用户名: 密码: 验证码:
聚酰亚胺材料的力学化学特性及其超高速碰撞效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺是近半个世纪发展起来的芳香杂环聚合物中最主要的品种,也是使用温度最高的一类高分子材料。由于聚酰亚胺具有十分优异的综合性能,并可用多途径合成,还可用多种方法加工,因而以多种多样的材料形式在航空、航天、电气、机械、微电子、化工等方面得到了广泛应用。本学位论文以国产YS-20聚酰亚胺材料在航天器上的应用为背景,对其动态力学性能和化学反应动力学性能进行了研究,以此为基础,研究了化学反应对聚酰亚胺超高速碰撞效应的影响。本论文的主要研究内容和研究成果如下:
     (1)对聚酰亚胺材料的高压物态方程开展了研究。设计并完成了聚酰亚胺材料的二级轻气炮实验,得到了聚酰亚胺材料的Hugoniot参数,即冲击波速度D与波后质点速度u关系式D=c0+su中的常数c0和s:在0~50GPa压力范围内,c0为(2.62±0.22)km/s,s为1.25±0.06;如果要考虑更高的压力范围,可取c0为(2.26±0.26)km/s,s为1.41±0.04。得到了聚酰亚胺材料在冲击压缩下的p-u关系为p=3.27u+1.76u2(0~50GPa压力范围内)。得到了聚酰亚胺材料在常态下的Grüneisen系数为0=1.53。聚酰亚胺高压物态方程的获得为其超高速碰撞效应的数值模拟研究打下了重要基础。
     (2)完成了聚酰亚胺材料的热分析实验研究。利用差示扫描量热实验测定出聚酰亚胺材料的分解反应为放热反应,反应热为81.96J/g。利用加压热重分析实验得到了聚酰亚胺材料热分解动力学参数随压力的变化规律:随着压力的增加,反应级数基本保持不变,指前因子和活化能逐渐减小。
     (3)建立了压力、温度相关的热分解动力学模型。聚酰亚胺是一种高分子材料,在强冲击压缩下由于高温高压因素将发生显著的热分解反应。经典的Arrhenius模型描述了反应速率随温度的变化关系,但没有考虑压力的影响。如果要探讨聚酰亚胺在冲击压缩下的热分解行为,压力的影响是客观存在的。本文基于加压热重分析实验结果,在Arrhenius模型中引入压力因素,从而使反应速率的描述更加客观全面,同时也为研究化学反应对超高速碰撞效应的影响打下了重要的理论基础。
     (4)建立了一种化学反应流体动力学算法。化学反应导致物质组元变化,质量守恒方程形式要复杂得多,而且作为流体动力学数值模拟中的基本单元(网格或粒子等)的压力、比内能以及组元份额等均在不断发生变化过程中。本文从质量作用定律出发,推导了可变多组元系统的质量守恒方程,以单元压力平衡、温度平衡和能量守恒为出发点,给出了单元压力、比内能和组元份额等量的算法。
     (5)编写了含化学反应的光滑粒子流体动力学(SPH)计算程序。聚酰亚胺在超高速碰撞下,碎片云团的形成及其运动过程中必然伴有显著的化学反应,并放出热量,这时的热传导也可能对物质的热力学状态产生影响,因而非常复杂,但目前还没有现成的程序能对这一过程进行数值模拟。本文基于SPH方法编写了三维程序。利用该程序对脉冲激光辐照铝靶以及脉冲激光引燃火柴问题进行了模拟,对程序的基本功能和化学反应过程的模拟进行了一定的验证。
     (6)研究了聚酰亚胺材料的化学反应对其超高速碰撞效应的影响。聚酰亚胺是航天器的一种常用热控涂层材料,因而可能受到空间碎片的超高速碰撞,所以研究其超高速碰撞效应具有重要意义。我们利用所获得的高压物态方程、压力和温度相关的热分解动力学模型以及自编SPH程序对聚酰亚胺的超高速碰撞现象进行了数值模拟研究,重点讨论了含化学效应与不含化学效应时碎片云特性的区别。结果表明,化学反应效应对碎片云的宽度、膨胀速度、热力学状态和靶板孔洞直径都有较大影响。分析认为,在聚酰亚胺材料超高速碰撞效应的数值模拟中,考虑化学反应是非常必要的。
The Polyimide (PI) is a typical complex high-molecular polymer of imidemonomers. It is well known for excellent properties as light weight, thermal stability,good chemical resistance, low electrical conductivity, large radiation resistance, hightensile strength, large elastic module, and so on. Due to the excellent properties,polyimides are widely used along with composites based on polyimide fibers in themanufacture of parts for aerospace technology, polyimide films located in the surfacelayer are used to protect the spacecraft’s electronic equipment from damage by lowtemperature in the space, and polyimide resin are used to produce the solar cell arrays.The mechanical and chemical properties of polyimide and its influedce on hypervelocityimpact phenomena are studied in the paper.
