用户名: 密码: 验证码:
丝栗栲和苦槠幼苗生长状况和气体交换特征对增温和施氮的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
常绿阔叶林是亚热带地区的地带性植被,其重要物种对全球变化的作用与响应是常绿阔叶林植被动态研究的重要内容之一。丝栗栲(Castanopsis fargesii)和苦槠(Castanopsissclerophylla)是中亚热带典型常绿阔叶林的主要优势树种。本论文首先测定了苦槠、青冈栎和细叶青冈盆栽幼苗的光合生理指标以及丝栗栲和苦槠当年生叶片的光合日动态特征,然后以中亚热带典型常绿阔叶林主要优势种丝栗栲和苦槠幼苗为研究对象,以实验学手段为主,利用MSR-2420红外辐射增温装置,通过人工定期向土壤施加NH4NO3,实现丝栗栲和苦槠自然生长环境条件中的增温和施氮设置,采用植物生理生态学、生物化学、野外数据获取与室内模拟分析相结合的方法,利用LI-6400R便携式光合仪、OS-30P便携式荧光仪多个国际先进仪器,应用Farquhar光合作用生物化学机理模型,研究了丝栗栲和苦槠幼苗叶片气体交换相关指标对增温和施氮的响应差异及其机理。结果表明,增温、施氮及其交互作用对丝栗栲和苦槠生长状况和气体交换指标的影响程度不同。通过综合分析各项生理指标,苦槠幼苗对增温、施氮及其交互作用的适应能力更强。本研究结果可为认识未来气候变化情景下亚热带常绿阔叶林碳循环特征及其碳汇/源变化提供叶片水平的科学依据。主要结果如下:
     (1)总体上,在不同的光照强度下,光合能力强弱顺序为苦槠>青冈栎>细叶青冈。CO2浓度的增加对三个树种光合作用具有明显的促进作用,净光合速率、水分利用率提高,光补偿点、气孔导度、蒸腾速率下降,叶片对CO2增长的这种反应对其生长是有利的,苦槠光合促进作用最明显,其次是青冈栎和细叶青冈。
     (2)丝栗栲当年生叶片的光合能力显著高于苦槠栲叶片。无论是丝栗栲叶片还是苦槠栲叶片,空气相对湿度(RH)低、叶片与空气之间的水蒸气压差(VPD)大时,气孔导度(Gs)减小,气孔限制值(Ls)增大,胞间CO2浓度(Ci)降低,净光合速率(Pn)下降;中午光合有效辐射(PAR)最大,水蒸气压差(VPD)、气孔限制值(Ls)达到最大值,空气相对湿度(RH)、气孔导度(Gs)、胞间CO2浓度(Ci)达到最小值出现光合午休现象。
     (3)随着施氮量的增加丝栗栲叶片和苦槠栲叶片的净光合速率(Pn)、蒸腾速率(E)、气孔导度(Gs)、表观量子效率(AQY)、表观CO2羧化效率(CCE)均有显著升高,但施氮量的增加并未显著影响叶片的水分利用率(WUE),而且同一施氮量丝栗栲叶片和苦槠栲叶片的水分利用率(WUE)之间无显著差别。随着施氮量的增加,丝栗栲叶片还是苦槠栲叶片的叶绿素a(Chl a)、叶绿素b(Chl b)、Chl a+Chl b均显著提高,这表明两种植物均对外源氮肥有一定的自我适应机制。
     (4)与对照相比较,施低氮、施高氮、增温、增温和施低氮、增温和施高氮均显著提高了丝栗栲和苦槠的地径和树高。同一测量时间、同一处理条件下,苦槠的地径和树高均显著高于丝栗栲(P<0.01),无论对照、增温、施氮与增温和施氮处理。与对照相比较,增温、施氮、增温和施氮均显著提高了苦槠总生物量、地上部分生物量和地下部分生物量。然而,与对照相比较,只有施氮引起了苦槠地上部分生物量与地下部分生物量比值的显著提高;而增温、增温和施氮与对照之间并无显著差别。
     (5)较对照,增温、施氮、增温和施氮均显著提高了丝栗栲和苦槠的最大净光合速率和表观量子效率。相同处理条件下,最大净光合速率和表观量子效率均表现为苦槠>丝栗栲,无论对照、增温、施氮、增温和施氮,丝栗栲和苦槠的暗呼吸速率并未表现出明显的大小顺序。较对照,增温、施氮、增温和施氮均显著提高了丝栗栲和苦槠的叶绿素a、叶绿素b和总叶绿素含量。在相同处理条件下,叶绿素a含量、叶绿素b含量和叶绿素总含量均表现为苦槠>丝栗栲。
Broad-leaved evergreen forest is a zonal vegetation type. The effect and response of itsimportant species to global change is one of the key research contents in vegetationdynamics.Castanopsis fargesii and Castanopsis sclerophylla are the dominant species oftypical evergreen broad-leaved forest in mid-subtropical zone. A sequential interaction oftemperature by the artifical warming facilities MSR-2420and nitrogen by NH4NO3applicationto the soil to Castanopsis fargesii and Castanopsis sclerophylla seedlings was set up in JiangxiDagangshan State Forest Ecosystem Research Station from2009to2011. By the application ofseveral international advanced instruments and Farquhar photosynthetic biochemicalmechanism model, at the same time, through the methods of plant physiological ecology,biochemistry, data collection outside and data analysis inside, the Castanopsis fargesii andCastanopsis sclerophylla seedlings response of growth and leaf gas exchange was illustrated.The results showed that the effects of warming, nitrogen application and its interaction to theCastanopsis fargesii and Castanopsis sclerophylla seedlings was different. On the basis ofintegrated analysis of the experimental data, the adaptive ability of Castanopsis sclerophyllaseedlings to warming, nitrogen application and its interaction was higher than that ofCastanopsis sclerophylla seedlings. The results will provide the theory in the leaf level for thecarbon cycle and caron sink/source change of evergreen broad-leaved forest in mid-subtropicalzone under future climate change scenarios.The main results are as the following:
