用户名: 密码: 验证码:
突出危险煤层群卸压瓦斯抽采技术优化及防突可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国瓦斯动力灾害事故的严重性和近年来保护层开采与卸压瓦斯抽采技术发展趋势,本文以岩体力学、弹性力学等基础理论为指导,以数值模拟、现场考察等方法为途径,对煤层群条件下保护层开采后其上覆和下伏煤岩体应力分布规律、裂隙发育演化过程展开了较为全面的理论研究。在理论研究的基础上,对当前卸压瓦斯抽采方法进行了总结优化,构建了保护层开采及卸压瓦斯抽采技术的评价指标体系,同时对保护层开采及卸压瓦斯抽采技术的可靠性和过程控制技术进行了初步研究。论文的研究内容对煤层群条件下保护层开采及卸压瓦斯抽采技术的实际运用有重要理论指导意义。
     论文研究了不同保护层层位条件下,顶底板围岩应力与围岩移动变形随开采长度及层间距的变化规律。在理论研究的基础上,结合卸压瓦斯抽采技术的发展和应用实例,分析各瓦斯抽采模式具体应用下的基本煤层地质条件、卸压瓦斯抽采效果及开采验证情况,优化了瓦斯抽采方法和工艺参数,总结获得各抽采模式的适用条件,为瓦斯治理工程的总体设计规划提供例证和参考。
     基于保护层开采及卸压瓦斯抽采技术工艺流程特点,对方案设计、瓦斯抽采、效果检验和效果验证四个环节,提出了“基本指标”、“瓦斯抽采参数设计指标”、“保护范围划定指标”、“卸压增透效果指标”、“瓦斯抽采效果指标”、“效果检验指标”和“效果验证指标”7个一级指标,其下又涵盖了20个二级指标。在大量现场统计数据的基础上,确立了相应的指标临界值,构建了保护层开采指标体系,为保护层开采及卸压瓦斯抽采的设计、瓦斯抽采、效果评价、保护范围的划定、可靠性评价和防突过程控制提供了科学依据。
     创新性的将可靠性理论引入保护层开采技术应用中,归纳了七类影响保护层开采技术可靠性的主要因素,提出相应的评价指标,建立了由目标层,准则层和子准则层构成的可靠性评价体系。基于层次分析法基本理论,通过构造判断矩阵计算各层次指标重要性权重的方法。并将计算结果,按其对可靠性影响的重要度分为“重要”(权重值≥0.06)、“较重要”(0.03≤权重值<0.06)和“一般”(权重值<0.03)三个层次。其中,“被保护层瓦斯抽采设计”、“卸压瓦斯抽采程度”、“煤柱留设”、“未保护区管理”和“防突过程控制”5项指标属于“重要”指标,可对提高保护层开采技术的可靠性产生直接影响,需特别关注。
     最后以现有煤矿瓦斯治理模式特点为基础,引入过程控制的概念,构建了煤矿瓦斯治理总过程模型及典型子过程模型,提出瓦斯治理过程各参数的跟踪控制方法,并将瓦斯治理过程控制智能系统应用于祁南煤矿的713工作面掘进过程中的过程控制,取得了较好的效果,初步实现了瓦斯治理过程的规范化和程序化。
Due to the gas dynamic disaster accident severity, the current situation ofprotect layer mining with pressure relief gas extraction technologies got rapiddevelopment. Based on fundamental theories like rock mechanics, elastic mechanics,used numerical simulation and site inspection, the stress distribution laws andfracture deformation processes of protect layer mining was established under thecondition of coal seams. On the basis of theoretical researches, the pressure-reliefgas drainage methods were summarized and optimized. The mode of gas extractiontechnology aims at the protective layer and the protected layer were stated. Theevaluation index system of protective layer mining and pressure relief gas drainagetechnology was established. Finally, process control theory was applied to the coalmine gas control engineering, the initial framework of the Intelligent Control Systemof Mine Gas Management was built. The research results has the theoretical guidingsignificance to the practical application of protect layer mining with pressure reliefgas extraction technologies.
     The varying pattern of mining length and layer spacing along with surroundingrock stress and strata movement in roof and floor after mining of upper protectivelayer and lower-protective layer was studied in this paper. Connecting with theactual development of mine pressure-relief gas technology, basing on the object ofthe extraction technology and the methods of gas extraction, this paper summarizingthe modes of protective layer and gas extraction technology and the protectived layerand gas extraction technology. The methods and parametes of gas extraction wasoptimized. That provide examples and references for the plan of gas minister project.
