用户名: 密码: 验证码:
TiO_2纳米晶表面微结构调控及其对提高DSSC光电转换效率的作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳电池(Dye-sensitized Solar cells,简称DSSC)作为一种有机、无机复合的新型薄膜光电化学(Photoelectrochemical,简称PEC)太阳电池,与晶体半导体太阳电池相比,具有原材料成本低、制作工艺简单等优点,而且产业化准入门槛低、能源回收周期短,成为与环境、能源相关的材料物理化学研究领域的研究热点之一。虽然DSSC已经取得了超过12%的光电转换效率,但是制备高效DSSC的技术只掌握在少数的几个研究组中,而且制备高效DSSC需要高纯度染料,高纯度染料的提纯产率低增加了DSSC的成本,所以,提升普通DSSC效率、制备低成本DSSC的方法具有重要的研究意义。Ti02是最高效DSSC的光电极材料,对其晶粒、晶相、缺陷/空位、晶面暴露等微结构的有效调控,对提高DSSC性能具有重要意义。
     本文立足DSSC光电极,以制备高效、稳定的DSSC为目标,围绕纳米Ti02的制备、表面微结构调控和开发具有高稳定性的新材料开展工作,主要内容包括:
     1.以异丙醇钛为前驱体,采用溶胶-水热方法合成了TiO2纳米晶,研究了合成条件对TiO2纳米晶的晶粒度、结晶度以及相转变的影响规律。研究显示,通过控制前驱液的预热处理、水热温度及前驱液浓度等条件,达到对TiO2纳米晶的晶型、结晶度的稳定调控,并实现了晶粒从10-20nm的纳米颗粒到120nm长的纳米棒的增长。采用优化实验条件后得到的TiO2纳米晶的油性浆料,使用精确控制膜厚的刮刀涂布技术,制作成DSSC,凭借制备的TiO2纳米晶的纯锐钛矿晶型、合适的晶粒大小和良好的结晶性,DSSC的光电转换效率达到8.65%。
     2.利用TiO2胶体中TiO2胶粒吸附带正电的La3+,采用溶胶-水热方法合成了La掺杂的TiO2。La掺杂的锐钛矿相TiO2不但比表面积没有发生变化,而且具有更高的表面氧空位密度。并且在理论上对氧空位的形成机制进行了解释,理论计算结果显示La掺杂的锐钛矿Ti02表面较未掺杂的表面氧空位形成能低。1mo1%掺杂的Ti02制备的DSSC的光电转化效率达到6.72%,较没有掺杂的Ti02制备的DSSC提高了13.5%,提高的效率来自于La掺杂的Ti02表面吸附了更多的染料。
     3.TiO2可以强烈吸收紫外线,因此可以从紫外线中获得大量能量,利用这一特性,采用高强度紫外线辐照高{001}面暴露的Ti02纳米片,实验发现,锐钛矿相TiO2(001)面经过高强度紫外线辐照后发生(103)面和(103)面重构。通过紫外线辐照,为了调控Ti02纳米片形貌而引入的残留在Ti02纳米片表面的无机表面活性剂F被有效清除;重构后的台阶状表面增加了表面暴露的Ti原子数量,即增加了吸附位点,结合理论计算,台阶状表面也可以充当染料吸附活性位点。使用辐照时间为40min的Ti02纳米片制备的DSSC光电转化效率达到6.14%,较没有经过紫外线辐照处理的DSSC(5.21%)增加了17.6%。
     4.在新材料开发方面,针对DSSC在户外长期工作中因使用染料和I-/I3-引起的衰减问题,开发出一种新的不使用染料和I-/I3-的PEC太阳电池--BiVO4PEC太阳电池,BiVO4同时作为光吸收材料和电子传导材料,其作用相当于吸附了染料的Ti02光电极。得到的BiVO4PEC太阳电池效率是目前文献报道的类似太阳电池效率的14倍,并且,通过与Fe2O3PEC太阳电池做比较,对PEC太阳电池新材料的开发提出一条建议:对于光催化分解水光电极,在低偏压下具有较高活性的光电极适合作PEC太阳电池光电极。
     本文对Ti02晶粒、晶相、缺陷/空位、晶面暴露等微结构的有效调控以及对BiVO4材料的探索研究旨在为开发高效、稳定的PEC太阳电池提供实验基础和理论指导。
As non-crystal semiconductor solar cells, photoelectrochemical (PEC) solar cells, led by dye-sensitized solar cells (DSSC), enjoy the advantages of low cost of raw material, simple production process, low threshold of market access, short energy recycling cycle et al. In recent years, DSSC has become one of the hottest research areas in the research field of materials, physics and chemistry related to environment and energy. Although the DSSC has made a photoelectric conversion efficiency of higher than12%, the preparation technology for highly efficient DSSC is only in the hands of a few research groups. Moreover, the preparation for highly efficient DSSC needs highly pure dye. The purification yield of dye is not high, which increases the cost of DSSC. Therefore, the methods to enhance the efficiency of ordinary DSSC and prepare low cost DSSC are of great importance for research. Since TiO2is the electrode material of the most efficient DSSC, the effective control over the microstructure of TiO2, such as grain size, crystal phase, defects/vacancies and exposed facets, is of great significance for the improvement of DSSC's performance.
     In this paper, based on the photoelectrodes of DSSCs, aiming to prepare highly efficient and stable PEC solar cells, research has been done on preparing TiO2nanoparticles and nanosheets, surface modification and developing a new material with high stability. The main contents include:
     1. TiO2nanopaticle was synthesized by a sol-hydrothermal method, using titanium isopropoxide as the precursor. The effect of synthesis condition on grain size, crystallinity and phase transformation between phase-pure rutile and phase-pure anatase, was researched. It was revealed that the crystal-type, crystallinity and crystal-size (from10-20nm nanopaticles to120nm nanorods) of TiO2nanoparticles could be controlled by the controlling of the pre-thermal treatment, hydrothermal temperature and concentration of the precursor. A paste, made from the nanoparticles and terpinol, and a doctor-blade technology which could control the thickness of the film were utilized to make a DSSC, which could achieve a photoelectric conversion efficiency of8.65%, as a result of the phase-pure anatase, appropriate grain size and favorable crystallinity of the TiO2nanoparticles.
