用户名: 密码: 验证码:
超临界CO_2快速膨胀法制备SiO_2/聚氨酯超疏水涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代仪器检测技术的飞速发展,人们对超疏水材料的认识逐渐深入,其广泛的应用前景引起各国科学家们的极大兴趣。虽然目前制备超疏水涂层的方法有几十种,但没有一种超疏水产品得到普遍应用,其主要原因是工艺条件限制,不能大面积制备,并且很多方法制备的超疏水涂层耐久性、耐划伤性很差,不能长时间应用。因此探索成本低廉、工艺简单、耐久性好、力学性能优异、能大面积制备的超疏水涂层工艺是当前研究的重点和难点。
     首先,采用纳米粒子表面修饰技术,制备出了表面接枝氟和双键官能团的改性纳米SiO_2粒子。研究了在超声作用下,不同溶剂的空化作用对纳米SiO_2粒子的分散效果。采用红外光谱、TEM、TG-DSC以及激光粒度分布仪对改性后纳米SiO_2粒子的结构和性能进行了测试分析,研究表明:F8261和KH-570两种偶联剂均已被接枝到纳米SiO_2表面,粒子粒径和粒径分布随之变小和变窄;当偶联剂添加量为10%时,纳米SiO_2粒子改性达到饱和,且当偶联剂KH-570/F8261摩尔比为1:1时,改性后的纳米SiO_2粒子呈现超双疏性质。采用溶胶分散体系的“光散射”理论研究了纳米SiO_2粒子在超临界CO_2中的分散情况,探索了SiO_2粒子粒径和浓度与超临界CO_2微乳液颜色的变化机理,并且分析了纳米SiO_2粒子在超临界CO_2中的粒径和浓度变化情况。研究结果表明:当温度为70~90℃、压力为12~16MPa时,乳液呈蓝色,纳米粒子粒径最小,说明此时分散性最好。
     以磺酸型低聚醚二元醇(DPSA)和1,4-丁烯二醇-2-磺酸钠(BDSA)作为混合亲水扩链剂,甲基丙烯酸-β-羟乙酯(HEMA)作为双键封端剂,采用逐步聚合-自乳化的方法制备了高固含量低粘度双键封端的水性聚氨酯(WPUA)乳液。研究了乳液的粒径形态和结构对固含量及稳定性的影响,结果表明:WPUA乳液呈多元粒度分布的特征,胶粒呈核-壳的结构。随着DPSA/BDSA质量配比从2/10增大到8/10,乳液的固含量先升高后降低;当DPSA/BDSA质量比为5/10,固含量最高达54%以上,但仍具有较好的流动性,能够满足超疏水涂层基底材料的要求。由于WPUA稳定性机理以“静电稳定”作用和“空间”稳定作用为主,而且粒子表面呈“毛发-双电层”结构,因此,WPUA乳液具有较好耐电解质性能、抗冻结性、耐高温及贮存稳定性。
     为了提高涂层的疏水性,以含硅的二元醇(PES)和聚醚二醇(PPG)为混合软链段,TDI和复合亲水扩连剂1,2-二羟基-3-丙磺酸钠(DHPS)和二羟甲基丙酸(DMPA)为硬链段,以γ-氨丙基三乙氧基硅烷(KH-550)作为封端剂,采用自乳化法制备了一系列高固含量有机硅/聚氨酯(Si/PU)复合乳液。研究了乳液的形成机理,分析了PES和PPG质量配比对乳液及涂膜性能的影响。形成机理研究表明:Si/PU乳液的形成,本质上是由于PU高分子表面活性剂的存在,使得疏水的PES/PU大分子在水中得以均匀分散,而且在Si/PU结构体系中,PU高分子表面活性剂的分子模型属于“支链型”结构模型。性能测试和结构分析表明:乳液为非牛顿流体,并且具有高固含量的特征,当KH550含量为2.0%,PES/PPG比值为5/10时,固含量高达58%。;乳液粒径呈宽粒径分布,粒子呈核壳结构;乳液的稳定性随着PES/PU的增大略有下降,但仍能够满足要求;胶膜接触角大于90°,具有较好的疏水性能,有利于聚氨酯超疏水涂层的制备。
     采用乳液聚合方法,设计并合成了超疏水基底涂层增稠乳液。研究了单体的选择及用量对乳液增稠性能的影响,发现马来酸酐的加入能增加乳液的透明性和粘稠拉丝性,加甲基丙烯酸的乳液比加丙烯酸的乳液有更优良的稳定性。用BEM+平平加-20+SE-10作为乳化剂,乳液稳定性相当好;研究还发现:pH对粘度影响较大,当pH>4.5时,乳液粘度急剧增大,而pH=7.5时粘度达到最大值;羧酸单体的加入方式对乳液增稠性能也有重要影响,电导率测定法证明:乳液的增稠性能取决于乳胶粒表面的羧基链段的分布和数量,同时也证明了羧酸单体的加入方式对乳液增稠的机理。
     将上述的三种乳液(双键封端的聚氨酯乳液、有机硅/聚氨酯(Si/PU)复合乳液、基底涂层增稠乳液)按比例混合,调剂pH值增稠至一定粘度后,制备了超疏水基底涂膜,再采用超临界CO_2快速膨胀法,将纳米粒子喷射到基底涂层上,UV固化干燥后制备出超疏水涂层。研究了基底涂膜粘度与增稠剂含量关系,涂膜的厚度和UV辐照时间对固化率和固化效率的影响。结果分析表明:当增稠剂含量为40%时,涂膜表面喷涂纳米SiO_2粒子后形貌最粗糙;随着Si/PU乳液含量的提高,涂层的拉伸强度逐渐降低,而断裂伸长率逐渐增大,涂层的剥离强度先增大后减小,直至趋于平缓。
     最后,重点对超临界CO_2快速膨胀法制备超疏水涂层的工艺进行了研究,结果表明:当在喷嘴和釜内温度均为90℃,釜内压力为16MPa,F8261和KH-570配比为1:1,Si/PU乳液添加9%时,涂层的静态水接触角超过165°,所制得涂层具有很好的超疏水性。沙漏冲击实验证明:采用超临界CO_2快速膨胀法制备的超疏水涂层,不仅具有优异的耐磨、耐刮伤性,而且该法高效环保,涂层性能优良,适于大面积制备。具有广阔的应用前景。
With the rapid development of technology on modern instrument detection, super-hydrophobic materials are recognized gradually in depth, its broad application prospects havecaused great interest of national scientists. Although there are dozens of preparation of super-hydrophobic coating, without a super-hydrophobic products are universally applied. The mainreason is that the process conditions led to the not a large area of preparation, durability andscratch resistance of super-hydrophobic coating using existing preparing methods are poor,which resulting super-hydrophobic coating not be a long time applications. Therefore, explorea large area preparation of super-hydrophobic coating with low-cost, simple technology, gooddurability, and excellent mechanical properties is the focus and difficulty of the currentresearch.