     (1)Overall, in a different light intensities, the order of the photosynthetic capacity isCastanopsis sclerophylla> Cyclobalanopsis glauca(Thunb.) Oerst> Cyclobalanopsismyrsinaefolia (Blume) Oerst. The increase of CO2concentration has a significant role on thethree tree species photosynthesis, net photosynthetic rate, water use efficiency increases, lightcompensation point, stomatal conductance, transpiration rate decreases, it is favorable for thethe growth of leaf to CO2increases, which Castanopsis sclerophylla photosynthesis to promote the most significant effect, followed by Cyclobalanopsis glauca(Thunb.) Oerst andCyclobalanopsis myrsinaefolia (Blume) Oerst.
     (2)The photosynthetic capacity of Castanopsis fargesii is significantly higher thanCastanopsis sclerophylla. When the low air relative humidity (RH), high water vaporpressure between leaf and air (VPD), stomatal conductance (Gs) is reduced, the stomatallimitation value (Ls) increases, lower intercellular CO2concentration (Ci), netphotosynthetic rate (Pn) decreased; photosynthetically active radiation (PAR) at noon ishighest, the water vapor pressure difference (VPD), stomatal limitation value (Ls) reachesthe maximum, relative air humidity (RH), stomatal conductance degrees (Gs), intercellularCO2concentration (Ci) reaches a minimum for photosynthetic midday depression.
     (3)With the increase in the amount of nitrogen, Castanopsis fargesii and Castanopsissclerophylla, net photosynthetic rate (Pn), transpiration rate (E), stomatal conductancedegrees (Gs), apparent quantum yield (AQY) efficiency, CO2carboxylation efficiency(CCE) have significantly increased, but the increased amount of nitrogen does notsignificantly affect leaf water use efficiency (WUE), and the same nitrogen rate, water useefficiency (WUE) is not a significant difference. With the increase of the amount of nitrogen,chlorophyll a (Chl a), chlorophyll b (the Chl b), Chl a+Chl b of Castanopsis fargesii andCastanopsis sclerophylla were significantly increased, which reflects the two plants are on leafage increase in a certain degree of self-adaptive mechanisms.
     (4)On the contrast, low nitrogen, high nitrogen, warming, warming and facilities withlow nitrogen, warming and applying high nitrogen significantly improved diameter and treeheight of Castanopsis fargesii and Castanopsis sclerophylla. The same measurement time, thesame processing conditions, Castanopsis sclerophylla diameter and height were significantlyhigher than Castanopsis fargesii(P <0.01)regardless of the control. On the contrast, warming,nitrogen, warming and nitrogen fertilization significantly improve Castanopsis sclerophyllatotal biomass, aboveground biomass and underground part of the biomass. However, on thecontrast, nitrogen fertilizer caused the value of the aboveground biomass and underground part of the biomass significantly improved, there was no significant difference with control ofwarming and nitrogen fertilization.