     2. Facilitated by TiO2particles absorbing La3+in hydrosol, La-doped TiO2was prepared by a sol-hydrothermal method. It was showed that the obtained La-doped anatase TiO2surface provided a higher density of oxygen vacancies without a change in the BET surface area. A theoretical calculation was carried out to explain the generation mechanism of the increased oxygen vacancies. The results showed that the La-doped anatase TiO2(101) surface tends to engender oxygen vacancies. The photoelectric conversion efficiency of dye-sensitized solar cells fabricated from1mol%La-doped TiO2reached6.72%, which gave an efficiency improved by13.5%compared with that of the cells fabricated from pure TiO2. The improvement in the efficiency was ascribed to more dye adsorbed on the surface of TiO2.
     3. UV irradiation was utilized to remove the fluorine-surfactant on the surface of anatase TiO2nanosheets with a high percentage of exposed{001} facets which were synthesized with the aid of hydrofluoric acid. The nanosheets treated with UV irradiation for40min had the advantage of improving the photoelectric conversion efficiency of DSSCs by17.6%, comparing to that without UV treatment when they were introduced into DSSCs as photoanode materials. The improved efficiency was ascribed to more dye adsorption. A theoretical calculation was proposed that UV irradiation induced microfaceted steps on the TiO2surface by two domain (1×4) reconstruction after UV irradiating the (1×1)(001) surface. The microfaceted steps increase the active surface area of the TiO2nanosheets by increasing the exposure of titanium atoms and engendering active sites.
     4. In the development of new materials, BiVO4PEC solar cells, a kind of PEC solar cell without dye and I-/I3-was developed. BiVO photoeletrode acts as the function of light absorbing material and electron conducting material. It is equivalent to a dye-coated TiO2photoelectrode. The BiVO4PEC solar cell's efficiency is more than14times higher than the highest efficiency reported in the literature for similar cell efficiency. Compared with the Fe2O3PEC solar cell, a suggestion was proposed to develop new materials:those materials with a long lifetime of photo-generated carrier are suitable for the PEC solar cell. An electrode for photocatalytic water splitting, performing high photocatalytic activity at a low bias, is suitable for a PEC solar cell.
     This research, which focuses on the control over the microstructure of TiO2, such as particle size, crystal phase, defects/vacancies and exposed facets, and the exploration of BiVCO4material, is aiming at providing experimental basis and theoretical guidance on developing highly efficient and stable PEC solar cells.
引文
[1]汪建文,可再生能源,机械工业出版社,2011.
    [2]http://baike.baidu.com/view/21294.htm#7.
    [3]E. Becquerel, Seances Acad.Sci.,1839,561.
    [4]M. Wolf, Solar Cells, ed. C. E. Backus. New York:IEEE Press,1976.
    [5]National Renewable Energy Labotary (NREL), Best Research-Cell and Efficiencies.
    [6]http://zh.wikipedia.org/wiki/.
    [7]杨术明,染料敏化纳米晶太阳能电池,郑州大学学出版社,2007.
    [8]I. B. Wilson, G. Lehrer, T. Namba and Ehrenpre.S, Annals of the New York Academy of Sciences,1967,144,800-806.
    [9]P. Liska, N. Vlachopoulos, M. K. Nazeeruddin, P. Comte and M. Gratzel, Journal of the American Chemical Society,1988,110,3686-3687.
    [10]N. Vlachopoulos, P. Liska, J. Augustynski and M. Gratzel, Journal of the American Chemical Society,1988,110,1216-1220.
    [11]B. Oregan and M. Gratzel, Nature,1991,353,737-740.
    [12]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. G. Gratzel, Journal of the American Chemical Society,2005,127, 16835-16847.
    [13]F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society,2008,130, 10720-10728.
    [14]A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin and M. Gratzel,Science,2011,334,629-634.
    [15]M. Gratzel, Journal of Photochemistry and Photobiology a-Chemistry,2004,164,3-14.
    [16]R. F. Service, Science,2003,300,1219-1219.
    [17]史成武,戴松元,王孔嘉,潘旭,郭力,化学通报,68,1-3.
    [18]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chemical Reviews,2010,110, 6595-6663.
    [19]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature,1998,395,583-585.
    [20]M. Guo, P. Diao, Y.-J. Ren, F. Meng, H. Tian and S.-M. Cai, Solar Energy Materials and Solar Cells,2005,88,23-35.
    [21]Q. F. Zhang, C. S. Dandeneau, X. Y. Zhou and G. Z. Cao, Advanced Materials,2009,21, 4087-4108.
    [22]K. Sayama, H. Sugihara and H. Arakawa, Chemistry of Materials,1998,10,3825-3832.
    [23]P. Guo and M. A. Aegerter, Thin Solid Films,1999,351,290-294.
    [24]R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M. Tachiya, Journal of Physical Chemistry B,2004,108,4818-4822.
    [25]A. Turkovic and Z. C. Orel, Solar Energy Materials and Solar Cells,1997,45,275-281.
    [26]S. J. Wu, H. W. Han, Q. D. Tai, J. Zhang, S. Xu, C. H. Zhou, Y. Yang, H. Hu, B. L. Chen and X. Z. Zhao, Journal of Power Sources,2008,182,119-123.
    [27]J. Y. Kim, S. H. Kang, H. S. Kim and Y. E. Sung, Langmuir,2010,26,2864-2870.
    [28]A. Morandeira, G. Boschloo, A. Hagfeldt and L. Hammarstrom, Journal of Physical Chemistry C,2008,112,9530-9537.
    [29]D. P. Joseph, M. Saravanan, B. Muthuraaman, P. Renugambal, S. Sambasivam, S. P. Raja, P. Maruthamuthu and C. Venkateswaran, Nanotechnology,2008,19,.
    [30]S. Anandan, X. G. Wen and S. H. Yang, Materials Chemistry and Physics,2005,93,35-40.
    [31]Y. Liu, L. Liao, J. Li and C. Pan, Journal of Physical Chemistry C,2007,111,5050-5056.
    [32]L. H. Huang, L. L. Jiang and M. D. Wei, Electrochemistry Communications,2010,12, 319-322.
    [33]B. Tan, E. Toman, Y. G. Li and Y. Y. Wu, Journal of the American Chemical Society,2007, 129,4162-4163.