     According to the characteristics of the technique with protective layer miningand mine pressure-relief gas, This paper puts forward a multilevel index to controlthe technology and quality in each link, Constructs a index system of protective layermining and gas extraction, which have7parents indexes and20sub-indexes. Then,based on the actual assessment of each index in a large number of engineeringapplications, Statistical validation shows each index control effect on the engineeringlink, Given the critical value of each index which is suited to the actual situation inour country's most mining areas, It is convenient to promote the index system ofprotective layer mining and gas extraction.
     Analysis based on the main factors that affect the reliability of protective layermining technology, in the article, the reliability evaluation index system of protectivelayer mining technology is divided into the target layer, criteria layer and sub-criterialayer, and the basic theory of the Analytic Hierarchy Process is used to judgmentmatrix to calculate various indicators weight. Calculate the important degree ofdifferent indicators and indicators are divided into "important(value≥0.6)","moreimportant(0.03≤value<0.06)" and "general(value<0.3)" three categories.“theprotected layer mining design”,“the pressure-relief gas drainage”,“the coal pillar”,“the managerment of unprotected area” and “the outburst prevent control” shouldpay more attention.
     Finally, based on the characteristics of gas control mode of the existing coalmine, the concept of process control is introduced, build the process model of coalmine gas control process. Apply intelligent control systems of gas control to theprocess control of tunneling process in713workface of Qinan coalmine, and obtaingood results, preliminary achieve standardization and procedures of gas controlprocess.
引文
[1]国家统计局.中国统计年鉴2011[Z].北京:中国统计出版社.2011.
    [2]国家煤矿安全监察局.2006年全国煤矿事故分析报告[R].2007.
    [3]国家煤矿安全监察局.2007年全国煤矿事故分析报告[R].2008.
    [4]国家煤矿安全监察局.2008年全国煤矿事故分析报告[R].2009.
    [5]张志业,柳晓莉2006—2011年煤矿死亡事故统计分析[J].《煤》,2012,04(152):40-41.
    [6]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [7]国家安全生产监督管理局、国家煤矿安全监察局.煤矿安全规程[M],北京:煤炭工业出版社,2007.
    [8]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [9] Aboeifotoh,H.M.F.,Ai-Sumait,L.S. Aneural approach to toPologieal oPtimization ofcommunication networks with reliability constraints[J].IEEE Transactions on Reliability2001,Vol.50(4):397-408.
    [10] KUMRAL, MUSTAFA. Reliability-based optimisation of a mine production system usinggenetic algorithms[J]. Journal of Loss Prevention in the Process Industries,2005,28:16-18.
    [11]宋保维.系统可靠性设计与分析[M].西安:西北工业大学出版社,1998,1-3.
    [12]汪应络.系统工程导论[M].北京:机械工业出版社,1982,4-12,207-222
    [13] N. V. Tu. Pierre. Introductory Optimization Dynamics[M]. New York Tokyo:SpringerVeriage Berlin Heidelberg Press,1984,16-48
    [14]贾进章.矿井火灾时期通风系统可靠性研究[D].阜新:辽宁工程技术大学,2004
    [15]钟茂华,陈宝智.矿井通风系统模糊可靠性研究[J].中国安全科学学报,1996,6(增刊):134~138.
    [16] ZENG Sheng, SUN Bing, YANG Shi-jiao, et al.Reliability analysis of rock slope based onABAQUS-ANFIS-MCS[J]. Rock and Soil Mechanics,2007,28(12):2661-2670.
    [17] B.Basil Beamish,Peter J.Crosdale.Instantaneous outburst in underground coal mines[J].Anoverview and association with coal type, International Journal of CoalGeology,1998,35:27-55.
    [18] S Y Wu, Y Y Guo, Y X Li. Research on the mechanism of coal and gas outburst and thescreening of prediction indices [J].Procedia Earth and Planetary Science,2009,173-179.
    [19]霍多特,B.B..煤与瓦斯突出机理[M].北京:中国工业出版社,1966.
    [20] Karev V I,Kovalenko Y F.Theoretical model of gas filtration in gassy coal seams[J].SovietMining Science,1989,24(6):528-536.
    [21] Gray I.The mechanism of,and energy release associated with outbursts.Symposium onoccurrence,prediction and control of outbursts in coal mines[M].Aust.Inst.Min.Metall,Melbourne.1980.
    [22] R D lama. J.Bodziony. Management of outburst in underground coal mines [J].International Journal of Coal Geology,1998.35:83-115.
