾的发生规律和发生的气象条件,并对具临湖环境的公路东部路段和具临江环境的中西部路段的团雾特征作了比较。其次从AWMS系统实测资料中筛选出2009年11月7日发生在沪宁高速公路上的一次典型复杂性大雾天气过程。在分析天气实况的基础上,应用高时空分辨率的非静力中尺度数值预报模式WRF,结合NCEP0.5°X0.5°气象再分析资料,对该过程进行了数值模拟;利用实测资料对模拟结果进行了验证,并剖析了此次复杂性大雾过程形成的动力、水汽和热力条件。
     对沪宁高速公路团雾的统计分析表明:(1)沪宁高速公路上团雾和大雾的季节变化有着相似的演变趋势,都是秋、冬、春季发生频率高,夏季发生频率低。(2)团雾和大雾因路段和站点不同而差异较大,大雾的分布是东少西多,团雾的分布趋势则是东部的临湖路段有4个站点发生频率高,其余站点低,西部的临江路段则普遍发生频率高。(3)一般,团雾发生的气象条件是:气温在-4~30℃之间,相对湿度在85~95%之间,风速在3m·s-1以内;团雾的主要发生时段是在后半夜的00时至凌晨06时之间,通常在生成后的4h内消散。(4)东部路段中的临湖环境提供了团雾形成的有利场所,中西部的临江路段则由于特殊的地形和水汽输送通道而成为团雾高发的区域。
     对2009年11月7日发生在沪宁高速公路上的一次典型复杂性大雾的数值模拟和诊断分析表明:(1)本次大雾前后的天气形势相对稳定,江苏地区主要受入海反气旋西南侧东南气流影响,整个大雾过程中地面风力始终微弱,为大雾形成提供了有利的动力条件。(2)模式模拟的由大气液态含水量条件判别的成雾区分布与实测雾区范围基本吻合;(3)模式模拟的能见度与AWMS实测能见度十分接近;(4)本次大雾过程最初是团雾刍形,在夜间辐射冷却作用下,转为辐射雾,之后,来自东南海上的暖湿空气平流进入江苏陆地后,所产生的平流雾雾体与原有辐射雾雾体结合发展为范围更大的辐射平流混合雾。(5)日出后短波辐射增温是此次复杂性大雾雾体得以快速消散的主要原因。
Great fog weather events have brought a lot of imperiling to the transportation of Shanghai-Nanjing Expressway. Especially, the local dumpling fog events occurred along the Zhenjiang Section of the expressway have been endangering on the traffic safety of the Shanghai-Nanjing Expressway. In order to predict precisely the engendering and disappearing of the regional fog weathers and the local dumpling fog events on the expressway and ensure the unblocked passage of highway transportation, it is essential to understand the emerging and maintaining mechanisms of fog weather scientifically, comprehensively, systemically. In this paper, the observed data from the automatic weather monitoring system (AWMS) on the Shanghai-Nanjing Expressway was used to conduct a statistics analysis of the regional great fog events and the dumpling fog events during2006to2009.The charcteristics difference between the dumpling fogs occurred in the eastern lakeside section and the dumpling fogs occurred in the central-western riverside section on the expressway was compared in detail. The occurrence pattern and engendering meteorological conditions of the dumpling fog events was discussed. Also a typical complex fog event that occurred over the expressway on7th, November in2009was selected from a set of fog weather processes. Based on the analysis of the weather actuality during the fog event occurred, the Weather Research and Forecasting Model for Version3.1(WRF3.1), an non-hydrostatic mesoscale numerical forecasting model with the high spatial and temporal resolutions was used to simulate a typical fog event combined with NCEP0.5°×0.5°meteorological reanalysis data. The numerical simulations of some physical variables were verified from the observed data of the fog event in AWMS. The engendering moisture, dynamic and thermodynamic conditions of this complex fog event were analyzed. The main conclusions were concluded as follows:
     The results of the occurrence pattern and local characteristics of dumpling fog events on the Shanghai-Nanjing Expressway:(1) The seasonal variations of dumpling fog and regional fog was similar, with the higher occurrence frequencies in autmunl, winter and spring but the lower occurrence frequencies in the summer.(2) The occurrence frequencies and spatial distribution of the dumpling fog and regional fog along the expressway was quite different due to the different sections and different stations in AWMS. There were more regional fog events occurred in the eastern section than in the western section. There are4stations with the higher occurrence frequencies of dumpling fog in the eastern section but the other stations with the lower occurrence frequencies. The occurrence frequencies of the dumpling fog were generally higher in the western riverside section than in the other sections.