    [34]T. Lana-Villarreal, G. Boschloo and A. Hagfeldt, Journal of Physical Chemistry C,2007,111, 5549-5556.
    [35]S. M. Yang, H. Z. Kou, J. C. Wang, H. B. Xue and H. L. Han, Journal of Physical Chemistry C,2010,114,4245-4249.
    [36]P. Wang, S. M. Zakeeruddin, J. E. Moser and M. Gratzel, Journal of Physical Chemistry B, 2003,107,13280-13285.
    [37]K. D. Benkstein, N. Kopidakis, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B,2003,107,7759-7767.
    [38]D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt and L. Sun, Journal of Organic Chemistry,2007,72,9550-9556.
    [39]K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara and H. Arakawa, Journal of Physical Chemistry B,2003,107,597-606.
    [40]A. Islam, H. Sugihara and H. Arakawa, Journal of Photochemistry and Photobiology α-Chemistry,2003,158,131-138.
    [41]C.-W. Lee, H.-P. Lu, C.-M. Lan, Y.-L. Huang, Y.-R. Liang, W.-N. Yen, Y.-C. Liu, Y.-S. Lin, E. W.-G. Diau and C.-Y. Yeh, Chemistry-α European Journal,2009,15,1403-1412.
    [42]X. Lue, F. Huang, X. Mou, Y. Wang and F. Xu, Advanced Materials,2010,22,3719-3722.
    [43]X. Lue, X. Mou, J. Wu, D. Zhang, L. Zhang, F. Huang, F. Xu and S. Huang, Advanced Functional Materials,2010,20,509-515.
    [44]S. Ito, P. Liska, P. Comte, R. L. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin and M. Gratzel, Chemical Communications,2005, 4351-4353.
    [45]B. Peng, G. Jungmann, C. Jager, D. Haarer, H. W. Schmidt and M. Thelakkat, Coordination Chemistry Reviews,2004,248,1479-1489.
    [46]S. G. Chen, S. Chappel, Y. Diamant and A. Zaban, Chemistry of Materials,2001,13, 4629-4634.
    [47]E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz and J. R. Durrant, Chemical Communications,2002,1464-1465.
    [48]S. Wu, H. Han, Q. Tai, J. Zhang, S. Xu, C. Zhou, Y. Yang, H. Hu, B. Chen and X.-z. Zhao, Journal of Power Sources,2008,182,119-123.
    [49]X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, O. Sato and A. Fujishima, Solar Energy Materials and Solar Cells,2004,81,197-203.
    [50]X. T. Zhang, I. Sutanto, T. Taguchi, Q. B. Meng, T. N. Rao, A. Fujishima, H. Watanabe, T. Nakamori and M. Uragami, Solar Energy Materials and Solar Cells,2003,80,315-326.
    [51]B. Liu and E. S. Aydil, Journal of the American Chemical Society,2009,131,3985-3990.
    [52]M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang, Nature Materials,2005,4, 455-459.
    [53]K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K.-S. Choi and C. A. Grimes, Journal of Physical Chemistry C,2009,113, 6327-6359.
    [54]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano Letters,2006,6, 215-218.
    [55]M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor and C. A. Grimes, Journal of Physics D-Applied Physics,2006,39,2498-2503.
    [56]K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese and C. A. Grimes, Nanotechnology,2007,18,065707.
    [57]M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Gratzel, Nano Letters, 2005,5,1789-1792.
    [58]J. Ferber and J. Luther, Solar Energy Materials and Solar Cells,1998,54,265-275.
    [59]G. Rothenberger, P. Comte and M. Gratzel, Solar Energy Materials and Solar Cells,1999,58, 321-336.
    [60]Z. S. Wang, H. Kawauchi, T. Kashima and H. Arakawa, Coordination Chemistry Reviews, 2004,248,1381-1389.
    [61]D. Chen, F. Huang, Y.-B. Cheng and R. A. Caruso, Advanced Materials,2009,21,2206-2210.
    [62]W. Yang, J. Li, Y. Wang, F. Zhu, W. Shi, F. Wan and D. Xu, Chemical Communications,2011, 47,1809-1811.
    [63]M. Gratzel, Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2003,4, 145-153.
    [64]D. P. Hagberg, J.-H. Yum, H. Lee, F. De Angelis, T. Marinado, K. M. Karlsson, R. Humphry-Baker, L. Sun, A. Hagfeldt, M. Gratzel and M. K. Nazeeruddin, Journal of the American Chemical Society,2008,130,6259-6266.
    [65]A. S. Polo, M. K. Itokazu and N. Y. M. Iha, Coordination Chemistry Reviews,2004,248, 1343-1361.
    [66]A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, Chemical Reviews,2010,110, 6595-6663.
    [67]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. G. Gratzel, Journal of the American Chemical Society,2005,127, 16835-16847.
    [68]P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society,2005,127,808-809.
    [69]T. Yamaguchi, T. Miyabe, T. Ono and H. Arakawa, Chemical Communications,2010,46, 5802-5804.
    [70]S. Altobello, R. Argazzi, S. Caramori, C. Contado, S. Da Fre, P. Rubino, C. Chone, G. Larramona and C. A. Bignozzi, Journal of the American Chemical Society,2005,127, 15342-15343.
    [71]B. Happ, A. Winter, M. D. Hager and U. S. Schubert, Chemical Society Reviews,2012,41, 2222-2255.
    [72]S.-H. Hwang, C. N. Moorefield, P. Wang, F. R. Fronczek, B. H. Courtney and G. R. Newkome, Dalton Transactions,2006,3518-3522.
    [73]S. Ferrere, Chemistry of Materials,2000,12,1083-1089.
    [74]E. Baranoff, J.-H. Yum, I. Jung, R. Vulcano, M. Gratzel and M. K. Nazeeruddin, Chemistry-an Asian Journal,2010,5,496-499.
    [75]Z. Ning, Q. Zhang, W. Wu and H. Tian, Journal of Organometallic Chemistry,2009,694, 2705-2711.
    [76]E. Baranoff, J.-H. Yum, M. Gratzel and M. K. Nazeeruddin, Journal of Organometallic Chemistry,2009,694,2661-2670.
    [77]C. L. Linfoot, P. Richardson, T. E. Hewat, O. Moudam, M. M. Forde, A. Collins, F. White and N. Robertson, Dalton Transactions,2010,39,8945-8956.