     Firstly, nano-SiO_2particles were prepared with the surface grafted fluorine couplingagents and double bond by using surface modification technology. Dispersion effect ofnano-SiO_2particles were studied in different solvents ultrasound cavitations. Test resultsshowed in infrared spectroscopy, TEM and laser particle size distribution analyzer that bothF8261and KH-570have been grafted onto the surface of nano-SiO_2, particle size anddistribution of nano-SiO_2after modified by the two coupling agent became smaller and morenarrow; Tg-DSC analysis showed that when the amount of the coupling agent is up to10%,fluorine coupling agent and double bond grafted onto surface of nano-SiO_2particles reach thesaturation. Dispersion characteristics of nano-SiO_2particles in supercritical CO_2were studiedby light scattering theory of sol dispersion, concentration and particle size of SiO_2insupercritical CO_2, the change mechanism of supercritical CO_2micro-emulsion color, and wereexplored. The results showed that emulsion is blue in a temperature from70°C to90°C and apressure range from12MPa to16MPa region, particle size of the nano-particles is the smallest,in which the dispersibility of nano-SiO_2particles in supercritical CO_2is preferably.
     The aqueous polyurethane(WPUA) emulsion with high solid content-low viscosity anddouble bond capped were prepared by stepwise polymerization and the self-emulsifying usingpolyethyleneglycol lows ulfonicacidtype polyesterdiol(DPSA) and1,4-butenediol-2-sulfonate(BDSA) as mixed hydrophilic chain extender, a methacrylic acid-of β-hydroxyalkylmethacrylate (HEMA) as a double bond in the terminal blocking agent. Influences of the massratio of DPSA and BDSA on properties of polyurethane emulsions were analyzed. The resultsshowed that obtained emulsions were multivariate distribution in particle size and werespherical particles approximatively. Emulsions exhibit a pseudo-plastic behavior. It wasnoticed that with increasing proportion average, particle diameter became bigger,poly-dispersion became wider, and when the mass ratio of DPSA and BDSA ranges from2/10to8/10, solid concent of emulsions first increase and then decrease. When the mass ratio ofDPSA and BDSA is5/10, solid concent reaches above54%, but still have good fluidity, andcould meet the requirements of the base material of the super-hydrophobic coating. Becausethe stability mechanism of WPUA emulsion depends on the role of electrostatic stabilizationand steric stabilization role, and the surface of the particles is “hair-double layer structure”,WPUA emulsion has a better electrolyte resistance, anti-freeze resistance, high temperatureand storage stability.
     In order to improve the hydrophobicity of the coating, a polyol consists of siliconechains and epoxy acrylate structures, referred to as PES, and was used to prepare cross-linkedSi/PU emulsion. Both PES and propylene oxide glycol (PPG) were mixed as soft segments.Formation mechanism of the emulsion and the effects weight ratio of PES to PPG onproperties of the resultant polyurethane dispersions were studied. It is shown that theformation of the Si/PU emulsion, essentially due to the exist of PU polymer surfactant, so thatthe hydrophobic PES/PU macromolecules are dispersed the water to in uniformly. In theSi/PU emulsion structure system, and molecular structure of the PU polymer surfactant doesnot belong to a “multi-block” model, but belongs to the “branched-structure” model. It isfound that the Si/PU dispersions possessed wider particle size distribution and higher averageparticles diameter due to the use of PES which contains cross-linked silicone side chains. The Si/PU dispersions have higher solid content. When the ratio of PES and PPG is5:10, solidcontent of the Si/PU dispersions is up to58%. It is also noticed that apparent viscosity of theSi/PU dispersions decreased with increasing PES to PPG ratio. In addition, stability of theemulsions decreases slightly at high temperature and low temperature, however, which canmeet the basically requirements. Overall contact angle of the film prepared is more than90°,which shows polyurethane film are basically able to exhibit good hydrophobic properties, andis conducive to preparation of polyurethane super-hydrophobic coating.
     Super-hydrophobic substrate coating thickening lotion was designed and synthesizedusing emulsion polymerization. The effects selection and amount of monomer on thethickening properties of the emulsion were studied. It is shown that emulsion stability isquite good using BEM+and PinPin20+SE-10as emulsifier, even in the case of the minimumamount of0.3%, in emulsion the only small amount of precipitation produce. Before the pHvalue of is less than4, the viscosity decreases with the pH value change slowly, the viscosityincreases sharply when the pH>4.5, the viscosity reached maximum at pH=7.5, then theviscosity decreases as the pH value increasing.
     A Super-hydrophobic substrate coating was prepared by mixing the doublebond-terminated polyurethane (WPUA) emulsions, silicone/polyurethane (Si/PU) emulsion,and acrylic thickening emulsion in proportion, and swapping the pH value thickening to acertain viscosity. Subsequently, the nano-silica particles were injected onto surface of thepolyurethane coating making use of rapid expansion of supercritical CO_2, and then were UVdried towards forming a stable rough structure because for the nano-silica particles beinggrafted on the polyurethane coating. This way, a SiO_2/PU film with super-hydrophobic surfacewas obtained. The relationship between the content of thickener and viscosity of the substratecoating was studied SEM analysis showed that when content of the thickener is40%, thesurface morphology of coating with nano-SiO_2particles is the most rough. The influence ofthe thickness of the coating and UV irradiation time on the curing rate and curing efficiencywere studied. With the content of Si/PU emulsion increasing, the tensile strength of thecoating is gradually reduced, and elongation at break gradually increasing, the peel strength of the coating first increases and then decreases until it leveled off.
     The process of preparing super-hydrophobic coating by the rapid expansion ofsupercritical CO_2was studied, the results showed that: the static water contact angle of thecoating can be up to (169.1±0.6)°, when temperature of the nozzle and the reaction kettle areall90℃, the reaction kettle pressure is16MPa, and ratio of F8261and KH-570is1:1. Theobtained films have a good super-hydrophobic, and have excellent scratch resistance.Increasing F8261coupling agent, the water contact angle of coating gradually increases, afterflatten. The addition of9%Si/PU emulsion, water contact angle of the super-hydrophobiccoating prepared exceeds165°. In addition, hourglass shock experiments showed thatsuper-hydrophobic coatings have very excellent wear resistance, scratch resistance, andsuper-hydrophobic coating is environmental, but also could be produced cost-effectively inlarge scale.