(3)Usually, it was the meteorological conditions of the dumpling fog engendering that the air temperature lied in the range from-4to30℃, the relative humidity changed from85%to95%, wind speed was3m·s-1or less. The occuring time bucket of the dumpling fog standed in hours between00:00am to6:00am in the later night and they disappeared in4hours after the engendering.(4) The lakeside environment of the eastern section on the expressway provided a favorable situation for the engendering of dumpling fog and the central-western riverside section of the expressway was the highest frequency area of the dumpling fog due to its special topography and water vapor transport channels.
     The results of the Numerical simulations of a great complex fog event on Shanghai-Nanjing Expressway were showed as follows:(1) The atmospheric circulation situation in Jiangsu Province and its contiguous regions was stable before and during the great fog event occurred. These regions were affected by the southeastern stream at the southwestern side of anti-cyclone system over the Yellow sea and the surface wind force has been weak in the whole fog process and it provided a favorable dynamic condition for the engendering of heavy fog.(2) The simulated distribution areas of the fog bodies depicted by the liquid content water (LWC) was agree with the observed fog scopes.(3)The simulated visibilities were very close to the observed visibilities from AWMS.(4) The mixed fog event occurred during18:00(BST),7th to08:00(BST),8th of November in2009.The embryo of this heavy fog event was a local dumpling fog. It converted into a radiation fog under the influence of the radiation cooling. Then, a warm and humid air advection from the surface of the East Sea in the southeastern direction entered into the southern part of Jiangsu Province and an advection fog body came into being. It combined the earlier radiation fog body into a complex fog from the dual effect of radiation cooling and advection cooling and expanded to a greater scope.(5)The warming of the surface caused by short-wave radiation after sunrise was the main reason for the quick dissipation of the fog body.
引文
[1]袁成松,卞光辉,冯民学等.高速公路上低能见度的监测与预报[J].气象,2003,29(41):36-40.
    [2]徐玉貌,刘红年,徐桂玉,等.2000.大气科学概论[M].南京:南京大学出版社.
    [3]Slemmer, J.2004:Study of Dense Fog at the Salt Lake City International AirPort and its impacts to Aviation, Western Region Technical Attachment,2004,3:04-01.
    [4]R. Salgado, Impact of a Southern Iberia artificial lake on fog winter climatology, Geophysical Research Abstracts,2006,8:08764
    [5]Chylek, P. and J.A.Coakley. Aerosols and climate, Science,1974,183:75-77
    [6]Matthew T.Friedlein. Dense fog climatology. Bulletin of the American Meteorological Society,85(4):515-517
    [7]李子华,涂晓萍.考虑湿度影响的城市气溶胶夜晚温度效应[J].大气科学,1996,20(3):359-366
    [8]吴洪,柳祟健,等.北京地区大雾形成的分析和预报[J].应用气象学报,2000,11(1):123—127
    [9]哈尔滨市区雾的特征分析及预报指标研究[J].自然灾害学报,2005,14(2):47—49
    [10]马禹,任宜勇,等.40年来新疆雾的演变特征及大雾天气过程分析[J].干旱区地理,2005,28(4):474-78
    [11]周月华,王海军,吴义城.增暖背景下武汉地区雾的变化特征.气象科技,2005,33(6):509-512
    [12]刘小宁,张洪政,李庆样等.我国大雾的气候特征及变化初步解释[J].应用气象学报,2005,16(2):220-230
    [13]贺皓,吕红,徐虹.陕西省大雾的气候特征[J].高原气象,2004,23(3):407—411
    [14]徐峰,牛生杰,张羽,等.2011.雷州半岛雾的气候特征及生消机理[J].大气科学学报,34(4):423-432.