    [78]K. H. Kim, T. Okubo, N. Tanaka, N. Mimura, M. Maekawa and T. Kuroda-Sowa, Chemistry Letters,2010,39,792-793.
    [79]L. Alibabaei, M. Wang, R. Giovannetti, J. Teuscher, D. Di Censo, J.-E. Moser, P. Comte, F. Pucciarelli, S. M. Zakeeruddin and M. Gratzel, Energy & Environmental Science,2010,3, 956-961.
    [80]Z.-S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada and A. Shinpo, Advanced Materials,2007, 19,1138-1141.
    [81]K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama and H. Arakawa, New Journal of Chemistry,2003,27,783-785.
    [82]S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy and M. Gratzel, Chemical Communications,2008,5194-5196.
    [83]W. H. Howie, F. Claeyssens, H. Miura and L. M. Peter, Journal of the American Chemical Society,2008,130,1367-1375.
    [84]L. Schmidt-Mende, U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida and M. Gratzel, Advanced Materials,2005,17,813-815.
    [85]T. Horiuchi, H. Miura, K. Sumioka and S. Uchida, Journal of the American Chemical Society, 2004,126,12218-12219.
    [86]R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt and L. Sun, Chemistry of Materials,2007, 19,4007-4015.
    [87]R. Chen, X. Yang, H. Tian and L. Sun, Journal of Photochemistry and Photobiology a-Chemistry,2007,189,295-300.
    [88]Z. Ning and H. Tian, Chemical Communications,2009,5483-5495.
    [89]Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu and H. Tian, Journal of Organic Chemistry,2008, 73,3791-3797.
    [90]N. Satoh, T. Nakashima and K. Yamamoto, Journal of the American Chemical Society,2005, 127,13030-13038.
    [91]K. R. J. Thomas, P. Singh, A. Baheti, Y.-C. Hsu, K.-C. Ho and J. T. s. Lin, Dyes and Pigments, 2011,91,33-43.
    [92]A. Zdyb and S. Krawczyk, Applied Surface Science,2010,256,4854-4858.
    [93]C. Teng, X. Yang, C. Yang, S. Li, M. Cheng, A. Hagfeldt and L. Sun, Journal of Physical Chemistry C,2010,114,9101-9110.
    [94]Z. S. Wang, N. Koumura, Y. Cui, M. Takahashi, H. Sekiguchi, A. Mori, T. Kubo, A. Furube and K. Hara, Chemistry of Materials,2008,20,3993-4003.
    [95]D. Kim, J. K. Lee, S. O. Kang and J. Ko, Tetrahedron,2007,63,1913-1922.
    [96]N. Ikeda and T. Miyasaka, Chemical Communications,2005,1886-1888.
    [97]Y. S. Chen, C. Li, Z. H. Zeng, W. B. Wang, X. S. Wang and B. W. Zhang, Journal of Materials Chemistry,2005,15,1654-1661.
    [98]K. Funabiki, H. Mase, Y. Saito, A. Otsuka, A. Hibino, N. Tanaka, H. Miura, Y. Himori, T. Yoshida, Y. Kubota and M. Matsui, Organic Letters,2012,14,1246-1249.
    [99]C. Fu, L. Lei, K. Sun, P. Xia, H. Yuan, D. Xiao and Z. Li, Renewable Energy,2012,38, 163-168.
    [100]C. Li and H. Wonneberger, Advanced Materials,2012,24,613-636.
    [101]H. Dincalp, Z. Askar, C. Zafer and S. Icli, Dyes and Pigments,2011,91,182-191.
    [102]Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao and P. Wang, Journal of Physical Chemistry C,2009,113,6290-6297.
    [103]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, N. Vlachopoulos and M. Gratzel, Journal of the American Chemical Society,1993,115, 6382-6390.
    [104]C. Y. Han L, Islam A, et al,16th International Conference of Photochemical Conversion and Solar Sstorage,2006,211.
    [105]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Y. Han, Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2006,45, L638-L640.
    [106]P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeeruddin and M. Gratzel, Advanced Materials,2004,16,1806-1811.
    [107]F. Gao, Y. Wang, D. Shi, J. Zhang, M. K. Wang, X. Y. Jing, R. Humphry-Baker, P. Wang, S. M. Zakeeruddin and M. Gratzel, Journal of the American Chemical Society,2008,130, 10720-10728.
    [108]G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu and P. Wang, Chemical Communications, 2009,2198-2200.
    [109]W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan and P. Wang, Chemistry of Materials,2010,22,1915-1925.
    [110]Z. S. Wang, K. Sayama and H. Sugihara, Journal of Physical Chemistry B,2005,109, 22449-22455.
    [111]B. V. Bergeron, A. Marton, G. Oskam and G. J. Meyer, Journal of Physical Chemistry B,2005, 109,937-943.
    [112]G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, Journal of Physical Chemistry B, 2001,105,6867-6873.
    [113]S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori and C. A. Bignozzi, Journal of the American Chemical Society,2002,124,11215-11222.
    [114]J. E. Kroeze, N. Hirata, L. Schmidt-Mende, C. Orizu, S. D. Ogier, K. Carr, M. Gratzel and J. R. Durrant, Advanced Functional Materials,2006,16,1832-1838.
    [115]M. Wang, P. Chen, R. Humphry-Baker, S. M. Zakeeruddin and M. Gratzel, Chemphyschem, 2009,10,290-299.
    [116]G. Boschloo, L. Haggman and A. Hagfeldt, Journal of Physical Chemistry B,2006,110, 13144-13150.
    [117]S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Journal of Physical Chemistry B,2005,109,3480-3487.
    [118]K. Hara, Y. Dan-Oh, C. Kasada, Y Ohga, A. Shinpo, S. Suga, K. Sayama and H. Arakawa, Langmuir,2004,20,4205-4210.
    [119]N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B,2003,107,11307-11315.
    [120]S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Gratzel, D. R. Klug and J. R. Durrant, Journal of Physical Chemistry B,2000,104,538-547.
    [121]P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi and M. Gratzel, Nature Materials,2003,2,402-407.
    [122]P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Gratzel, Journal of the American Chemical Society,2003,125,1166-1167.