引文
[1]Barthlott W., Neinhuis C. Purity of the sacred lotus, or escape from contaminationinbiological surfaces [J]. Planta.1997,202(1):1-8.
    [2]Neinhuis C., Barthlott W. Characterization and Distribution of Water-repellent,Self-cleaning Plant Surfaces [J]. Annals of Botany,1997,79(6):667-677.
    [3]Girifalco L.A., Good R.J. A Theory for the Estimation of Surface and Interfacial Energies.I.Derivation and Application to Interfacial Tension [J].JPhys Chem,1957,61:904-909.
    [4]Bernett M.K., Zisman W.A. Wetting properties of acrylic and methacrylic polymersContaining fluorinated side chains [J]. J Phys Chem,1962,66(6),1207-1208.
    [5]胡杰,刘白玲,汪地强.有机氟材料的结构与性能及其在涂料中的应用[J].高分子通报,2003,1:63-65.
    [6]Atsushi H. Fluoroalkylsilane Monolayers Formed by Chemical Vapor SurfaceModificationon Hydroxylated Oxide Surfaces [J]. Langmuir,1999,15:7600-7604.
    [7]Masamichi M. Surface Properties of Perfluoroalkylethyl Acrylate/n-Alkyl AcrylateCopolymers[J].J Appl Poly Sci,1999,73:1741-1749.
    [8]Suzuki H. Takeishi M., Narisawa I. Synthesis of polysiloxane-grafted fluoropolymers andtheir hydrophobic properties [J]. J Appl Polym Sci,2000,78:1955-1963.
    [9]Extrand C.W. Contact Angles and Hysteresis on Surfaces with Chemically HeterogeneousIslands[J]. Langmuir,2003,19:3793-3796.
    [10] Wenzel, R. N.; Resistance of Solid Surfaces to Wetting by Water [J]. Ind. Eng.Chem.1936,28,988.
    [11]Wenzel, R. N.; Surface Roughness and Contact Angle[J]. J. Phys. Chem.1949,53,1466.
    [12]Cassie, A. B. D.; Baxter, S.; Sruface Roughness and Contact Angle [J]. Trans.Faraday Soc.1944,40,546.
    [13]Cassie, A. B. D.; Contact Angles[J]. Discus. Faraday Soc.1948,3:11.
    [14]Wenzel R.N.Surface roughness and contact angle [J].J.Phys.Colloid Chem.1949,53:1466-1467.
    [15]Cassie A.B.D., Baxter S. Wettability of porous surfaces[J].Trans. Faraday Soc..1944,40:546-551.
    [16]Nakajima A., Hashimoto K., Watanabe T. Recent Studies on Super-Hydrophobic Films[J].Monatshefte fur Chemie Chemical Monthly,2001,132:31-41.
    [17]郑建勇,冯杰,钟明强.CaCO3颗粒模板法制备聚合物超亲水/超疏水表面[J].高分子学报,2010,10:1186-1192.
    [18]Jiang L., Feng L., Li S. et al. Super-hydrophobic surface of aligned polyacrylonitrilenanofibers[J]. Angew. Chem. Int. Ed.,2002,41(7):1221-1223.
    [19]Feng L., Song Y., Zhai J.et al. Creation of a superhydrophobic surface from anamphiphilic polymer[J].Angew. Chem. Int. Ed.,2003,42(7):800-802.
    [20]Feng L., Yang Z., Zhai J.et al. Superhydrophobicity of nanostructured carbon films in awide range of pH values[J]. Angew. Chem. Int. Ed.,2003,42:4217-4220.
    [21]Jin M., Feng X., Feng L. et al. Superhydrophobic aligned polystyrene nanotube films withhigh adhesive force[J]. Adv. Mater.2005,17:1977-1981.
    [22]冯杰,林云飞,钟明强.钢辊热压微模塑-可控剥离法构建聚乙烯超疏水表面[J].材料科学与工程学报,2010,12:835-838.
    [23]冯杰,林云飞,钟明强.以丝网为模板量产聚烯烃超疏水/超亲水表面[J].高分子材料科学与工程,2011.7:172-174.
    [24]Sato O.,Gu Z. Z.,Uetsuka H.et al.Structural color and the lotus effect [J].Angew. Chem.Int.Ed.2003,42,894.
    [25]Tsoi S., Fok E., Sit C., etal. Superhydrophobic, high surface area,3-D SiO2nanostructuresthrough siloxane-based surface fimctionalization [J]. Langmuir,2004,20:10771-10774.
    [26]Jiang L., Liu H., Feng L., et al. Reversible Wettability of a Chemical Vapor DepositionPrepared ZnO Film between Superhydrophobicity and Superhydrophilicity [J].Langmuir,2004,20:5659-5661.
    [27]Tavana, H.; Amirfazli, A.; Neumann, A. W.; Fabrication of Superhydrophobic Surfaces ofn-Hexatriacontane[J]. Langmuir,2006,22:5556.
    [28]Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.;Milne, W. I.;Mckinley, G. H.; Gleason, K. K.; Superhydrophobic CarbonNanotube Forests[J]. Nano. Lett.2003,3:1701-1703.
    [29]Hozumi, A.; Takai, O.; Preparation of Ultra Water-Repellent Films byMicrowavePlasma-Enhanced CVD [J]. Thin Solid Film,1997,303:222-225.
    [30] Quéré D. Drops at rest on a tilted plane [J]. Langmuir1998,14:2213-2216.
    [31]Nakajima A., Hashimoto K., Watanabe T., etal. Transparent superhydrophobic thinfilinswith self-cleaning properties [J].Langmuir,2000,16:7044-7047.
    [32]Youngblood J.P., McCarthy T.J. Ultrahydrophobic polymer surfaces preparedbysimultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) usingradio frequency plasma[J]. Macromolecules,1999,32:6800-6806.
    [33]Chen W., Fadeev A.Y., Hsieh M.C., et al.Ultrahydrophobic and ultralyophobic surfaces:Some comments and examples [J]. Langmuir1999,15:3395-3399.
    [34]Wu Y., Sugiruma H, Takai O, et al. Preparation of hard and ultra water-repellentsiliconoxide films by microwave plasma-enhanced CVD at low substrate temperatures[J].ThinSolid Films,2003,435(7):161-164.