     (1) The equation of state (EOS) for polyimideu in high-pressure state is determinedwith the shock compress experiments. An equation of state is a thermodynamic equationdescribing the state of matter under a given set of physical conditions, and theMie-Grüneisen EOS is a widely used EOS for solid materials. In our research, the threekey parameters of the Mie-Grüneisen EOS based on the shock adiabat for polyimide hasbeen determined with two-stage light-gas gun experiments, i.e. the bulk speed of soundof polyimide c0=(2.62±0.22) km/s, the linear Hugoniot slope coefficient s=1.25±0.063for pressure less than50GPa, and c0=(2.26±0.26) km/s and s=1.41±0.043for pressurefrom50GPa to about1TPa, and the Grüneisen parameter at initial state of1.53. TheMie-Grüneisen EOS for polyimide is finally obtained, and the parameter values areproved reliable via the comparison of Grüneisen parameter value calculated from twodifferent theoretical models and the experimental data.
     (2)The differential scaning calarmeutry (DSC) experiments andpressure-thermogravimetry (PTG) analysis experiments for polyimide are performed.The reaction heat is determined as81.96J/g through the DSC experiments, and thechemical reaction kinetics parameters with different pressure for polyimide aredeterminded through the PTG experiments. Finally, the laws of the kinetics parametersare obtained.
     (3) With the PTG results, a pressure-related and temperature-related chemicalreaction model for polyimide is established. The Arrhenius model does not contain thepressure factor when describing the thermal decomposition of materials, our modelwhich based on the Arrhenius model has considered the pressure factor to describe thethermal decomposition of materials. Our model is more accruable to describe thethermal decomposition of polyimide in shock wave compression condition.
     (4) A chemical reaction dynamics algorithm is established. Chemical reactionsleading to changes in substance component, the form of the mass conservation equation is much more complex. The pressure, specific internal energy and the componentpercent are all change following the numerical simulation. The unit pressure, specificinternal energy and the component percent are obtained from the balance of pressure,temperature and energy in this paper.
     (5) A three-dimensional hydrodynamic code employing the SPH method withFORTRAN language is compiled, and the chemical reaction is considered by theprogram. When impact by hypervelocity flyers, the debris cloud of polyimide target inthe process of formation and movement entails significant chemical reaction and releaseheat, and the heat conduction may also have an impact on thermodynamic state ofmatter, however, there is no ready-made program can simulate this process except ourSPH code. Finally, two examples are calculated with the code to vertify the accuranceof the code.
     (6) The hypervelocity impact between Al flyer with different impact angle andimpact velocity and polyimide target is simulated by using the equation of state, thermaldecomposition kinetic model and SPH code. Influence of chemical reaction is mainlyconsidered, characteristics of debris clouds and penetration hole produced in the impactare presented, influence of the impact angle and impact velocity on the debris cloudsand the penetration hole are discussed, and the pressure distribution and temperaturedistribution are obtained. The results show that materials around the penetration hole areboth destroyed by the mechamical factor and thermal factor (such as thermal stability).
引文
[1]丁孟贤.聚酰亚胺:化学、结构与性能的关系及材料[M].北京:科学出版社,2006:1~6.