    [123]A. F. Nogueira, C. Longo and M. A. De Paoli, Coordination Chemistry Reviews,2004,248, 1455-1468.
    [124]I. K. Ding, N. Tetreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gratzel and M. D. McGehee, Advanced Functional Materials,2009,19,2431-2436.
    [125]H. J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S. M. Zakeeruddin and M. Gratzel, Nanotechnology,2008,19.
    [126]H. Han, U. Bach, Y.-B. Cheng and R. A. Caruso, Applied Physics Letters,2007,90,213510.
    [127]L. Schmidt-Mende and M. Gratzel, Thin Solid Films,2006,500,296-301.
    [128]B. O'Regan, F. Lenzmann, R. Muis and J. Wienke, Chemistry of Materials,2002,14, 5023-5029.
    [129]P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Gratzel, Journal of the American Chemical Society,2004,126,13590-13591.
    [130]J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin and T. Satot, Journal of the American Chemical Society,2008,130,11568-11569.
    [131]N. Papageorgiou, Coordination Chemistry Reviews,2004,248,1421-1446.
    [132]S. L. Horswell, I. A. O'Nei and D. J. Schiffrin, The Journal of Physical Chemistry B,2003, 107,4844-4854.
    [133]X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, Journal of Electroanalytical Chemistry,2004,570,257-263.
    [134]K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura and K. Murata, Solar Energy Materials and Solar Cells,2003,79,459-469.
    [135]B. Z. Fang, S. Q. Fan, J. H. Kim, M. S. Kim, M. Kim, N. K. Chaudhari, J. Ko and J. S. Yu, Langmuir,2010,26,11238-11243.
    [136]D. W. Zhang, X. D. Li, S. Chen, F. Tao, Z. Sun, X. J. Yin and S. M. Huang, Journal of Solid State Electrochemistry,2010,14,1541-1546.
    [137]M. Wu, X. Lin, A. Hagfeldt and T. Ma, Angewandte Chemie-International Edition,2011,50, 3520-3524.
    [138]M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qu, X. Peng, A. Hagfeldt, M. Gratzel and T. Ma, Journal of the American Chemical Society,2012,134,3419-3428.
    [139]Y. Wang, M. Wu, X. Lin, Z. Shi, A. Hagfeldt and T. Ma, Journal of Materials Chemistry,2012, 22,4009-4014.
    [140]M. Wu, X. Lin, T. Wang, J. Qiu and T. Ma, Energy & Environmental Science,2011,4, 2308-2315.
    [141]M. Wu, X. Lin, L. Wang, W. Guo, Y. Wang, J. Xiao, A. Hagfeldt and T. Ma, Journal of Physical Chemistry C,2011,115,22598-22602.
    [142]M. Durr, A. Bamedi, A. Yasuda and G. Nelles, Applied Physics Letters,2004,84,3397-3399.
    [143]M. Borgstrom, E. Blart, G. Boschloo, E. Mukhtar, A. Hagfeldt, L. Hammarstrom and F. Odobel, Journal of Physical Chemistry B,2005,109,22928-22934.
    [144]A. Morandeira, G. Boschloo, A. Hagfeldt and L. Hammarstrom, Journal of Physical Chemistry B,2005,109,19403-19410.
    [145]S. Mori, S. Fukuda, S. Sumikura, Y. Takeda, Y. Tamaki, E. Suzuki and T. Abe, Journal of Physical Chemistry C,2008,112,16134-16139.
    [146]A. Nakasa, H. Usami, S. Sumikura, S. Hasegawa, T. Koyama and E. Suzuki, Chemistry Letters,2005,34,500-501.
    [147]H. Zhu, A. Hagfeldt and G. Boschloo, Journal of Physical Chemistry C,2007,111, 17455-17458.
    [148]A. Morandeira, G. Boschloo, A. Hagfeldt and L. Hammarstrom, Journal of Physical Chemistry C,2008,112,9530-9537.
    [149]P. Qin, H. J. Zhu, T. Edvinsson, G. Boschloo, A. Hagfeldt and L. C. Sun, Journal of the American Chemical Society,2008,130,17629-17629.
    [150]E. A. Gibson, A. L. Smeigh, L. Le Pleux, J. Fortage, G. Boschloo, E. Blart, Y. Pellegrin, F. Odobel, A. Hagfeldt and L. Hammarstrom, Angewandte Chemie-International Edition,2009, 48,4402-4405.
    [151]P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt and L. C. Sun, Advanced Materials, 2009,21,2993-2995.
    [152]L. Li, E. A. Gibson, P. Qin, G. Boschloo, M. Gorlov, A. Hagfeldt and L. C. Sun, Advanced Materials,2010,22,1759-1762.
    [153]A. Nattestad, A. J. Mozer, M. K. R. Fischer, Y B. Cheng, A. Mishra, P. Bauerle and U. Bach, Nature Materials,2010,9,31-35.
    [154]S. Uchida, R. Chiba, M. Tomiha, N. Masaki and M. Shirai, Electrochemistry,2002,70, 418-420.
    [155]Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida, Physical Chemistry Chemical Physics,2005,7,4157-4163.
    [156]W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, Journal of the American Chemical Society,2008,130,1124-1125.
    [157]E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt and G. Boschloo, Journal of Physical Chemistry B,2006,110,16159-16161.
    [158]J. T. Jiu, S. Isoda, F. M. Wang and M. Adachi, Journal of Physical Chemistry B,2006,110, 2087-2092.
    [159]B. Liu and E. S. Aydil, Journal of the American Chemical Society,2009,131,3985-3990.
    [160]R. Zhang, J. Pan, E. P. Briggs, M. Thrash and L. L. Kerr, Solar Energy Materials and Solar Cells,2008,92,425-431.
    [161]X. Y. Wang, Z. P. Tian, T. Yu, H. M. Tian, J. Y. Zhang, S. K. Yuan, X. B. Zhang, Z. S. Li and Z. G. Zou, Nanotechnology,2010,21,065703.
    [162]S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann and R. Kem, Chemical Communications, 2005,2011-2013.
    [163]Z. P. Tian, H. M. Tian, X. Y. Wang, S. K. Yuan, J. Y Zhang, X. B. Zhang, T. Yu and Z. G. Zou, Applied Physics Letters,2009,94,031905
    [164]S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Journal of Physical Chemistry B,2003,107,8607-8611.