    [35]Wu Y., Sugimura H., Takai O. Thin films with nanotextures for transparent andultrawater-repellent coatings produced from trimethylmethoxysilane by microwaveplasmaCVD [J].Chem Vapor Depos.,2002,8(2):47-50.
    [36]Wu Y., Bekke M., Sugimura H.et al. Mechanical durability of ultra-water-repellentthinfilm by microwave plasma-enhanced CVD [J]. Thin Solid Films,2004,457:122-127.
    [37]Favia P.,Cicala G., Milella A.,et al. Deposition of super-hydrophobic fluorocarboncoatingsin modulated RF glow discharges[J].Surface and Coatings Technology,2003,169(17):609-612.
    [38]Coulson S.R., Woodward I., Badyal J.P.S.Super-Repellent Composite FluoropolymerSurfaces [J]. J. Phys. Chem. B.,2000,104:8836-8840.
    [39]Hozumi A., Takai O. Preparation of ultra water-repellent films by microwaveplasma-enhanced CVD [J]. Thin Solid Films,1997,303(1-2):222-225.
    [40]Takai O., Hozumi A., Sugimoto N. Coating of transparent water-repellent thin filmsbyplasma-enhanced CVD [J]. Journal of Non-Crystalline Solids,1997,218:280-285.
    [41]Hozumi A., Takai O.Preparation of silicon oxide films having a water-repellentlayer[J].Thin Solid Films,1998,334:54-59.
    [42]Teshima K., Sugimura H., Takai O., et al. Wettablity of polyethylene terephthalate)substrates modified by a two-step plasma process: ultra water repellent surfacefabrication [J].Chem. Vapor Depos.2004,10(6):295-297.
    [43]Wang S., Feng L., Liu H. et al. Manipulation of surface wettability betweensuper-hydrophobicity and super-hydrophilicity on copper films [J]. Chem Phys Chem,2005,6:1475-1478.
    [44]Li M., Zhai J., Liu H. et al. Electro chemical deposition of conductive super-hydrophobiczinc oxide thin films [J]. J. Phys. Chem. B,2003,107:9954-9957.
    [45] Jiang Y., Wang Z., Yu X. et al. Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of super-hydrophobic/super-hydrophilicsurfaces and pH-responsive surfaces[J].Langmuir,2005,21(5):1986-1990.
    [46]Yu X., Wang Z.,Jiang Y.et al. Reversible pH-responsive surface: fromsuperhydrophobicityto superhydrophilicity, Adv. Mater.,2005,17:1289-1293
    [47]Niemitz M., Kolmehl G.Wettability of poly(2,2'-bithienyl-5,5'-diyl) layers[J]. Angew.Mackromol. Chem,1991,185:147-154.
    [48]Zhang X.,Shi F.,Yu X,et al.Polyelectrolyte multilayer as matrix for electro chemicaldeposition of gold clusters: toward super-hydrophobic surface[J].J. Am. Chem. Soc.2004,126:3064-3067.
    [49]Li, M.; Zhai, J.; Liu, H.; Song, Y. L.; Jiang, L.; Zhu, D. B.; Electrochemical Deposition ofConductive Superhydrophobic Zinc Oxide Thin Films[J].J.Phys.Chem.B,2003,107:954-956.
    [50]王丽芳,赵勇,江雷等.静电纺丝制备超TiO2纳米纤维网膜[J].高等学校化学学报,2009,4:731-734.
    [52]Zhang, L. B.; Chen, H.; Sun, J. Q.; Shen, J. C.; Layer-by-Layer Deposition ofPoly(diallyldimethylam monium-chloride) and Sodium Silicate MultilayersonSilica-Sphere-Coated Substrate-Facile Method to Prepare A Super-hydrophobic Self-CleaningSurfaces Using Sol-Gel Processes[J]. J. Adhes. Sci. Technol.2008,22:1907-1909.
    [53]Zhang, L. B.; Li, Y; Sun, J. Q.; Shen, J. C.; Layer-by-Layer Fabrication of Broad-BandSuper-hydrophobic Antire flection Coatings in Near-Infrared Region[J].J. Colloid InterfaceSci.2008,219:312.
    [54]Ren S.L.,Yang S.R.,ZhaoY.P.,etal. Preparation and characterization of anultra-hydrophobic surface based on astearicacid self-assembled monolayer over polyethyleneeimine thin films [J]. Surface Science,2003,546(2-3):64-74.
    [55]Shang H M,Wang Y,Limmer S J.Optically transparent superhydrophobic silica-basedfilms[J]. Thin Solid Films,2005,472(1-2):37-43.
    [56]Shiu J Y, Kuo C W, Chen P L. Fabracation of tunable superhydrophobic surface[J].Proceedings of SPIE,2005,5648:325-332.
    [57]GenzerJ, EfimenkoK. Creating Long-Lived Superhydrophobic Polymer Surfaces ThroughMechanically Assembled Monolayers [J]. Science2000,290:2130.
    [58]Tadanaga K., Kitamuro K., Matsuda A., et al. Formation of Superhydrophobic AluminaCoating Films with High Transparency on Polymer Substrates by the Sol-GelMethod[J].Journal of Sol-Gel and Technology,2003,26:705-708.
    [59]Shirtliffe N.J., Mchale G., Newton M.I., et al. Intrinsically Super hydrophobicOrganosilica Sol-Gel Foams [J]. Langmuir,2003,19(14):5626-5631.
    [60]Rao A.V., Manish M.K., Amalnerkar D. P., et al. Superhydrophobic silica aerogelsbasedon methyltrim ethoxysilane precursor[J].Journal of Non-Crystalline Solids,2003,330(1-3):187-195.
    [61]Pilotek S., Schmidt H.K.Wettability of Microstructured Hydrophobic Sol-GelCoatings[J].Journal of Sol-Gel and Technology,2003,26:789-792
    [62]Satoh J K., Nakazumi H., Morita M., Preparation of super-water-repellent fluorinatedinorganic-organic coating films on nylon66by the sol-gel method using microphases eparation[J]. J. Sol-Gel Sci. Techn.,2003,27:327-329.
    [63]徐桂龙,邓丽丽,皮丕辉等.溶胶凝胶法制备超疏SiO2涂膜及其表面润湿行为[J].无机化学学报,2010,10:1810-1814.
    [64]胡小娟,刘岚,罗远芳等.溶胶-凝胶法制备超疏水PMHS-SiO2涂膜[J].材料研究学报,2010,6:266-272.