    [15]童尧青,银燕,许遐祯,等.南京地区雾的气候特征[J].南京气象学院学报,2009,32(1):115-120.
    [16]陈连友,李月英,曹秀芝,等.秦皇岛地区雾天气气候特征及预报[J].气象,2009,35(12):126-132
    [17]田华,王亚伟.京津塘高速公路雾气候特征与气象条件分析[J].气象,2008,34(1):66-71.
    [18]吴兑,赵博,邓雪娇,等.南岭山地高速公路雾区恶劣能见度研究[J].高原气象,2007,26(3):649-654.
    [19]冯民学,袁成松,卞光辉.沪宁高速公路无锡段春季浓雾的实时监测和若干特征[J].气象科学,2003,23(4):435-444.
    [20]李秀连,陈克军,王科,等.首都机场大雾的分类特征和统计分析[J].气象科学,2008,36(6):717-723.
    [21]吴和红,严明良,缪启龙,等.沪宁高速公路大雾及气象要素特征分析[J].气象与减灾研究,2010,33(4):31-37.
    [22]王丽萍,陈少勇董安详.中国雾区的分布及其季节变化[J].地理学报,2005,60(4):689-697
    [23]王丽萍等.气候变化对中国大雾的影响[J].地理学报,2006,61(5):527-536
    [24]张红岩,周发绣,张晓慧.黄海春季海雾的年际变化研究[J].海洋与湖泊,2005,36(1):36-41
    [25]王鑫,黄菲,周发诱.黄海沿海夏季海雾形成的气候特征[J].海洋学报,2006,28(1):26-34
    [26]Fisher E L, Caplan P.1963. An experiment in the numerical prediction of fog and stratus[J].J Atmos. Sci.,20(5):425-437.
    [27]Roach W T, Brown R.1976. The physics of radiation fog:2-D numerical study [J].Q J. R. Meteor Soc.,102(432):335-354.
    [28]Ballard S P, Golding B W, Smith R N B.1991. Mesoscalemodel experimental forecast of the haar of northeast Scotland[J].Mon.Wea.Rev.,1991(119):2107-2123.
    [29]Turton. J. D., R. Bro. A comparison of a numerical study of radiation fog with detailed observation[J]. J.R.Meteor.Soc.,1987,113:37-54
    [30]Peter, G. Duynkerke. A comparison of model simulation with detailed observation[J]. Mon.Wea.Rev.,1991,119(2):324-341
    [31]Bott, A., on the influence of the Physics-chemical properties of Aerosols on the life cycle of Radiation fogs[J]. Boundary Layer Meteorology,1991,56:1-31
    [32]周斌斌.辐射雾的数值模拟[J].气象学报,1987,45(1):21-29.
    [33]钱敏伟.1990.长江上空辐射雾的数值模拟[J].大气科学,14(4):483-489.
    [34]孙旭东,徐华英,李桂忱,等.1991.二维平流辐射雾的数值模拟[J].大气科学,15(6):99-109
    [35]张利民.1993.重庆雾的二维非定常数值模拟[J].大气科学,17(6):750-755.