    [2] DuPont Corporation. Summary of Properties for Kapton Polyimide Films: abooklet from DuPont Corporation [EB/OL]. http://www2.dupont.com/Kapton.
    [3]孙彩霞,王复东等.空间飞行器用电线电缆绝缘材料[J].绝缘材料,2004(2):50~55.
    [4]龚自正.空间碎片超高速撞击实验研究进展[R].长沙:第六届全国爆炸力学实验技术研讨会邀请报告,2010.
    [5]龚自正,李明.美俄卫星太空碰撞事件及对航天活动的影响[J].航天器环境工程,2009,26(2):101~106.
    [6] Heiss C H, Stadermann F J. Chemical Analysis of Hypervelocity Impacts on theSolar Cells of the Hubble Space with EPMA-EDX and SIMS [J]. Adv. Space Res.1997,19(2):257~260.
    [7] Drolshagen G, McDonnell J A, et al, Optical survey of micrometeoroid and spacedebris impact features on EURECA [J]. Planet. Space. Sci.,1996,44(4):317~340.
    [8]上海合成树脂研究. YS-20型聚酰亚胺材料特性简介[EB/OL].http://www.chem-syn.com/default.asp.
    [9] Marsh S P. LASL Shock Hugoniot Data [M]. Berkeley: Univ. of California Press,1980.
    [10]Takamatsu K, Ozaki N, Tanaka KA, et al., Equation-of-state measurements ofpolyimide at pressures up to5.8TPa using low-density foam with laser-drivenshock waves [J]. Phys. Rev. E,2003,67:056406.
    [11]沈自才,孔伟金等.热控涂层光学性能退化模型研究[J].物理学报,2009,58(2):860~864.
    [12]沈自才,郑慧奇等.远紫外辐射下Kapton/Al薄膜材料的力学性能研究[J].航天器环境与工程,2010,27(5):600~603.
    [13]沈燕侠,潘丕昌等.几种热塑性聚酰亚胺泡沫热力学性能[J].宇航材料工艺,2007(6):109~112.
    [14]Bruck S D. Thermal degradation of an aromatic polypyromellitimide in air andvacuum1-Rates and activation energies [J]. Polymer,1964,5:435-446.
    [15]Ninan K N, Krishnan K, Mathew J. Addition polyimides: kinetics of cure reactionand thermal decomposition of bismaleimides [J]. Journal of Applied PolymerScience.1986,32(7):6033-6042.
    [16]Torrecillas R, Regnier N, Moraigne B. Thermal degradation of bismaleimide andbisnadimide networks–products of degradation and type of crosslinking points [J].Polymer Degradation and Stability.1996,51(3):307-318.
    [17]Aik Chong Lua, Jincai Su. Isothermal and non-isothermal pyrolysis kinetics ofKapton polyimide [J]. Polymer Degradation and Stability,2006(91):144~153.
    [18]李春,舒姚林.液晶聚酰亚胺的热分解动力学问题[J].成都纺织高等专科学校学报,2001,18(3):1-4.
    [19]黄俐研,史焱,金熹高.可溶性聚酰亚胺的热分解[J].中国科学(B辑),1999,29(4):320-326.
    [20]刘金刚,王强,朱普坤,李佐邦.热分析方法研究四种聚酰亚胺的热稳定性[J].河北工业大学学报,1999,28(1):15-19.
    [21]孙建平,常磊,匡敏,张可达,陆振荣.光敏聚酰亚胺的热分解反应动力学[J].研究简报,2001,342-344.
    [22]赵根祥,朱传风.高结晶度石墨膜前驱体―Kapton‖薄膜热解行为的实验研究[J].碳素技术,2003(6):13~16.
    [23]Schonberg W P. Characterizing secondary debris impact ejecta [J]. Int J ImpactEngng,2001,26:713~724.
    [24]Schonberg W P. Modelling oblique hypervelocity impact phenomena usingelementary shock physics [J]. Int J Impact Engng,1999,23:823~834.