    [65]Erbil H. Y., Demirel A. L., Avci Y., et al. Transformation of a simple plastic into asuperhydrophobic surface[J].Science,2003,299:1377.
    [66]魏海洋,王康,粟小理.用含氟丙烯酸酯无规共聚物制备超疏水膜[J].高分子学报,2008,1:69-74.
    [67]Nakajima A., Abe K., Hashimoto K. et al. Preparation of hard super-hydrophobic filmswith visible light transmission [J]. Thin Solid Filins,2000,376:140-143.
    [68]Nakajima A., Saiki C., Hashimoto K. et al. Processing of roughened silica filmbycolloidal silica for super-hydrophobic coating [J]. J. Mater. Sci. Lett.,2001,20:1975-1977.
    [69] Xu J, Jiang L, Xie Q D, et al. Facile Creation of a Super-Amphiphobic Coating Surfacewith Bionic Microstructure[J]. Adv. Mater.,2004,16:302-305.
    [70]李杰,张会臣,连峰.基于激光加工和自组装技术硅基底超疏水表面的制备[J].功能材料,2010,9:1618-1621.
    [71]M.T.Khorasani, H.Mirzadeh, Z.Kermani, Wettability of porous polydimethylsiloxanesurface: morphology study [J]. Appl.Surf.Sci,2005,242:339-345.
    [72]M.T.Khorasani, H.Mirzadeh, P.G.Sammes, Laser induced surface modification ofpolydimethylsiloxane as a super-hydrophobic material [J].Radiat.Phys.Chem,1996,47(6):881-888.
    [73]曲爱兰,文秀芳,皮丕辉等.含氟硅丙烯酸酯乳液超疏水膜中疏水基团的梯度分布与表面微观究[J].高分子学报,2007,12:1176-1182.
    [74]曲爱兰,文秀芳,皮丕辉等.复合SiO2粒子涂膜表面的超疏水性研究[J].无机材料学报,2008,3:373-378.
    [75]曲爱兰,文秀芳,皮丕辉等.含氟硅乳液膜的梯度功能分布和疏水性能[J].高分子材料科学与工程,2008,8:70-73.
    [76]曲爱兰,程江,杨卓如等.复合粒子涂膜表面疏水性能分形评价[J].无机化学学报,2010,4:615-620.
    [77]Zhail, Cebecifc, Cohenre, etal.9(2006), US20060029808
    [78]Zhang H, Lambr, L ewisj.Sci. Technol. Adv.Mater,6(2005),P236-239.
    [79]Eri Yoshida, Akito Nagakubo. Superhydrophobic surfaces of microspheres obtained byself-assembly of poly [2-(perfluorooctyl) ethylacrylate-ran-2-(dimethylamino) ethyl acrylate]in supercritical carbon dioxide [J].Colloid Polym Sci,2007,(285):1293-1297.
    [80]Gallyamov, Mujishim. Colloid Journal,2007,69(4):411
    [81]Matsuyama, Sitthi. Journal of Chemical Engineering Symposium of Japan,10(36):1216
    [82]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1995.27
    [83]Does ultrasonic dispersion and homogenization by ball milling change the chemicalstructure of organic matter in geochemical samples-a CPMAS13CNMR study withlignin[J].Organic Geochemistry,1997,26(7-8):491-496.
    [84]P-C. Ho, M.B. Maple, H. Watanabe, Y. Yasumoto, Y. Nemoto, T. Go to Ultrasonicdispersion due to off-center rattling in NdOS4Sb12.[J].Physica B: Condensed Matter,2008,403(10):735-738.
    [85]Birgit Bittmann, Frank Haupert, Alois Karl Schlarb. Preparation of TiO2/epoxy nanocomposites by ultrasonic dispersion and their structure property relationship[J]. Ultrasonics Sonochemistry,2011,18(1):120-126.
    [86]Alexei Moussatov, Laurent Guillon, Christophe Ayrault, Bernard CastagnèdeExperimental study of the dispersion of ultrasonic waves sandy sediments[J].Mechanics-Physics-Astronomy,2010,326(7):433-439.
    [87] J. Eriksen, R.D.B. Lefroy, G.J. Blair Physical protection of soil organic S studied usingacetylacetone extraction at various intensities of ultrasonic dispersion [J].Soil Biology andBiochemistry,1995,27(8):1005-1010.
    [88]李廷盛,尹其光等著.超声化学[M].北京:科学出版社,1995,90-93.
    [89]Chang-Soo Lee, Jai-Sung Lee, Sung-Tag Oh.Dispersion control of Fe2O3nanoparticlesusing a mixed type of mechanical and ultrasonic milling [J]. Materials Letters,2003,57(18):2643-2646.
    [90]韩布兴著.超临界流体科学与技术[M].北京:中国石化出版社,2005,56.
    [91]DONEANUC, ANITESCUG. Supercritical carbon dioxide extraction of Angelica archangelica L. root oil [J]. The Journal of Supercritical Fluids,1998,12(1):59-67.
    [92]YOON J, HAN B-S, KANG Y-C, et al. Purification of used frying oil by supercriticalcarbon dioxide extraction [J]. Food Chemistry,2000,71(2):275-279.
    [93]BOSELLIE, CABONIMF. Supercritical carbon dioxide extraction of phospholi-pidsfrom dried egg yolk without organic modifier [J].The Journal of Supercritical Fluids,2000,19(1):45-50.
    [94]PYOD.Separation of vitamins by supercritical fluid chro-mato graphy withwater-modified carbon dioxide as the mobile phase[J].Journal of Biochemical andBiophysical,2000,43(1):113-123.
    [95]DIAZ-MAROTOMC, PIREZ-COELLOMS, Cabezudo MD. Supercritical carbon dioxideextraction of volatiles from spices: Comparison with simultaneous distillation-extraction [J].Journal of Chromatography A,2002,947(1):23-29.
    [96]GOODAR ZNIA I, EIKANI M H. Supercritical carbon dioxide extraction of essential oils:Modeling and simulation [J].Chemical Engineering Science,1998,53(7):1387-1395.
    [97]HURREN D. Supercritical Fluid Extraction with CO2[J]. Filtration and Separation,1999,36(3):25-27.
    [98]FUH, MAT THEWS M A, LANGDON S W. Recycling steel from grinding swarf [J].Waste Management,1998,18(5):321-329.
    [99]ARUNAJATESAN V, SUBRAMANIAM B, HU TCHENSON K W, etal. Fixed-bedhydrogenation of organic compounds in supercritical carbon dioxide [J].Chem.Eng Sci,2001,56(4):1363-1369.