     (5)Compared with the respective control, elevated warm and applied nitrogen alone andin combination significantly improved Castanopsis fargesii and Castanopsis sclerophylla,maximum net photosynthetic rate and apparent quantum efficiency respectively. Under thesame treatments, the maximum net photosynthetic rate and apparent quantum in Castanopsissclerophylla,was bigger than Castanopsis fargesii.Regardless of the control, elevated warm andapplied nitrogen alone and in combination, Castanopsis fargesii the dark respiration rate doesnot seem to did not show the apparent size of the order. the respective control, warming,nitrogen, elevated warm and applied nitrogen alone and in combination significantlyimproved the content of chlorophyll a, chlorophyll b and total chlorophyll content in theCastanopsis sclerophylla and Castanopsis fargesii. The same processing conditions,Castanopsis sclerophylla was much more than Castanopsis fargesii based on the contents ofchlorophyll a, chlorophyll b and total chlorophyll.
引文
Atkin O K et al.. High thermal acclimation potential of both photosynthesis and respiration in two lowlandPlantago species in contrast to an alpine congeneric. Global Change Biology.2006,12:500~515
    Berry J et al.. Photosynthetic response and adaptation to temperature in higher plants. Annual Review ofPlant Physiology.1980,31:491~543
    B. E. Medlyn et al.. Temperature response of parameters of a biochemical based model of photosynthesis. II.A review of experimental data. Plant, Cell and Environment.2002,25:1167~1179
    Cheng L. L. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves.Journal of Experimental Botany.2003,54:385~39
    Danielle A. Way et al.. Elevated growth temperatures reduce the carbon gain of black spruce [Picea mariana(Mill.)B.S.P.]. Global Change Biology.2008,14:624~636
    E. L. Singsaas et al.. Elevated CO2effects on mesophyll conductance and its consequences for interpretingphotosynthetic physiology. Plant, Cell and Environment.2003,27:41~50
    Galloway J.N. et al.. Nitrogen cycles: past, present, and future. Biogeochemistry.2004,70:153~226
    G. Grassi et al.. Photosynthetic parameters in seedlings of Eucalyptus grandis as affected by rate of nitrogensupply. Plant, Cell and Environment.2002,25:1677~1688
    Giacomo et al.. Effects of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-oldfoliage of Picea abies. Physiologia Plantarum.2001,111:245~254
    IPCC. Climate change2001-the scientific basis. Cambridge: Cambridge University Press.2001,9~12
    J. C. V. Vu et al.. Effects of elevated CO2and temperature on photosynthesis and Rubisco in rice andsoybean. Plant, Cell and Environment.1997,20:68~76
    Jarvis AJ et al.. The seasonal temperature dependency of photosynthesis and respiration in two deciduousforests. Global Change Biology.2004,10:939~950
    Jens Kattge et al.. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of datafrom36species. Plant, Cell and Environment.2007,30:1176~1190
    Kouki Hikosaka et al.. Temperature acclimation of photosynthesis: mechanisms involved in the changes intemperature dependence of photosynthetic rate. Journal of Experimental Botany.2006,57(2):291~302
    K. Makoto et al.. Effects of nitrogen supply on photosynthetic and anatomical changes in current-yearneedles of Pinus koraiensis seedlings grown under two irradiances. Photosynthetica.2007,45(1):99~104
    Llorens L et al.. Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globulariaalypum, to experimentally drier and warmer conditions. Plant Physiology.2003,119:231~243
    Niinemets. Research review: components of leaf dry mass per area-thickness and density-alter leafphotosynthetic capacity in reverse directions in woody plants. New Phytologist.1999,144:35~47
    Onoda Y. et al.. The balance between RuBP carboxylation and RuBP regeneration: a mechanism underlyingthe interspecific variation in acclimation of photosynthesis to seasonal change in temperature.Functional Plant Biology.2005,32:903~910
    Oren R et al.. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere.Nature.2001,411:469~472
    Pharis R P, Yeh F C,Dancik B P.Superior growth potential in trees: What is its basis, and can it be tested forat an early age? Canadian Journal of Forest Research.1991,21(3):368-374.
    Rowan Sage et al.. The temperature response of C3and C4photosynthesis. Plant, Cell and Environment.2007,30:1086~1106
    Rustad LE et al.. A meta-analysis of the response of soil respiration, net N mineralization, and above-groundplant growth to experimental ecosystem warming. Oecologia.2001,126:543~562
    Schneider S.H. What is ‘Dangerous’ climate change? Nature.2001,411:17~19
    Schneider et al.. Ten years of free-air CO2enrichment altered the mobilization of N from soil in Loliumperenne L. swards. Global Change Biology.2004,10:1377~1388
    Stott P.A et al.. External control of20th century temperature by natural and anthropogenic forcing. Science.2000,290:2133~2137
    Sonia Cruz1, Reimund Goss, Christian Wilhelm et al.. Impact of chlororespiration on non-photochemicalquenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatomThalassiosira pseudonana.2006,62(2):509~519
    Warren et al.. Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. Plant,Cell and Environment.2001,24:597~609
    Xuhui Zhou et al.. Photosynthetic and respiratory Acclimation to experimental warming for four species in atallgrass prairie ecosystem. Journal of Integrative Biology.2007,49(3):270~281
    Xing H Y,Xiao Y C,Qiao Y G,et al..2006Tolerance of photosynthesis to photoinhibition high temPeratureand drought stress in flag leaves of wheat:A comparison between a hyridization line and its parentsgrown under field conditions.Plant Science.2006,171(3):389~397.