    [25]Schonberg W P. Protecting spacecraft against orbital debris impact damage usingcomposite materials [J]. Composites: Part A,2000(31):869~878.
    [26]Corvvonato E, Destefanis R, Faraud M. Integral model for the description of thedebris cloud structure and impact. Int J Impact Engng [J].2001,21:115~128.
    [27]Cohen L J. A debris cloud cratering model. Int J Impact Engng [J],1995,17:229~240.
    [28]Fahrenthold E P, Horban B A. An improved hybrid particle-element method forhypervelocity impact simulation. Int J Impact Engng [J],2001,26:169~178.
    [29]黄建国等.等离子驱动超高速微小碎片加速研究[R].南京:第四届全国空间碎片专题研讨会,2007.
    [30]Crews J L, Christiansen E L. The NASA JSC hypervelocity impact test facility(HIT-F)[R].AIAA:1992-1640,1992.
    [31]Satoshi Nonaka, Kazuyoshi Takayama, Seishirou Kibe. Hypervelocity impact testswith bumper-walled structure against space debris [R].AIAA:98-0800,1998.
    [32]柳森,李毅,黄洁,等.用于验证数值仿真的Whipple屏超高速撞击试验结果[J].宇航学报,2005,26(4):505~508.
    [33]Groenenboom P H L. Numerical simulation of2D and3D hypervelocity impactusing the SPH option in PAM-SHOCK. Int J Impact Engng [J],1997,20:309~323.
    [34]Hiermaier S, K nke D, Stilp A J, Thoma K. Computaional simulation of thehypervelocity impact of Al-spheres on thin plates of different materials [J]. Int JImpact Engng,1997,20:363~374.
    [35]Bashurov V V, Bebenin G V, Ioilev A G. Numerical simulation of rod particleshypervelocity impact effectiveness at various attack angles [J]. Int J Impact Engng,1997,20:79~88.
    [36]Carrasco C, Melchor-Lucero O, Osequeda R, et al. Damage-potential comparisonof spherical and cylindrical projectiles impacting on a system of bumper plates [J].Int J Impact Engng,2006,33:143~157.
    [37]Faraud M, Destefanis R, Palmieri D, et al. SPH simulations of debris impacts usingtwo different computer codes [J]. Int J Impact Engng,1999,23:249~260.
    [38]贾光辉,黄海,胡震东.超高速撞击数值仿真结果分析[J].爆炸与冲击,2005,25(1):47~53.
    [39]张伟,庞宝君,贾斌,等.弹丸超高速撞击防护屏碎片云数值模拟[J].高压物理学报,2004,18(1):47~52.
    [40]张伟,马文来,管公顺,等.非球弹丸超高速撞击航天器防护结构数值模拟[J].爆炸与冲击,2007,27(3):240~245.
    [41]徐金中.空间碎片超高速碰撞特性及其防护结构优化设计的SPH研究[D].长沙:国防科学技术大学研究生院,2008.
    [42]周浩.光滑粒子流体动力学方法并行化及其应用研究[D].长沙:国防科学技术大学研究生院,2011.
    [43]Verker R, Eliaz N, et al. The Effect of Simulated Hypervelocity Space Debris onPolymers [J]. Acta Materialia,2004(52):5539~5549.
    [44]Verker R, Grossman E, et al. Residual Stress Effect on Degradation of Polyimideunder Simulated Hypervelocity Space Debris and Atomic Oxygen [J]. Polymer,2007(48):19~24.
    [45]Verker R, Grossman E, et al. Erosion of POSS-polyimide films under hypervelocityimpact and atomic oxygen: The role of mechanical properties at elevatedtemperatures [J]. Acta Materialia,2009(57):1112~1119.
    [46]Verker R, Grossman E, et al. TriSilanolPhenyl POSS–polyimide nanocomposites:Structure–properties relationship [J]. Composites Science and Technology,2009(69):2178~2184.
    [47]Verker R, Grossman E, et al. Effect of the POSS–Polyimide nanostructure on itsmechanical and electrical properties [J]. Composites Science and Technology,2012(72):1408~1415.