    [100]POLIAKOFF M, GEORGE M W, HOWDLD S M.Supercritical fluids: clean solventsfor green chemistry [J].Chinese Journal o f Chemist r y,1999,17(3):212-221.
    [101]BURK M J,FENG S, GROSS M F, TUMAS W J.Asymmetric catalytic drogenationreactors in supercritical carbon dioxide[J].J Am Chem Soc,1995,117:8277.
    [102]COOPER A I,DESIMONE J M.Polymer synthesis and characterization in liquid/supercritical carbon dioxide [J].Current Opinion in Solid State&Materials Science,1996,1(6):716-768.
    [103]Johnston K P, Harrison K L, Clarke M J. Science,1996,271:624.
    [104]宋世谟,王正烈,李文斌.物理化学(第三版)[M].北京:高等教育出版社,1993,402.
    [105]宋世谟,王正烈,李文斌.物理化学(第三版)[M].北京:高等教育出版社,1993,403.
    [106]韩布兴著.超临界流体科学与技术[M].北京:中国石化出版社,2005,16.
    [107]Chu F, Graillat C, Guyto A. High solid content multisized emulsion copolymerization ofstyrene, butylacrylate, and methacrylic acid [J]. J App l Polym Sci,1998,70:2667.
    [108]Greenwood R, Luckham P F, Gregory T. Minimizing the viscosity of concentrateddispersions by using bimodal particle size distributions [J]. Colloid Surf,A1998,144:139.
    [109]Greenwood R, Luckham P F, Gregory T. The effect of diameter ratio and volume ratioon the viscosity of bimodal suspensions of polymer lattices [J]. J Colloid Interface Sci,1997:191.
    [110]SchneiderM, Graillat C, GuyotA, et al. High solids content emulsions. Part III. Synthesisof concentrated latexesvia classic emulsion polymerization [J]. J App l Polym Sci,2002,84(10):1915-1934.
    [111]SchneiderM, Graillat C, GuyotA, et al. High solid content emulsion. Part II. Preparationof seed latexes [J]. J App lPolym Sci,2002,84(10):1897-1914.
    [112]Schneider J, Douglas J F.Model for the viscosity of particle dispersion [J].JMS-RevMacromol Chem Phys,1999,39(4):561-642.
    [113]黎庆安,孙东成,王玉香. HDI-IPDI型高固含量水性聚氨酯分散体的合成及微观形态[J].高分子材料科学与工程,2007,23(3):59-62.
    [114]Fan-Jeng Tsal,Chen-Ann Huang,Hsiao-Chian Li.Water-borne polyurethane modifidcement component[P].US5807431(1998).
    [115]Thomas Munzmay, Uwe Klippert, Frank Kobor, ect.Aquoeous dispersions ofhydrophilic polyurethane resins [P].US6677400(2004).
    [116]Lyubov K.Gindin,Karen M. Henderson,ect.Aqueous polyurethane dispersions containingperdant amide groups and their use in one-compnent thermoset composttions[P]. US6444746(2002).
    [117]卫晓利,肖忠良,吴晓青.高固含量低黏度聚氨酯微乳液的制备及性能研究[J].高分子学报,2009,(1):28-34.
    [118]胡津昕.阴离子水性纳米聚氨酯制备及其复合物的应用研究[D].天津大学博士学位论文.2007.
    [119]唐广粮,郝广杰,宋谋道,等.离子型共聚单体用于高固含量无皂乳液聚合的研究-基丙烯酸异丁酯/甲基丙烯酸甲酯/丙烯酸丁酯无皂乳液聚合体系[J].高分子学报,2000,(3):267.
    [120]储富祥,唐传兵.高固含量多分散粒径分布乳液的研究:二元种子法制备二元分散粒径分布乳液[J].粘接,2000(2):1-4.
    [121]SchneiderM, Graillat C, GuyotA, et al. High solid content emulsion. Part III. Synthesisof concentrated latexes viaclassic emulsion polymerisation [J]. J Appl Polym Sci,2002,84(10):1915-1934.
    [122] SchneiderM, Graillat C, Guyot A, et al. High solid content emulsion. Part IV. Imp rovedstrategies for p roducting concentrated latexes [J]. J Appl Plym Sci,2002,84(10):1934-1948.
    [123]SchneiderM, Graillat C, GuyotA, etal. High solid content emulsion. Part II. Preparationof seed latexes [J]. J Appl Polym,2002,84(10):1897-1914
    [124]陈宗淇,王光信,徐桂英.胶体与界面化学[M].高等教育出版社,2001,180-217.
    [125]张洪涛,黄锦霞.乳液聚合新技术及应用[M].化学工业出版社,2007,166-168.
    [126]李绍维,刘益军.聚氨酯胶粘剂[M].京:化学工业出版社,2001,23-26.
    [127]Suzana M. Cakic, Jakov V. Stamenkovic, Dragan M. Djordjevic, Ivan S. Ristic.Synthesisand degradation profile of cast films of PPG-DMPA-IPDI aqueous polyurethane dispersionsbased on selective catalysts[J].Polymer Degradation and Stability,2009,94(11):2015-2022.
    [128]Vanesa García-Pacios, Víctor Costa, Manuel Colera, José Miguel Martín-Martínez.Affect of polydispersity on the properties of waterborne polyurethane dispersions based onpolycarbonate polyol[J]. Original Research Article,2010,30(6):456-465.
    [129]Vanesa García-Pacios, Yoshiro Iwata, Manuel Colera, José Miguel Martín-Martínez.Influence of the solids content on the properties of waterborne polyurethane dispersionsobtained with polycarbonate of hexanediol [J].International Journal of Adhesion andAdhesives,2011,31(8):787-794.
    [130]Jui-Ming Yeh, Chia-Tseng Yao, Chi-Fa Hsieh, Hsing-Chung Yang, Chi-Phi Wu.Preparation and properties of amino-terminated anionic waterborne-polyurethane–silicahybrid materials through a sol–gel process in the absence of an external catalyst[J].EuropeanPolymer Journal,2008,44(9):2777-2783.
    [131]唐广粮,郝广杰,宋谋道,等.离子型共聚单体用于高固含量无皂乳液聚合的研究-基丙烯酸异丁酯/甲基丙烯酸甲酯/丙烯酸丁酯无皂乳液聚合体系[J].高分子学报.2000(3):267.
    [132]储富祥,唐传兵.高固含量多分散粒径分布乳液的研究:二元种子法制备二元分散粒径分布乳液[J].粘接.2000(2):1-5.