    [36]任遵海,孙学金,顾亚进,等.江面平流雾的数值研究[J].气象科学,2000,20(2):190-193
    [37]石春娥,杨军,孙学金等.重庆雾的三维数值模拟[J].南京气象学院学报,1997,20(3):308-317
    [38]黄建平,李子华,黄玉仁,等.1993.西双版纳地区雾的数值模拟研究[J].大气科学,24(6):821-834
    [39]李敏,蒋维楣,刘红年.考虑雾的微物理特征条件下的水雾扩散数值模拟研究[J].环境科学学报,2002,22(2):140-144
    [40]傅刚,王菁茜,张美根,等.一次黄海海雾事件的观测与数值模拟研究—以2004年4月11日为例[J].中国海洋大学学报,2004,34(5):720-726
    [41]傅刚,张涛,周发.一次黄海海雾的三维数值模拟研究[J].青岛海洋大学学报,2002,32(6):859-867.
    [42]Pagowski M, Gultepe I, and King P.2004. Analysis and modeling of an extremely dense fog event in southern Ontario [J]. J Appl. Meteorol.,43:3-16.
    [43]G. Zangl. A reexamination of the valley wind system in the Alpine Inn Valley with numerical simulations[J]. Meteorol Atmos Phys 87,2004,241-56.
    [44]Van der Velde I. R., Steeneveld G. J., Wichers Schreur B. G. J., et al.2010. Modeling and Forecasting the Onset and Duration of Severe Radiation Fog under Frost Conditions[J].Mon.Wea.Rev.,2010(138):4237-4253.
    [45]樊琦,王安宇,范绍佳,等.2004.珠江三角洲地区一次辐射雾的数值模拟研究[J].气 象科学.24(1):1-8.
    [46]董剑希,雷恒池,胡朝霞,等.2006.北京及其周边地区一次大雾的数值模拟及诊断分析[J].气候与环境研究,11(2):175-184.
    [47]李元平,梁爱民,张中锋,等.2007.北京地区一次冬季平流雾过程数值模拟分析[J].云南大学学报,29(2):167-172.
    [48]齐琳琳,王晓丹,宁应惠,等.2010.耦合模式在局地辐射雾三维数值模拟研究中的应用[J].气候与环境研究,15(1):53-63.
    [49]万小雁,包云轩,严明良,等.2010.不同陆面方案对沪宁高速公路团雾的模拟[J].气象科学,30(4):487-494
    [50]葛良玉,江燕如,梁汉明.1996年岁末沪宁线持续五天五天大雾的原因探讨[J].气象科学.1998,18(2):181-188
    [51]李子华,黄建平,周毓荃.1996年南京连续5天浓雾的物理结构特征[J].气象学报.1999,57(5):622-631
    [52]袁成松,梁敬东,焦圣明,等.低能见度浓雾监测、临近预报的实例分析与认识[J].气象科学.2007,27(6):661-665
    [53]Laprise R. The Euler Equations of motion with hydrostatic pressure as as independent variable[J].Mon.Wea.Rev.,1992,120:197-207
    [54]Wicker, L. J. and W. C. Skamarock.Time splitting methods for elastic models using forward time schemes [J]. Mon. Wea. Rev.,2002,130:2088-2097
    [55]Kessler, E. On the distribution and continuity of water substance in atmospheric circulation[J].Meteor. Monogr., Amer. Meteor. Soc.,1969:84.
    [56]Lin, Y.-L., R. D.Farley, and H. D. Orville.Bulk parameterization of the snow field in a cloud model[J].J. Climate Appl. Meteor.,1983,22:1065-1092.
    [57]Ryan, B. F. On the global variation of precipitating layer clouds[J]. Bull. Amer. Meteor.Soc.,1996,77:53-70
    [58]Hong, S.-Y., and H.-L. Pan.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon. Wea. Rev.,1996,124:2322-2339
    [59]Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough.Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J].J. Geophys. Res.,1997,102 (D14):16663-16682
    [60]Lacis, A. A., and J. E. Hansen. A parameterization for the absorption of solar radiation in the earth's atmosphere[J]. J. Atmos. Sci.,1974,31:118-133
    [61]Sasamori, T., J. London, and D. V. Hoyt. Radiation budget of the Southern Hemisphere[J].Meteor. Monogr.,1972,13:No.35,9-23
    [62]Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model [J]. J. Atmos. Sci.,1989,46:3077-3107
    [63]Chou M.-D., and M. J. Suarez. An efficient thermal infrared radiation parameterization for use in general circulation models[J]. NASA Tech. Memo.1994,104606:3-85
    [64]Lacis, A. A., and J. E. Hansen. A parameterization for the absorption of solar radiation in the earth's atmosphere[J]. J. Atmos. Sci.,1974,31:118-133.