    [48]Verker R, Grossman E, et al. POSS-Polyimide Nanocomposite Films: SimulatedHypervelocity Space Debris and Atomic Oxygen Effects [J]. High PerformancePolymers,2008(20):475~491.
    [49]Verker R, Grossman E, et al. Ground Simulation of Hypervelocity Space Debrisimpacts on polymers [J]. Protection of Materials and Structures from SpaceEnvironment,2006(20):153~165.
    [50]Verker R, Grossman E, et al. A novel method for on-orbit measurement of spacematerials degradation [J]. Review of Scientific Instruments,2011(82):023901.
    [51]Verker R, Grossman E, et al. Debris/Micrometeoroid Impacts and SynergisticEffects on Spacecraft Materials [J]. MRS Bulletin,2010(35):41~47.
    [52]Edward M. Silverman. Space Environment Effect on Spacecraft: LEO MaterialsSelection Guide [R]. NASA CR-4661,1995.
    [53]Neish M J, Deshpande S P, et al. Micrometeoroid and Space Debris Impacts on theSpace Flyer Unit and Hypervelocity Impact Calibration of Its Materials [C].Proceedings of the Second European Conference on Space Debris, ESOC,Darmstadt,1997:177~182.
    [54]Ronald P. Bernhard, Eric L. Christiansen, et al. Hypervelocity Impact Damage intoSpace Shuttle Surfaces [J]. Int. J. Impact Engng.,1995(17):57~68.
    [55]McBride N, Green S F, et al. Meteoroids and Small Sized Debris in Low EarthOrbit and at1AU: Results of Recent Modelling [J]. Adv. Space Res.,1999,23(1):73~82.
    [56]Drolshagen G. Impact Effects from Small Size Meteoroids and Space Debris [J].Adv. Space Res.,2008(41):1123~1131.
    [57]Carrasco C, Eng D, et al. Preliminary dust impact risk study for the―Solar Probe‖spacecraft [J]. International Journal of Impact Engineering,2006(33):133~142.
    [58]Lambert M, Frank K. Schkfer, et al. Impact damage on sandwich panels andmulti-layer insulation [J]. International Journal of Impact Engineering,2001(26):369~380.
    [59]Rival M, Mandeville J C, et al. Impact phenomena on brittle materials Analysis of1μm to1mm impact features on solar arrays [J]. Adv. Space Res.,1997,20(8):1451~1456.
    [60]Stadermnn F J, Heiss C H, et al. Evaluation of impact craters on solar cell samplesand thermal MLI blankets [J]. Adv. Space Res.,1997,20(8):1517~1521.
    [61]White DM, Wicklein M, et al. Multi-layer insulation material models suitable forhypervelocity impact simulations [J]. International Journal of Impact Engineering,2008(35):1853~1860.
    [62]Kearsley AT, Graham GA, et al. MULPEX: A compact multi-layered polymer foilcollector for micrometeoroids and orbital debris [J]. Adv. Space Res.,2005(35):1270~1281.
    [63]Robert J Turner, Emma A Taylor, et al. Cost effective honeycomb and multi-layerinsulation debris shields for unmanned spacecraft [J]. International Journal ofImpact Engineering,2001:785~796.
    [64]Gong Zizheng, Dai Fu. The Laser-Driven Flyer System for Space DebrisHypervelocity Impact Simulations [J]. Nuclear Instruments and Methods in PhysicsResearch B,2009(267):3252~3257.
    [65]张文兵,董洪建,龚自正等.激光驱动微小碎片超高速发射技术研究[J].装备环境工程,2007,4(1):56~61.
    [66]庞贺伟,龚自正等.航天器舷窗玻璃超高速撞击损伤与M&OD撞击风险评估[J].航天器环境工程,2007,24(3):135~139.
    [67]龚自正,杨继运,代福等. CAST空间碎片超高速撞击试验研究进展[J].航天器环境工程,2009,26(4):301~306.
    [68]曹燕,龚自正,代福等.激光驱动飞片速度的理论分析[J].航天器环境工程,2009,26(4):307~311.