    [23] Nowak E. Ways to accelerate Imlementation of methane removal from undergroundworkings [J]. Przegl. Com.1995,51(1):27-30.
    [24] Klaus Noack. Control of gas emissions in underground coal mine [J]. International Journalof Coal Geology,1998,35(1-4):57-82.
    [25] Bobrov A I. Present day status and prospects for solution of gas-dynamic phenomena inmines [J]. Ugol’ Ukr,1998,39(1):63-67.
    [26] Wostenholme ef, Arscottrl. Methane drainage [J].. Colliery Guardian1989,217(9):514-520.
    [27]俞启香.天府煤矿远距离解放层解放效果考察研究[J].煤矿瓦斯灾害防治理论研究与工程实践.徐州:中国矿业大学出版社,2005,12-46.
    [28]俞启香.天府煤矿远距离解放层解放效果考察研究[J].煤矿瓦斯灾害防治理论研究与工程实践.徐州:中国矿业大学出版社,2005,12-46.
    [29]国家煤矿安全监察局.瓦斯治理经验五十条[M].北京:煤炭工业出版社,2005.
    [30]国家安全生产监督管理总局.保护层开采技术规范[M].北京:煤炭工业出版社,2009.
    [31]钱鸣高,刘听成.矿山压力及其控制(修订本)[M].北京:煤炭工业出版社,1991.
    [32]钱鸣高,缪协兴等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003.
    [33]石必明.远距离下保护层开采上覆煤层变形及透气性变化规律的研究[D].徐州:中国矿业大学.
    [34]石必明,俞启香,王凯.远距离下保护层开采覆岩透气性动态演化规律试验研究[J].煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005,183-187.
    [35] S.S.彭著.煤矿地层控制[M].北京:煤炭工业协会出版社,1984.
    [36] Z.T.比尼斯基著,孙恒虎等译.矿业工程岩层控制[M].徐州:中国矿业大学出版社,1990.
    [37]王金庄.采动覆岩断裂破坏的开采条件分析[C].承德:99全国矿山测量学术会议论文集,1999.
    [38]林海飞.综放开采覆岩裂隙演化与卸压瓦斯运移规律及工程应用[D].西安:西安科技大学,2009.
    [39]赵德深.开采空间在覆岩中的传播规律[D].阜新:阜新矿业学院,1986.
    [40]程远平,俞启香等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2).
    [41]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005:12-46.
    [42]许家林,钱鸣高.地面钻井抽放上覆远距离卸压煤层气试验研究[J].中国矿业大学学报,2000,29(1):78-81.
    [43]叶建设,刘泽功.顶板巷道抽放采空区瓦斯的应用研究[J].淮南工业学院学报,1999,19(2):32-36.
    [44]周红星,程远平.网格式上向穿层钻孔远程卸压瓦斯抽采的数值模拟研究[J].煤矿瓦斯灾害防治理论研究与工程实践,2005:236-241.
    [45] Zhou Hongxing,Cheng Yuanping.Study on Proper Roadway Location in Gob-side ofOutburst Seam[J].Proceedings of2007International Symposium on Coal Gas ControlTechnology in Huainan,China,2007.
    [46] Michael Bauer. High performance longwall mining in deep and methane rich coal depositsin Germany taking into account methods and technologies for controlling the estimated gasliberation[C]//Xuzhou:China University of Mining and Technology Press,2007:57-75.
    [47] Wang Liang, Cheng YuanPing, Li Fengrong, etc. Fracture evolution and pressure relief gasdrainage from distant protected coal seams under an extremely thick key stratum [J].Journal of China University of Mining&Technology (English Edition),2008.18(2):182-186.
    [48] Wang Zhi-liang, Yang Ren-shu,Zhang Yue-bing.Study on Protection Layer Mining EffectEvaluation Indexes and Their Applications[J].China Safety Science Journal.2010,10:58-63.
    [49]张启宇,白冷.矿井通风系统可靠性的统计分析[J].世界采矿快报,1996(17):14-16.
    [50]徐瑞龙.通风网络的可靠度确定[J].阜新矿业学院学报,1985,4(3):32-38.
    [51]董海燕.矿井通风网络的可靠度分析[J].系统工程理论与实践,1988,8(3):47-51.
    [52]金星,洪延姬,深怀荣等,工程系统可靠性数值分析方法M[].北京:国防工业出版社,2002
    [53]王海锋.采场下伏煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用[D].徐州:中国矿业大学,2008.
    [54]刘洪永.远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究[J].煤炭学报,2011,07):1243-1244.