    [165]T. Ohno, K. Sarukawa and M. Matsumura, New Journal of Chemistry,2002,26,1167-1170.
    [166]R. Schaub, P. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov and F. Besenbacher, Physical Review Letters,2001,87,266104.
    [167]T. Tachikawa and T. Majima, Chemical Society Reviews,2010,39,4802-4819.
    [168]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Gratzel, Journal of Physical Chemistry B,2003,107,8981-8987.
    [169]F. De Angelis, S. Fantacci, A. Selloni, M. K. Nazeeruddin and M. Gratzel, Journal of Physical Chemistry C,2010,114,6054-6061.
    [170]M. Lazzeri, A. Vittadini and A. Selloni, Physical Review B,2002,65,155409.
    [171]O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi and G. Thornton, Nature Materials,2006,5,189-192.
    [172]H. H. Lo, N. O. Gopal and S. C. Ke, Applied Physics Letters,2009,95,083126.
    [173]G. S. Herman, M. R. Sievers and Y. Gao, Physical Review Letters,2000,84,3354-3357.
    [1]D. B. Kuang, C. Klein, S. Ito, J. E. Moser, R. Humphry-Baker, N. Evans, F. Duriaux, C. Gratzel, S. M. Zakeeruddin and M. Gratzel, Advanced Materials,2007,19,1133-1137.
    [2]N. Koide and L. Y. Han, Review of Scientific Instruments,2004,75,2828-2831.
    [3]A. F. Nogueira, C. Longo and M. A. De Paoli, Coordination Chemistry Reviews,2004,248, 1455-1468.
    [4]I. Mora-Sero, J. Bisquert, F. Fabregat-Santiago, G. Garcia-Belmonte, G. Zoppi, K. Durose, Y. Proskuryakov, I. Oja, A. Belaidi, T. Dittrich, R. Tena-Zaera, A. Katty, C. Levy-Clement, V. Barrioz and S. J. C. Irvine, Nano Letters,2006,6,640-650.
    [5]U. Diebold, Surface Science Reports,2003,48,53-229.
    [6]N. G. Park, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B,2000,104, 8989-8994.
    [7]A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chemical Reviews,1995,95,735-758.
    [8]M. Gratzel, Inorganic Chemistry,2005,44,6841-6851.
    [9]张海军,贾全利,董林;粉末多晶X射线衍射技术原理及应用;郑州大学出版社,2010.
    [10]刘粤惠,刘平安;X射线衍射分析原理及理论应用;化学工业出版社,2003.
    [11]马礼敦;X射线粉末衍射的新起点一Rietveld全谱拟合,物理学进展1996 16 251.
    [12]周维列,王中林:扫描电子显微学及在纳米技术中的应用;高等教育出版社,2007.
    [13]章晓中;电子显微分析/普通高等教育;清华大学出版社,2006.
    [14]陈清,魏贤龙;在扫描电子显微镜中原位操纵、加工和测量纳米结构;电子显微学报2011 30 473.
    [15]王乙潜,梁文双;高分辨电子显微学进展及其在材料科学中的应用:实验技术与管理2010 27 25.
    [16]Williams (USA), Carter (USA);Transmission Electron Microscopy; Tsinghua University Press,2007.
    [17](日)进藤大辅,平贺贤二;材料评价的高分辨电子显微方法;冶金工业出版社,1998.
    [18]吴性良,孔继烈;分析化学原理;化学工业出版社,2010.
    [19]王建祺,吴文辉,冯大明;电子能谱学(XPS/ XAES/ UPS)引论;国防工业出版社,1992.
    [20]袁欢欣,欧阳健明;X射线光电子能谱在配合物研究中的应用及其研究进展;光谱学与光谱分析;2007,27,395-398.
    [21]DONG Guofu, WU Ke; Recent progress and applications of electron paramagnetic resonance in distance measurement in biomacromolecules; Chinese Journal of Stereology and Image Analysis,2011,16,209-213
    [22]D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer; Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR; Journal of Physical Chemistry B,2003,107,4545-4549.
    [23]K. Teramura, T. Tanaka and T. Funabiki, EPR study of photoinduced electron transfer between adsorbent and adsorbed species in photo-SCR with NH3, Chemistry Letters,2003, 32,1184-1185.
    [24]G. Jeschke, Distance measurements in the nanometer range by pulse EPR, Chemphyschem, 2002,3,927-932.
    [25]H. Maeda, The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting, Advances in Enzyme Regulation,2001,41,189-207.
    [26]D. Gatteschi and R. Sessoli, Quantum tunneling of magnetization and related phenomena in molecular materials, Angewandte Chemie-International Edition,2003,42,268-297.
    [27]麻茂生;X光电子能谱原理;中国科学技术大学实验讲义.
    [28]陈贤容;现代电子自旋共振实验技术;科学出版社,1986.
    [29]陆立明;热分析应用基础;东华大学出版社,2011.
    [30]胡鹏翔;漫反射光谱学.
    [1]N. G. Park, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B,2000,104, 8989-8994.
    [2]T. P. Chou, Q. F. Zhang, B. Russo, G. E. Fryxell and G. Z. Cao, Journal of Physical Chemistry C,2007,111,6296-6302.
    [3]M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. G. Gratzel, Journal of the American Chemical Society,2005,127, 16835-16847.
    [4]H. Xu and L. Z. Zhang, Journal of Physical Chemistry C,2009,113,1785-1790.
    [5]H. M. Cheng, J. M. Ma, Z. G. Zhao and L. M. Qi, Chemistry of Materials,1995,7,663-671.
    [6]Y. Q. Zheng, E. R. Shi, Z. Z. Chen, W. J. Li and X. F. Hu, Journal of Materials Chemistry, 2001,11,1547-1551.
    [7]J. Wu, P. Li, S. Hao, H. Yang and Z. Lan, Electrochimica Acta,2007,52,5334-5338.
    [8]P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker and M. Gratzel, Journal of Physical Chemistry B,2003,107,14336-14341.
    [9]P. M. Sommeling, B. C. O' Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon and J. A. M. van Roosmalen, Journal of Physical Chemistry B,2006,110, 19191-19197.
    [10]H. B. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida, Journal of Materials Chemistry,2001,11,1694-1703.