    [69]龚自正,施尚春,杨继运等.一种用于超高速撞击实验的新型弹丸弹托分离技术[J].航天器环境工程,2008,25(3):259~262.
    [70]徐坤博,龚自正,侯明强等.超高速撞击中的弹丸形状效应数值模拟研究[J].航天器环境工程,2010,27(5):570~575.
    [71]韩建伟,张振龙,黄建国等.利用等离子体加速器发射超高速微小空间碎片的研究[J].航天器环境工程,2006,23(4):205~209.
    [72]林国昌,万志敏,杜星文. Al-Kapton层和薄膜力学行为的实验研究[J].材料科学与工艺,2006,14(3):261~264.
    [73]李瑞琦. Kapton/Al二次表面镜带电粒子辐照损伤效应及机理[D].哈尔滨:哈工大博士学位论文,2007.
    [74]R. Q. Li, C. D. Li et al. Damage effect of keV proton irradiation on aluminizedKapton film [J]. Radiation Physics and Chemistry,2008(77):482~489.
    [75]许保祥. KAPTON薄膜电子辐照损伤效应[D].哈工大硕士学位论文,2007.
    [76]尚海波. Kapton薄膜及防护膜的原子氧侵蚀行为研究[D].哈尔滨:哈工大硕士学位论文,2006.
    [77]经福谦.实验物态方程导引,第二版[M].北京:科学出版社,1999.
    [78]汤文辉,张若琪.物态方程理论及计算概论,第二版[M].北京:高等教育出版社,2008.
    [79]徐锡申,张万箱等.实用物态方程理论导引[M].北京:科学出版社,1986.
    [80]Eliezer S, Ghatak A, Hora H. An introduction to equation of state: theory andapplication [M]. London: Cambridge University Press,1986.
    [81]王金贵.气体炮原理及技术[M].北京:国防工业出版社,2001.
    [82]王金贵.二级轻气炮超高速弹丸发射技术的研究[J].高压物理学报,1992,6(4):264~272.
    [83]吴静,蓝强等.二级轻气炮压缩级发射技术研究[J].高压物理学报,2006,20(4):445~448.
    [84]林俊德,张向荣,朱玉荣等.超高速撞击实验的三级压缩气炮技术[J].爆炸与冲击,2012(5):161~165.
    [85]王青松,王翔,戴成达等.三级炮加载技术在超高压状态方程研究中的应用[J].高压物理学报,2010,24(3):1~5.
    [86]杨继运.二级轻气炮模拟空间碎片超高速碰撞试验技术[J].航天器环境工程,2006,23(1):16~22.
    [87]施尚春.高速弹丸的磁感应测速方法[J].高压物理学报,1991,5(3):205.
    [88]王荣波,田建华等.石英光纤探针在非金属材料冲击实验中的应用[J].爆炸与冲击,2006,26(3):284~287.
    [89]Dugdal J S, MacDonald D K C. The thermal expansion of solids.[J]. Phys Rev,1953,89:839.
    [90]Huang Y K. Direct method of calculating the Grüneisen parameter based onshockwave measurements of metals [J]. J. Chem. Phys.,1969,51:2573.
    [91]Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum[J]. J Appl Phys.1981,52(5):3363-3374.
    [92]马民勋,顾援.阻抗匹配实验中的误差问题[J].高压物理学报,1991,5(2):149-153.
    [93]戴诚达,王翔,谭华. Hugoniot实验的粒子速度测量不确定度分析[J].高压物理学报.2005,19(2):113-119.
    [94]佘金虎.多薄层组合材料在X射线辐照下的热—力学效应研究[D].长沙:国防科学技术大学博士学位论文,2009.
    [95]国家质量技术监督局计量司组.测量不确定度评定与表示指南.北京:中国计量出版社,2000.
    [96]Nellis W J, Mitchell A C, Young D A. Equation of State Measurements forAluminum, Copper and Tantalum in the Pressure Range80~440GPa. J Appl Phys,2003,93(1):304-310.