    Z.-A. Huang et al.. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidantenzymes in leaves of rice plants. Photosynthetica.2004,42(3):357~364
    Z. P. Shangguan et al.. Effects of nitrogen nutrition and water deficit on net photosynthetic rate andchlorophyll fluorescence in winter wheat. Journal of Plant Physiology.2000,156(1):46~51
    丁圣彦等.常绿阔叶林植被动态研究进展.生态学报,2004,24(8):1769~1779
    高俊凤.植物生理学实验指导.北京:高等教育出版社,2006,74-76,87-88,133-138
    韩梅等. CO2浓度和温度升高对11种植物叶片解剖特征的影响.生态学报,2006,26(2):326~333
    贺立红,贺立静,梁红.银杏不同品种叶绿素荧光参数的比较.华南农业大学学报,2006,27(4):43~46
    霍常富,孙海龙,王政权等.光照和氮营养对水曲柳苗木光合特性的影响.生态学杂志,2008,27(8):1255~1261
    江锡兵,李博,张志毅等.美洲黑杨与大青杨杂种无性系苗期光合特性研究.北京林业大学学报,2009,31(5):151~154
    罗青红,李志军,伍维模等.胡杨、灰叶胡杨光合及叶绿素荧光特性的比较研究.西北植物学报,2006,26(5):983~988
    李文文,黄秦军,丁昌俊等.南方型和北方型美洲黑杨幼苗光合作用的日季节变化.林业科学研究,2010,23(2):227~233
    李伏生等. CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响.应用生态学报,2003,14(3):387~393
    刘海涛,张川红,郑勇奇等.抗虫转基因欧洲黑杨苗期光合特性研究.北京林业大学学报,2011,33(1):36~43
    刘奇峰.4种药用植物的光合生理生态特性研究:西北农林科技大学硕士学位论文,2007
    刘建,项东云,陈健波等.低温胁迫对桉树光合和叶绿素荧光参数的影响.桉树科技,2009,26(1):1~6
    马金娥,金则新,张文标.濒危植物夏蜡梅及其伴生植物的光合日进程.植物研究,2007,27(6):708-714
    宋永昌等.中国常绿阔叶林研究的回顾与展望.华东师范大学学报(自然科学版),2005,(1):1~8
    王小伟,金则新,柯世省等.乌药光合特性日进程与其环境因子的相关分析.西北林学院学报,2010,25(2):5~10
    王利英,楼炉焕,王超等.3种冬青属植物气体交换参数及叶绿素荧光特性.浙江林学院学报,2009,26(1):27~31
    伍维模,李志军,罗青红等.土壤水分胁迫对胡杨、灰叶胡杨光合作用-光响应特性的影响,林业科学,2007,43(5):30~35
    徐凯等.2006.不同氮营养水平下草莓叶片光合作用对高CO2浓度的适应.植物生理与分子生物学学报.,32(4):473~480
    徐德聪,吕芳德,栗彬等.不同品种美国山核桃叶绿素荧光特性的比较.果树学报,2008,25(5):671~676
    周存宇等.鼎湖山森林地表CO2通量及其影响因子的研究.中国科学D辑,2004a,34(增刊Ⅱ):175~182
    左闻韵等.植物气孔对大气CO2浓度和温度升高的反应-基于在CO2浓度和温度梯度中生长的10种植物的观测.生态学报,2005,25(3):565~57
    朱万泽.贡嘎山地区黄背栎光合作用日变化及光合响应.东北林业大学学报,2005,33(6):14-16,46
    赵曦阳,马开峰,张明等.3年生毛白杨无性系光合特性的比较研究.林业科学研究,2011,24(3):370~378
    张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448
    张守仁,高荣孚.光胁迫下杂种杨无性系光合生理生态特性的研究.植物生态学报,2000,24(5):528~533
    张守林.黄淮海夏玉米区高产杂交种形态生理特征研究.河南农业大学硕士学位论文,2010
    张阿宏,齐孟文,张晔晖.调制叶绿素荧光动力学参数及其计量关系的意义和公理化讨论.核农学报,2008,22(6):909~912

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700