    [65]Kain, J. S., and J. M. Fritsch. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J. Atmos. Sci.,1990,47:2784-2802.
    [66]Kain, J. S., and J. M. Fritsch. Convective parameterization for mesoscale models:The Kain-Fritcsh scheme, The representation of cumulus convection in numerical models, K. A.Emanuel and D.J. Raymond, Eds [J].Amer. Meteor. Soc.,1993,246 pp.
    [67]Betts, A. K. A new convective adjustment scheme. Part I:Observational and theoretical basis[J]. Quart. J.Roy. Meteor. Soc.,1986,112:677-691
    [68]Betts, A. K., andM. J. Miller.A new convective adjustment scheme. Part II:Single column tests using GATE wave, BOMEX, and arctic air-mass data sets[J]. Quart. J. Roy. Meteor. Soc.,1986,112:693-709
    [69]Janjic, Z. I. The surface layer in the NCEP Eta Model, Eleventh Conference on Numerical Weather Prediction, Norfolk, VA,19-23 August[J]. Amer. Meteor. Soc., Boston, MA, 1996,354-355
    [70]Janjic, Z. I., Comments on "Development and Evaluation of a Convection Scheme for Use in Climate Models" [J]. J. Atmos. Sci.,2000,57:3686
    [71]Grell, G. A., and D. Devenyi. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophys. Res. Lett.,2002,29(14): 1693
    [72]Hong, S.-Y., and H.-L. Pan.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon. Wea. Rev.,1996,124:2322-2339
    [73]Mellor, G. L., and T. Yamada.Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys.,1982,20:851-875
    [74]Chen, F., and J. Dudhia, Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system[J]. Part I:Model description and implementation.Mon. Wea. Rev.,2001,129:569-585
    [75]吴兑.2005.关于霾与雾的区别和灰霾天气预警的讨论.气象,31(4):3-7
    [76]吴兑.2006.再论相对湿度对区别都市霾与雾(轻雾)的意义.广东气象,,1:9-13.
    [77]吴兑.2008.霾与雾的识别和资料分析处理.环境化学,27(3):327-330.
    [78]周旋,周晓中,吴耀平,翟景秋,等.利用MODIS数据监测夜间雾[J].武汉大学学报·信息科学版.2008,33(6):581-583
    [79]邹进上,刘长盛,刘文保,等.1982.大气物理基础.北京:气象出版社.
    [80]Cotton W R, Anthes R A.1993.风暴和云动力学.北京:气象出版社,331-342.
    [81]Gultepe, I., G. A. Isaac.2004. Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart. J. Roy. Meteor. Soc.,130A,2377-2390.
    [82]Gultepe, I., M. D. MULLER.2006. A New Visibility Parameterization for Warm-Fog Applications in Numerical Weather Prediction Models.J. Appl. Meteor.,45,1469-1480.
    [83]Pang, C., Liu, J.2010. Simulation of regional fog event with WRF in North China and evaluation of visibility equations.5th International Conference on Fog, Fog Collection and Dew, FOGDEW2010-132
    [84]林艳,杨军,鲍艳松,等.2010.山西省冬季雾中能见度的数值模拟研究[J]南京信息工程大学学报:自然科学版,2(5):436-444.
    [85]Peter G, Dunynkerke.1991. Radiation Fog:A Comparison of Model Simulation with Detailed Observations[J]. Monthly Weather Reaview.119,234-341.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700