    [97]Knudson M D, Hanson D L, Bailey J E, et al. Equation of the State Measure-mentsin Liquid Deuterium to70GPa. Phy Rev Lett,2001,87(22):225-231.
    [98]许越.化学反应动力学[M].北京:化学工业出版社,2004.
    [99]赵学庄.化学反应动力学原理[M].北京:高等教育出版社,1990.
    [100]刘振海.热分析导论.北京:化学工业出版社,1991.
    [101]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990.
    [102] Anderson D A, Freeman S E. J. Polymer Sci.,64,253(1961).
    [103]王军,郭玉花,张其土等.聚酰亚胺/TiO2复合材料热性能研究[J].塑料工业,2007,35(增刊):244-246.
    [104]陈镜泓,李传儒.热分析的反应动力学[J].化学通报,1980,1:7-14.
    [105]刘子如.含能材料热分析[M].北京:国防工业出版社,2008.
    [106]崔亚兵,陈晓平,顾利锋.常压及加压条件下生物质热解特性的热重研究[J].锅炉技术,2004,35(4):12-15.
    [107]陈义恭,沙兴中,任德庆等.加压下煤焦与二氧化碳反应的动力学研究[J].华东化工学院学报,1984,10(1):39-49.
    [108] Belytschko T, Krongauz Y, Organ D, et al. Meshless method: an overview andrecent development [J]. Comput Meth Appl Mech Eng,1996,139:3~47.
    [109]顾元通,丁桦.无网格法及其最新进展[J].力学进展,2005,35(3),323~337.
    [110]周进雄,李梅娥,张红艳,等.再生核质点法研究进展[J].力学进展,2002,32(4),535~543.
    [111] Lucy L. A numerical approach to testing the fission hypothesis [J]. Astron J,1977,82(12):1013~1024.
    [112] Gingold R A, Monaghan J J. Smooth particle hydrodynamics: theory andapplications to non spherical stars [J]. Man Not Roy Astron Soc,1977,181:375~389.
    [113] Monaghan J J. Why Particle Methods Work [J]. Siam J Sci Sat Comput,1982,3(4):423~433.
    [114]徐志宏.光滑粒子流体动力学方法的改进及其应用[D].长沙:国科学技术大学博士学位论文,2006.
    [115] Liu GR, Liu MB, Smoothed particle hydrodynamics: a meshfree particle method
    [M]. Singapore: World Scientific Press,2003.
    [116] Krzysztof Pielichowski and James Njuguna. Thermal Degradation of PolymericMaterials [M]. London: Rapra Technology Limited,2005.
    [117] Elaine S. Oran and Jay P. Boris. Numerical simulation of reactive flow (SecondEdition)[M]. London: Cambridge University Press,2001.
    [118]周力行.湍流气粒两相流动和燃烧的理论与数值模拟[M].北京:科学出版社,1994.
    [119] Benz W. Smoothed particle hydrodynamics: a review [M]. Les: NATOWorkshop,1989.
    [120] Hernquist L, Katz N. TREESPH: a unification of SPH with the hierarchical treemethod [J]. Astrophys J Suppl Ser,1989,70:419~446.
    [121] B rve S, Omang M, Trulsen J. Regularized smoothed particle hydrodynamicswith improved multi-resolution handling [J]. J Comput Phys,2005,208:345~367.
    [122] Monaghan J J. An introduction to SPH [J]. Computer Physics Communications,1988,48:89~96.
    [123] von Neumann J, Richtmyer R D. A method for the numerical calculation ofhydrodynamics shocks [J]. J ournal of Applied Physics,1950,21:232~247.
    [124] Monaghan J J, Gingold R A. Shock simulation by the particle method of SPH [J].J Comput Phys,1983,52:374~381.
    [125]侯祝强.木材导热系数的研究[J].林业科学,1992,2:153~160.
    [126]章冠人,陈大年.凝聚炸药起爆动力学[M].北京:国防工业出版社,1991.
    [127]张庆明,黄风雷.超高速碰撞动力学引论[M].北京:科学出版社,2000.
    [128] Schonberg W P. Characterizing material states in orbital debris impacts [R].SPIE,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700