    [55] CUI X, BUSTIN R M. Volumetric strain associated with methane desorption and itsimpact on coalbed gas production from deep coal seams [J]. Aapg Bulletin,2005,89(9):1181-202.
    [56]吴刚.岩体在加卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16.
    [57]郑永学.矿山岩体力学[M].北京:冶金工业出版社,1995.
    [58]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [59] Beyer H A. Design and performance of metrology cameras with6and28million pixelCCD-sensors[A]. Proceedings of SPIE[C]. The International Society for OpticalEngineering,1999.194-198
    [60] Barrker R D, Lawrence H J. Use of terrestrial photogrammetry for monitoring andmeasuring bank erosion[J]. Earth Surface Processes and Landforms1997,22(13):1217-1227.
    [61]胡国忠.急倾斜多煤层俯伪斜上保护层开采的关键问题研究[D];重庆:重庆大学,2009.
    [62]刘泽功.卸压瓦斯储集与采场围岩裂隙演化关系研究[D].合肥:中国科学技术大学,2004.
    [63]毕业武.保护层开采对煤层渗透特性影响规律的研究[D].阜新:辽宁工程技术大学,2005,12.
    [64]梁栋,黄元平.采动空间瓦斯运动的双重介质模型[J].阜新矿业学院学报,1995,14(2):4-7.
    [65]成荣发.网格式上向穿层钻孔的设计与施工工艺[J].西部探矿工程,2010,12:119-120
    [66]邓涛,王宏图,练友红.祁南矿网格式上向密集穿层钻孔结合顺层钻孔抽采瓦斯技术[J]矿业安全与环保,2010,2(37):33-35.
    [67]程远平,俞启香.煤层群煤与瓦斯安全高效共采体系及应用[J].中国矿业大学学报,2003,32(5):471-475.
    [68]李迎超,张英华,熊珊珊.东庞矿瓦斯抽放参数优化数值模拟[J].有色金属,2011,63(3):55-57.
    [69]唐永志,王子龙.松软高突煤层顺层钻孔施工方法[J].矿业安全与环保,2000,8(27):20-21.
    [70]张东升,范钢伟,任天祥.高瓦斯低透气性薄煤层地面瓦斯抽采井设计及优化[J].煤炭工程,2010(8):4-7.
    [71]张树川.地面钻孔抽采被保护层卸压瓦斯技术研究[D].淮南:安徽理工大学,2008.
    [72]沐俊卫,周宗勇.顺层长钻孔递进保护区域瓦斯抽采技术研究及应用[J].矿业安全与环保,2009,36(4):46-48
    [73]袁亮,刘泽功.淮南矿区开采煤层顶板抽放瓦斯技术的研究[J].煤炭学报,2003,28(2):149–152
    [74]夏仕柏.新庄孜矿保护层开采方案及实施效果[J].矿业安全与环保,2003,30:29-32
    [75]张爱科.阳煤集团煤矿瓦斯治理状况与展望[J].中国煤层气,2009,16(16):28-31
    [76]梁铜柱.用内错尾巷治理综放面瓦斯技术与研究[J].矿业安全与环保,2002,29(6):24-26
    [77]朱建功,赵长春,祁建国.采用走向高抽巷治理综放面上邻近层瓦斯的研究[J].山西煤炭,1997,17(14):26-30
    [78]侯少杰,程远平,王海锋,等.单一松软强突出煤层瓦斯抽采技术[J].煤矿安全,2010,2:25-27
    [79]沐俊卫,周宗勇.顺层长钻孔递进保护区域瓦斯抽采技术研究及应用[J].矿业安全与环保,2009,36(4):46-48
    [80]柏发松,郑群,周汝洪.高瓦斯煤层群开采沿空留巷U型通风煤与瓦斯共采试验研究[J].矿业安全与环保,2010,37(4):40-43
    [81]刘泽功.开采煤层顶板抽放瓦斯流场分析[J].矿业安全与环保,2000,27(3):4-6.
    [82] Itakura K,Nakajima I,Watanabe Y. AE activity in cross-measure derivate againstoutburst-prone coal seams-study on AE activity prior to gas outburst(1st report)[J].Journal of the Mining and Metallurgical Institute of Japan,1988,104(1206):495-503.
    [83] David Hand,Heikki Mannida,Padhraic Smyth. Principles of datamining[M].Beijing:Machinery Industry Press,2003.
    [84] Metin Celik, I. Deha Er, A. Fahri Ozok. Application of fuzzy extended AHP methodologyon shipping registry selection: The case of Turkish maritime industry[J]. Expert Systemswith Applications.2009,1(36):190-198.