    [11]Y. Y. Li, J. P. Liu and Z. J. Jia, Materials Letters,2006,60,1753-1757.
    [12]T. V. Nguyen and O. B. Yang, Catalysis Today,2003,87,69-75.
    [13]T. V. Nguyen, H. C. Lee and O. B. Yang, Solar Energy Materials and Solar Cells,2006,90, 967-981.
    [14]Robert A. S and Howard M. Analytical Chemistry,1957,29,760-762.
    [15]S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M. Gratzel, Thin Solid Films,2008,516,4613-4619.
    [1]M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chemical Reviews,1995,95, 69-96.
    [2]B. Oregan and M. Gratzel, Nature,1991,353,737-740.
    [3]R. Schaub, P. Thostrup, N. Lopez, E. Laegsgaard, I. Stensgaard, J. K. Norskov and F. Besenbacher, Physical Review Letters,2001,87,266104.
    [4]Y. B. He, A. Tilocca, O. Dulub, A. Selloni and U. Diebold, Nature Materials,2009,8, 585-589.
    [5]H. H. Lo, N. O. Gopal and S. C. Ke, Applied Physics Letters,2009,95,083126.
    [6]O. Bikondoa, C. L. Pang, R. Ithnin, C. A. Muryn, H. Onishi and G. Thornton, Nature Materials,2006,5,189-192.
    [7]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Gratzel, Journal of Physical Chemistry B,2003,107,8981-8987.
    [8]F. De Angelis, S. Fantacci, A. Selloni, M. K. Nazeeruddin and M. Gratzel, Journal of Physical Chemistry C,2010,114,6054-6061.
    [9]S. Meng and E. Kaxiras, Nano Letters,2010,10,1238-1247.
    [10]K. Onda, B. Li and H. Petek, Physical Review B,2004,70,045415.
    [11]Y. Z. Li, D. S. Hwang, N. H. Lee and S. J. Kim, Chemical Physics Letters,2005,404,25-29.
    [12]C. M. Yim, C. L. Pang and G. Thornton, Physical Review Letters,2010,104,036806.
    [13]M. Batzill, E. H. Morales and U. Diebold, Physical Review Letters,2006,96,026103.
    [14]S. H. Lee, E. Yamasue, K. N. Ishihara and H. Okumura, Applied Catalysis B-Environmental, 2010,93,217-226.
    [15]D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita and N. Ohashi, Chemical Physics Letters, 2005,401,579-584.
    [16]N. G. Park, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B,2000,104, 8989-8994.
    [17]J. Nair, P. Nair, F. Mizukami, Y. Oosawa and T. Okubo, Materials Research Bulletin,1999,34, 1275-1290.
    [18]C. P. Sibu, S. R. Kumar, P. Mukundan and K. G. K. Warrier, Chemistry of Materials,2002,14, 2876-2881.
    [19]B. M. Reddy, P. M. Sreekanth, E. P. Reddy, Y. Yamada, Q. A. Xu, H. Sakurai and T. Kobayashi, Journal of Physical Chemistry B,2002,106,5695-5700.
    [20]L. Q. Jing, X. J. Sun, B. F. Xin, B. Q. Wang, W. M. Cai and H. G. Fu, Journal of Solid State Chemistry,2004,177,3375-3382.
    [21]B. M. Reddy, I. Ganesh and A. Khan, Journal of Molecular Catalysis a-Chemical,2004,223, 295-304.
    [22]A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe, Sensors and Actuators B-Chemical,2004,103,312-317.
    [23]A. M. Ruiz, A. Cornet and J. R. Morante, Sensors and Actuators B-Chemical,2004,100, 256-260.
    [24]T. Y. Peng, D. Zhao, H. B. Song and C. H. Yan, Journal of Molecular Catalysis a-Chemical, 2005,238,119-126.
    [25]Y. N. Huo, J. Zhu, J. X. Li, G. S. Li and H. X. Li, Journal of Molecular Catalysis a-Chemical, 2007,278,237-243.
    [26]X. J. Quan, H. Q. Tan, Q. H. Zhao and X. M. Sang, Journal of Materials Science,2007,42, 6287-6296.
    [27]M. Jin, Y. Nagaoka, K. Nishi, K. Ogawa, S. Nagahata, T. Horikawa, M. Katoh, T. Tomida and J. Hayashi, Adsorption-Journal of the International Adsorption Society,2008,14,257-263.
    [28]L. Yezek, R. L. Rowell, M. Larwa and E. Chibowski, Colloids and Surfaces a-Physicochemical and Engineering Aspects,1998,141,67-72.
    [29]P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker and M. Gratzel, Journal of Physical Chemistry B,2003,107,14336-14341.
    [30]T. H. Fleisch, R. F. Hicks and A. T. Bell, Journal of Catalysis,1984,87,398-413.
    [31]M. Ren, H. B. Yin, A. L. Wang, C. Ge, C. Y. Liu, L. B. Yu, T. S. Jiang, Y. M. Liu and Y. Hang, Applied Surface Science,2008,254,7314-7320.
    [32]D. C. Hurum, A. G. Agrios, S. E. Crist, K. A. Gray, T. Rajh and M. C. Thurnauer, Journal of Electron Spectroscopy and Related Phenomena,2006,150,155-163.
    [33]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Gratzel, Journal of the American Ceramic Society,1997,80,3157-3171.
    [34]C. G. Van de Walle and J. Neugebauer, Journal of Applied Physics,2004,95,3851-3879.
    [35]Y. Xu and M. A. A. Schoonen, American Mineralogist,2000,85,543-556.
    [1]Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi and H. F. Xu, Nature Materials,2003,2,821-826.
    [2]X. D. Wang, C. J. Summers and Z. L. Wang, Nano Letters,2004,4,423-426.
    [3]J. Kim and T. M. Swager, Nature,2001,411,1030-1034.
    [4]J. J. Wang, J. Jiang, B. Hit and S. H. Yu, Advanced Functional Materials,2008,18, 1105-1111.
    [5]C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy and S. Mann, Journal of Materials Chemistry,2002,12,1765-1770.
    [6]H. Katz-Boon, C. J. Rossouw, M. Weyland, A. M. Funston, P. Mulvaney and J. Etheridge, Nano Letters,2011,11,273-278.