    [133]孙芳,黄毓礼,牛爱杰.有机硅聚氨酯丙烯酸酯预聚物的合成、表征及感光性[J].高分子材料科学与工程,2002,18(5):58-61.
    [134]Dong Hee Jung, Eun Young Kim.Presented at the Water-borne and Higher-solids coatingsSymposium[J]. New Orleans, LA,1990.34(5):69-76.
    [135]Young Soo Kang, Byung Kyu Kim.High solid and high performance UV cured waterbornepolyurethanes[J].Colloids and Surfaces,2010,370(5):58-63.
    [136]A.R. Jones, B. Leary, D.V. Boger, The rheology of a concentrated colloidal suspensionof hard spheres[J]. Colloid Interface Sci,1991,(147):479–495.
    [137]A.R. Jones, B. Leary, D.V. Boger, The rheology of a sterically stabilized suspension athigh concentration[J]. ColloidInterface Sci,1992,(150):84-96.
    [138]R.J. Ketz, R.K. Prud’homme, W.W. Graessley, Rheology of concentrated microgelsolutions[J]. Rheol. Acta,1988(27):531-539.
    [139]M.S. Wolfe, C. Scopazzi, Rheology of swellable microgel dispersions: influence ofcrosslink density[J]. Colloid InterfaceSci,1989(133):265-277.
    [140]H.N. Nae, W.W. Reichert, Rheological properties of lightly crosslinked carboxycopolymers in aqueous solution[J]. Rheol.Acta,1992,(31):351-360.
    [141]Krieger I M,Dougherty T J. J Rheol.1959,(3):137-152.
    [142] Suddut h R D. J Appl Polym.1993,(48):25-36.
    [143] Suddut h R D. J Appl Polym.1993,(48):37-55.
    [144]迈克尔·鲁宾斯坦,拉尔夫H.科尔比,励杭泉.高分子物理[M],北京:化学工业出版社,2007,56.
    [145]Bullard J W,Pauli A T,etal. J Colloid Interf.2009(330):186-193.
    [146]刘建平,王红,沈黎.高固含量聚合物乳液研究新进展[J].粘接.2006,27(6):32-35.
    [147]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984,130-140.
    [148]焦学瞬.表面活性剂实用新技术[M].北京:中国轻工业出版社,1993.123-125.
    [149]Lee H T, Wu S Y. Effect s of sulfonated polyol on the properties of t he resultantaqueous polyurethane dispersions[J]. Colloidl Surf ace A,2006,276:176-185.
    [150]Suzana Caki, Goran Nikoli, aslav La njevac, Miladin Gligori, Milo B.Rajkovi.The thermal degradation of aqueous polyurethanes with catalysts of differentselectivity [J].Progress in Organic Coatings,2007,60(2):112-116
    [151] Suzana M. Caki, Ivan S. Risti, Dragan M. Djordjevi, Jakov V. Stamenkovi, DraganT. Stojiljkovi.Effect of the chain extender and selective catalyst on thermooxidative stabilityof aqueous polyurethane dispersions [J].Progress in Organic Coatings,2010,67(3):274-280.
    [152] Birzabith Mendoza-Novelo, Diego I. Alvarado-Castro, José L. Mata-Mata.Stability andmechanical evaluation of bovine pericardium cross-linked with polyurethane prepolymer inaqueous medium[J].Materials Science and Engineering,2013,33(4):2392-2398
    [153]M.H. Lee, H.Y. Choi, K.Y. Jeong, J.W. Lee, T.W. Hwang, B.K. Kim, High performanceUV cured polyurethane dispersion[J].Polym. Degrad. Stab.2007,92:1677.
    [154]A. Barni, M. Levi, Aqueous polyurethane dispersions: a comparative study ofpolymerization processes[J]. J. Appl. Polym. Sci,2003,(88):716.
    [155] S.A. Madbouly, J.U. Otaigbe, A.K. Nanda, D.A. Wicks, Thermal-induced simultaneousliquid–liquid phase separation and liquid–solid transition in aqueous polyurethanedispersions[J]. Polymer,2005,(46):10897.
    [156] Q.A. Li, D.C. Sun, Synthesis and characterization of high solid content aqueouspolyurethane dispersion [J].JAppl. Polym. Sci.2007,(105):2516.
    [157]Petrovic ZS, Javni I, Waddong A, Banhegyi G. Structure and properties ofpolyurethane–silica nano composites [J]. Appl Polym Sci2000,76:133-151.
    [158]LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicatenanocomposites: anoverview [J].Appl Clay Sci1999,15:11-29.
    [159]Alexandre M, Dubois P. Polymer layered-silicate nano composites: preparation,properties and use of a new class of materials [J]. Mater Sci Eng R Rep2000,28:61-63.
    [160]Zhu Y, Sun D-X. Preparation of silicon dioxide/polyurethane nanocomposites by asol–gel process [J].Appl Polym Sci2004,92:2013-2016.
    [161]李伟,胡剑青,涂伟萍.有机硅改性水性聚氨醋-聚丙烯酸醋乳液的研究[J].涂料工业,2007,37(7):36-38.
    [162]潘明旺,王家喜,张留成,等.端活性有机硅的合成及其嵌段水溶性聚氨酯的研究[J].河北工业大学学报,1999,28(5):26-30.
    [163]北原文雄[日]等著.表面活性剂[M].孙少增,卫祥元,李焕珍译.北京:化学工业出版社,1984.
    [164]J.法尔勃.日用制品中的表面活性剂[M]北京:中国石化出版社,1994.
    [165]左和天[日]等.油化学[M].北京:化学工业出版社,1994,43(12):1097.
    [166]王海花,沈一丁,费贵强,等.阳离子型自乳化端羟基硅油/聚氨酯微乳液的形态及流变性能[J].高分子学报.2007,(4):321-326.
    [167]刘红卫,杨伯伦,曹勇,陈琼.种子法制备高固含量聚醋酸乙烯乳液[J].高分子材料科学与工程,2008,(8):3-16.
    [168]A.T.J.M.Wouterson, C.G. de Kruif, The rheology of adhesive hard spheredispersions[J]J. Chem. Phys.1991,(94):5739-5749.
    [169]L. Marshall, C.F. Zukoski, Experimental studies on the rheology of hard spheresuspensions near the glass transition[J] J. Phys. Chem,1990,(94):1164-1171.
    [170]罗开富,叶林,黄荣华.AM/MEDMDA阳离子型疏水缔合水溶性聚合物溶液性能的研究[J].高分子材料科学与工程,1999,15(1):145-148.