    [85]金菊良,魏一鸣,丁晶.基于改进层次分析法的模糊综合评价模型[J].水力学报.2004,3:65-69.
    [86] Michele Bernasconi, Christine Choirat, Raffaello Seri. A re-examination of the algebraicproperties of the AHP as a ratio-scaling technique[J]. Journal of Mathematical Psychology.2011,4(55), Pages152-165.
    [87] Ufuk Cebeci. Fuzzy AHP-based decision support system for selecting ERP systems intextile industry by using balanced scorecard[M]. Expert Systems with Applications.Volume36, Issue5, July2009:8900-8909.
    [88] Saaty, T.L., The Analytic Hierarchy Process[M], McGraw-Hill, New York.1980.
    [89] P.J.M.VanLaarhoven,W.Pedryez.A Fuzzy Extension of Saaty’s Priority Theory[J].FuzzySets and Systems.1983,3(11):229-241.
    [90]诸克军,张新兰,肖荔瑾.Fuzzy HAP方法及应用[J].系统工程理论与实践.1997(12):64-69.
    [91] Sandy D.B. and Dennis K.J. Performance of sensitizing rules on shewhart control chartswithautocorrelated data[J]. International Journal of Reliability, Quality and SafetyEngineering,2001,8(2):159-171.
    [92]邵裕森,巴筱云.过程控制系统及仪表[M].北京:机械工业出版社,1996.
    [93]何晓群.多元统计分析[M].北京:中国人民大学出版社,2004.
    [94] Eunsik Park, Young Jack Lee. Estimates of standard deviation of spearman’s rankcorrelationcoefficient’s with dependent observations[J]. Communications in Statistics:Simulation.2001,30(1):129-142.
    [95]王桂增,王诗宓,徐博文,等.高等过程控制[M].北京:清华大学出版社,2002.
    [96] R Noorossana. Short communication process capability analysis in the presence ofAutocorrelation [J].Quality and Reliability Engineering International,2002,18(1):75-77.
    [97]林柏泉,周延,等.安全系统工程[M].徐州:中国矿业大学出版社,2004.
    [98]何学秋.安全工程学[M].徐州:中国矿业大学出版社,2000.
    [99]张秉义,刘素兰.煤矿安全系统工程[M].1995.
    [100]沈斐敏,安全系统工程理论与应用[M].北京:煤炭工业出版社,2001.
    [101]张景林,崔国璋.安全系统工程[M].北京:煤炭工业出版社,2002.
    [102]钟伦燕,韩俊,刘红.统计过程控制(SPC)技术原理和应用[M].北京:电子工业出版社,2001.
    [103]张公绪.两种质量诊断理论及其应用[M].科学出版社,2001.
    [104]郭彦兰,崔利荣,张晨宇.统计控制图的异常判断准则分析[J].数理统计与管理,2007,26(3):468-474.
    [105]何书元.应用时间序列分析[M].北京:北京大学出版社,2003,87-106.
    [106]吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社,2004,37-59.
    [107]毓芳,郝凤.过程控制与统计技术[M].北京:中国计量出版社,2001.
    [108]孙静,张公绪.常规控制图标准及其应用[M].北京:中国标准出版社,2000.
    [109]金以慧.过程控制[M].北京:清华大学出版社,1999.
    [110] George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel.时间序列分析预测与控制(第三版)(顾岚译)[M].北京:中国统计出版社,1997.
    [111]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社,2000.
    [112]冯雄峰.多元统计过程控制研究及在炼油生产过程中的应用[D].北京:清华大学博士学位论文,1999.
    [113]张晓峒.计量经济分析[M].北京:经济科学出版社,2000:156-158
    [114]聂巧平,张晓峒.ADF单位根检验中联合检验F统计量研究[J].统计研究,2007,24(2):74-80.
    [115]王海宇.过程质量控制的性能评价与改进方法研究[D].西安:西北工业大学博士学位论文,2006.
    [116][刘晓斐.冲击地压电磁辐射前兆信息的时间序列数据挖掘及群体识别体系研究[D].徐州:中国矿业大学博士学位论文,2008年6月.
    [117] John Neter et al. Applied Linear Statistical Models[M].2ed. IRWIN Inc, HomewoodIllinois,1985.
    [118]张敏.自相关过程的统计过程控制方法研究[D].天津:天津大学博士学位论文,2006.
    [119]张公绪,孙静.现代质量工程与诊断工程[M].北京:经济科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700