    [7]L. M. Qi, J. Li and J. M. Ma, Advanced Materials,2002,14,300-303.
    [8]S. Huh, J. W. Wiench, J. C. Yoo, M. Pruski and V. S. Y. Lin, Chemistry of Materials,2003,15, 4247-4256.
    [9]K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg and L. Samuelson, Nature Materials,2004,3,380-384.
    [10]X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature,2000,404,59-61.
    [11]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature,2008,453,638-641.
    [12]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie and L. S. Zheng, Journal of the American Chemical Society,2009,131,3152-3153.
    [13]P. T. Tanev, Y. Liang and T. J. Pinnavaia, Journal of the American Chemical Society,1997,119, 8616-8624.
    [14]W. Xie, Z. M. Gao, W. P. Pan, D. Hunter, A. Singh and R. Vaia, Chemistry of Materials,2001, 13,2979-2990.
    [15]J. Yao, W. Tjandra, Y. Z. Chen, K. C. Tam, J. Ma and B. Soh, Journal of Materials Chemistry, 2003,13,3053-3057.
    [16]X. L. Li, J. F. Liu and Y. D. Li, Inorganic Chemistry,2003,42,921-924.
    [17]M. T. J. Keene, R. Denoyel and P. L. Llewellyn, Chemical Communications,1998,2203-2204.
    [18]T. Clark, J. D. Ruiz, H. Y. Fan, C. J. Brinker, B. I. Swanson and A. N. Parikh, Chemistry of Materials,2000,12,3879-3884.
    [19]Q. H. Li, M. L. Amweg, C. K. Yee, A. Navrotsky and A. N. Parikh, Microporous and Mesoporous Materials,2005,87,45-51.
    [20]L. P. Xiao, J. Y. Li, H. X. Jin and R. R. Xu, Microporous and Mesoporous Materials,2006,96, 413-418.
    [21]T. Olmez-Hanci, I. Arslan-Alaton and G. Basar, Journal of Hazardous Materials,2011,185, 193-203.
    [22]T. Tasaki, T. Wada, Y. Baba and M. Kukizaki, Industrial & Engineering Chemistry Research, 2009,48,4237-4244.
    [23]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng and G. Q. Lu, Journal of the American Chemical Society,2009,131,4078-4083.
    [24]S. Liu, J. Yu and M. Jaroniec, Journal of the American Chemical Society,2010,132, 11914-11916.
    [25]B. Oregan and M. Gratzel, Nature,1991,353,737-740.
    [26]K. Kilsa, E. I. Mayo, B. S. Brunschwig, H. B. Gray, N. S. Lewis and J. R. Winkler, Journal of Physical Chemistry B,2004,108,15640-15651.
    [27]V. Shklover, Y. E. Ovchinnikov, L. S. Braginsky, S. M. Zakeeruddin and M. Gratzel, Chemistry of Materials,1998,10,2533-2541.
    [28]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Gratzel, Journal of Physical Chemistry B,2003,107,8981-8987.
    [29]F. De Angelis, S. Fantacci, A. Selloni, M. K. Nazeeruddin and M. Gratzel, Journal of Physical Chemistry C,2010,114,6054-6061.
    [30]J. Y. Zhang, Z. Y. Zhao, X. Y. Wang, T. Yu, J. Guan, Z. T. Yu, Z. S. Li and Z. G. Zou, Journal of Physical Chemistry C,2010,114,18396-18400.
    [31]M. Lazzeri, A. Vittadini and A. Selloni, Physical Review B,2001,63,155409.
    [32]S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gratzel and A. J. Frank, Journal of Physical Chemistry B,1997,101,2576-2582.
    [33]S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Gratzel, D. R. Klug and J. R. Durrant, Journal of Physical Chemistry B,2000,104,538-547.
    [34]S. Nakade, Y. Saito, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, Journal of Physical Chemistry B,2003,107,8607-8611.
    [35]G. S. Herman, M. R. Sievers and Y. Gao, Physical Review Letters,2000,84,3354-3357.
    [36]G. Kresse and J. Furthmuller, Physical Review B,1996,54,11169-11186.
    [37]G. Kresse and J. Furthmuller, Computational Materials Science,1996,6,15-50.
    [38]P. Hohenberg and W. Kohn, Physical Review B,1964,136, B864-B871.
    [39]W. Kohn and L. J. Sham, Physical Review,1965,140, A1133-A1138.
    [40]J. P. Perdew and Y. Wang, Physical Review B,1992,45,13244-13249.
    [41]J. D. Pack and H. J. Monkhorst, Physical Review B,1977,16,1748-1749.
    [42]N. G. Park, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B,2000,104, 8989-8994.
    [43]X. H. Ju, W. Feng, K. C. Varutt, T. S. Hori, A. H. Fujii and M. N. Ozaki, Nanotechnology, 2008,19.
    [44]D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, Journal of Physical Chemistry B,2003,107,4545-4549.
    [45]A. N. Shultz, W. Jang, W. M. Hetherington, D. R. Baer, L. Q. Wang and M. H. Engelhard, Surface Science,1995,339,114-124.
    [46]P. Ballirano and R. Caminiti, Journal of Applied Crystallography,2001,34,757-762.
    [47]U. Diebold, Surface Science Reports,2003,48,53-229.
    [48]M. V. Ganduglia-Pirovano, A. Hofmann and J. Sauer, Surface Science Reports,2007,62, 219-270.
    [49]T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, Applied Catalysis B-Environmental,2003,42,403-409.
    [50]T. X. Wu, G. M. Liu, J. C. Zhao, H. Hidaka and N. Serpone, Journal of Physical Chemistry B, 1998,102,5845-5851.
    [51]L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and Ⅰ. Uhlendorf, Journal of Physical Chemistry B,1997,101,10281-10289.
    [52]N. Kopidakis, K. D. Benkstein, J. van de Lagemaat and A. J. Frank, Journal of Physical Chemistry B,2003,107,11307-11315.
    [53]A. J. Frank, N. Kopidakis and J. van de Lagemaat, Coordination Chemistry Reviews,2004, 248,1165-1179.
    [54]X. Feng, K. Zhu, A. J. Frank, C. A. Grimes and T. E. Mallouk, Angewandte Chemie (International ed. in English),2012,51,2727-2730.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700