    [171] Xiang Zheng Kong, Chen Wang, Xu Bao Jiang, Xiao Li Zhu. A novel associative latexthickener using ethoxylated behenyl methacrylate as functional monomer.Chinese ChemicalLetters,2010,21(5):616-619.
    [172]朱瑞宜,赵德仁.淀粉丙烯酰胺接枝共聚物的研究[J].化学世界,1989,(11):495-498.
    [173]梅佑.阴离子聚丙烯酰胺在多孔介质中的流变特性[J].化学与粘合,1994,(3):133-136.
    [174]田大听,谢洪泉,过俊石.化学交联及物理缔合对聚丙烯酸增稠剂的作用[J].高分子材料科学与工程,1999,15(2):132-135.
    [174]Otakar Quadrat, Jana Mike ová, Ji í Horsky, Jaromír ňupárek.Viscoelastic behaviour ofbutyl acrylate/styrene/2-hydroxyethyl methacrylate/acrylic acid latices thickened withassociative thickeners [J].Comptes Rendus Chimie,2003,6(11):1411-1416.
    [175]林芸,方道斌.聚丙烯酰胺水溶液粘度依时性及其稳定剂[J].分析化学,1995,23(9):1073-1076.
    [176]路建美,朱秀林.低分子量聚丙烯酸钠的研制及应用[J].化学世界,1994,(9):471-474.
    [177]许家友,魏锡文.防垢剂AM-AA-MA三元共聚物合成[J].化学世界,1996,(10):541-545.
    [178]叶林,黄荣华.水溶性疏水两性共聚物溶液性能的研究[J].高分子材料科学与工程,1998,14(3):67-70.
    [179]Bajaj P., Meenakshi, Goyal, ChavanR.B.JMderomol.Sci.C,1984:24(3):387
    [180]O Quadrat, J Horsky, J ňupárek.Effect of styrene units in latices of acrylate copolymerswith structured particles on the thickening with associative thickeners [J].Progress in OrganicCoatings,2004,50(3):166-171.
    [181]George A. van Aken, Monique H. Vingerhoeds, René A. de Wijk. Textural perception ofliquid emulsions: Role of oil content, oil viscosity and emulsion viscosity [J].FoodHydrocolloids,2011,25(4):789-796.
    [182]Zeying Ma, Mao Chen, J Edward Glas. Adsorption of nonionic surfactants and modelHEUR associative thickeners on oligomeric acid-stabilized poly(methyl methacrylate)latices[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,1996,112(31):163-184.
    [183]I.E. Tothill, K.J. Seal. Biodeterioration of waterborne paint cellulose thickeners[J].International Biodeterioration&Biodegradation,1993,31(4):241-254.
    [184]Eri Akiyama, Takamasa Yamamoto, Yuuko Yago, Hajime Hotta, Takeshi Ihara, TomohitoKitsuki.Thickening properties and emulsification mechanisms of new derivatives ofpolysaccharide in aqueous solution [J].Journal of Colloid and Interface Science,2007,311(15):438-446.
    [185]D.C. Dixon. Simplified thickener dynamic analysis [J].Chemical Engineering Science,1988,43(2):392-394.
    [186]R.B. White, I.D. Sutalo, T. Nguyen. Fluid flow in thickener feedwell models[J].Minerals Engineering,2003,16(2):145-150.
    [187] Lara Matia-Merino, Kelvin Kim Tha Goh, Harjinder Singh. A natural shear-thickeningwater-soluble polymer from the fronds of the black tree fern, Cyathea medullaris: Influence ofsalt, pH and temperature [J].Carbohydrate Polymers,2012,87(4):131-138.
    [188]FloryP.J.Principle of polymer Chemistry [M]. New York: Cornell University Press,Ithaca,1953,576.
    [189]胡金生,曹同玉,刘庆普编.乳液聚合.北京:化学工业出版社,1987,150.
    [190]于善普,李旭东,王淑兰,王京霞,吴和融.超高吸水性树脂的吸水性和抗电解质性能的研究[J].印染,1998,24(1):5-7.
    [191]Arun Kumar Gnanappa, Evangelos Gogolides, Fabrizio Evangelista. MichelRiepenContact line dynamics of a superhydrophobic surface: application for immersionlithography [J].Microfluid Nanofluid,2011(10):1351-1357.
    [192]Ali Kibar, Hasan Karabay K, etal. Experimental investigation of inclined liquid water jetflow onto vertically located superhydrophobic surfaces [J]. Exp Fluids,2010,49:1135-1145.
    [193]Hui Tian, Xingguo Gao, Taisheng Yang, Dawei Li, Yuqing Chen. Fabrication andcharacterization of superhydrophobic silica nanotrees [J].J Sol-Gel Sci Technol,2008,48:277-282.
    [194]Wenji Xu, Jinlong Song, Jing Sun, Qingle Dou, Xujuan Fan. Fabrication ofsuperhydrophobic surfaces on aluminum substrates using NaNO3electrolytes [J].J Mater Sci,2011,46:5925-5930.
    [195]Xiaofeng Ding, Shuxue Zhou, Guangxin Gu, Limin Wu. Facile fabrication ofsuperhydrophobic polysiloxane/magnetite nanocomposite coatings with electromagneticshielding property [J]. J.Coat. Technol. Res,2011,8:757-764.
    [196]Bharathibai J. Basu, V. Hariprakash, S. T. Aruna, R. V. Lakshmi, J. Manasa, B. S.Shruthi. Effect of microstructure and surface roughness on the wettability ofsuperhydrophobic sol–gel nanocomposite coatings [J].Sol-Gel Sci Technol,2010,56:278-286.
    [197]Yugang Sun, and Rui Qiao. Facile Tuning of Superhydrophobic States with AgNanoplates, Nano Res2008,1:292-302.
    [198]Yu Gao, Yangen Huang, Shijun Feng, Guotuan Gu, Feng-Ling Qing. Novelsuperhydrophobic and highly oleophobic PFPE-modified silica nano composite [J]. J MaterSci,2010,45:460-466.
    [199]Yonggang Guo, Qihua Wang, Tingmei Wang. A facile process for preparingsuperhydrophobic films with surface-modified SiO2/nylon6,6nanocomposite[J]. J Mater Sci,2011,46:4079-4084.
    [200]张发兴,卫晓利,肖忠良等.超临界CO2快速膨胀法制备SiO2/聚氨酯超疏水涂层[J].化工学报,2012,63(7):2290-2296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700