用户名: 密码: 验证码:
多功能纳米复合水凝胶与石墨烯纳米复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米复合水凝胶将纳米材料的优异性质与水凝胶本身独特的性能结合起来,使之性能协同或互补,形成单一材料所不具备的新的性能,在药物控制释放、催化剂、传感器及生物材料等领域都有很广泛的应用,因而备受关注。目前在合成上,一般需要先制备纳米材料然后再使其与单体共聚合,或者利用合成好的水凝胶作为反应场所来制备纳米复合材料。这样的合成需要多步反应,合成过程相对较复杂,也较难控制,因此,寻找新的简单有效的制备方法是目前亟待解决的一项重要课题。虽然新的纳米材料随着纳米技术的迅猛发展而层出不穷,但与之相对应的新的复合水凝胶种类则比较少,发展并合成新颖的纳米复合水凝胶具有重要的研究意义和应用前景。本论文正是基于上述考量,以合成新颖性质优异的纳米材料为基础,进而与智能水凝胶复合成具有多功能的新型复合材料。在调研大量文献的基础上,同时结合本课题组的优势,发展利用γ射线“一步”辐射等途径制备纳米复合水凝胶,并探索研究相关新材料在传感器、可控催化剂、微流体开关及加热源等方面的具体应用。本论文研究内容分述如下:
     1.利用γ射线辐射技术“一步”合成PNIPAM/AuNPs复合水凝胶。在这个反应体系中,PNIPAM水凝胶与AuNPs同步形成。合成过程简单,易于控制。考察了单体浓度、吸收剂量以及Au3+浓度对复合水凝胶的光学与热学性能的影响。结果表明,随着单体浓度的增加,复合凝胶中的纳米颗粒粒径随之增大,吸收剂量与Au3+浓度可以有效的控制水凝胶的温敏性与AuNPs的含量。研究了PNIPAM/AuNPs复合水凝胶优异的催化性能、可重复性,以及其利用温度导致的相变对其催化活性的可控性。
     2.发展Y射线辐射引发原位聚合制备了PNIP AM/GO复合水凝胶。复合水凝胶的颜色以及相变温度随着GO载入量的不同而不同。由于GO优异的光吸收能力,赋予复合水凝胶独特的光热性能,即通过近红外(NIR)激光照射可以远程控制其相变。基于NIR照射与否,这种相变是完全可逆的。GO的载入量以及光照时间可以用于控制光诱导温度的增长。利用PNIPAM/GO复合水凝胶优异的光热性能,成功的制备了一个微流体开关。
     3.将PNIPAM水凝胶作为一个化学反应器,在其三维网络中合成铁氧化物纳米颗粒得到(?)NIPAM/Fe304纳米复合水凝胶,并对其进行了详细的表征。由于很多的科研工作者对PNIPAM/Fe3O4纳米复合水凝胶的磁性能予以特别的关注,而忽略了其黑色的水凝胶本身的光热性能。其优异的光热性能也是第一次得到了深入的研究。实验结果表明NIR激光照射可以很快的诱使PNIPAM/Fe3O4纳米复合水凝胶相变,而且这种相变可以通过激光照射与否进行控制,具有可逆性。辐照时间越长,水凝胶周围环境温度越高。基于PNIPAM/Fe3O4纳米复合水凝胶优异的光热与磁性性能,制备了一个磁控定点光加热源。
     4采用丫射线辐照方法还原了水溶液中的GO,并利用X射线衍射、红外光谱等检测手段对其还原程度进行表征。如果在GO的水溶液中加入Au3+并进行辐照,经过表征证明Au3+也得到了还原并负载于还原氧化石墨烯上。在这里,Au3+的还原与GO的还原同步进行,并且复合材料中AuNP的粒径随着Au3+浓度的增加而增加。此外,考察了r-GO/AuNPs复合材料的催化性能。
Nanocomposite hydrogels combine the novel properties of nanoparticles with unique properties of hydrogels which lead to new functions originated from the synergic effect or complementary performance of components. Such nanocomposite hydrogels have attracted intensive interests in many fields such as controlled drug delivery, catalysis, sensors and biomaterials. Nowadays, the methods for preparing nanocomposite hydrogels require the mix pre-formed nanoparticles with a hydrogel precursor followed by gelation, or in situ synthesis of metal nanoparticles within polymeric network architectures. The dispersibility and the size of Au nanoparticles in hydrogels are difficult to be controlled by those multi-steps synthesis routes requiring the separate preparation of metal nanoparticles and hydrogels. With the fast development of technologies for synthesis and application of the nanocomposites, it is of great significance to search for a simple and effective method of preparing nanocomposite hydrogel. Herein, based on synthesis of multi-functional nanocomposite hydrogel and novel nanomaterials with unique properties, also combining the advantages of our research group, one-step y-irradiation was used as an effective method to synthesize nanocomposite hydrogel. Moreover, the potential applications for those nanocomposites in the sensor, catalysis, microvalve and heating source are also explored. More details are as follows:
     1. Thermosensitive poly (N-isopropylacrylamide)/Au nanoparticles (PNIPAM/Au) nanocomposite hydrogels have been synthesized by in situ y-radiation-assisted polymerization. In this reaction, the PNIPAM hydrogels and the Au nanoparticles (NPs) are formed simultaneously, demonstrating an easy and straightforward synthetic strategy for the preparation of a uniform nanocomposite. The results suggest that increasing the monomer content during the preparation of nanocomposite materials can increase the sizes of Au nanoparticles. The effects of irradiation dose and concentration of HAUCI44H2O on the optical and thermal properties of the hydrogel have also been investigated. The PNIPAM/Au nanocomposite hydrogels can act as an excellent catalyst for the conversion of o-nitroaniline to1,2-benzenediamine, and catalytic activity of the composite hydrogel can be tuned by the volume transition of PNIPAM.
     2. A photo-thermal sensitive PNIPAM/GO nanocomposite hydrogel have been synthesized by in situ y-irradiation-assisted polymerization. The colors and phase transition temperatures of PNIPAM/GO hydrogels change with different GO doping level. Due to the high optical absorbance of GO, the nanocomposite hydrogel shows excellent photo-thermal property where its phase transitions can be controlled remotely by the near-infrared (NIR) laser irradiation and is completely reversible via laser exposure or non exposure. With higher GO loading, the NIR-induced temperature of the nanocomposite hydrogel increases quicker than lower doping level and can be tunable effectively by irradiation time. The nanocomposite hydrogel with excellent photo-thermal property would have great application in biomedical, especially microfluidic device, which have been proved in our experiment as a remote microvalve to control the fluidic flow.
     3. The PNIPAM hydrogels have been used as reactors for the synthesis of ferroferric oxid, and the excellent laser-induced photo-thermal property of PNIPAM/Fe3O4nanocomposite hydrogel which was ignored in the previous studies was investigated in the application of near-infrared (NIR) laser irradiation. The loading of Fe3O4nanoparticles in the hydrogel can be manipulated to get the desired remote heating on application of NIR laser exposure. The phase transition of the magnetic hydrogel was controlled easily by the laser exposure or non-exposure, and it was completely reversible. The laser-induced temperature was increased quickly with the irradiation time. Based on these excellent magnetic and photo-thermal properties, a valuable heating source with controlled warming position was fabricated.
     4. A straightforward and facile method for reducing graphite oxide using y-irradiation is explored without using any photocatalysts or reducing agents. The obtained reduced graphene oxide (r-GO) is investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), and fourier transform infrared spectroscopy (FT-IR). Such unique approach not only triggers the deoxygenation reaction of graphite oxide (GO) in water, but also reduces the Au3+simultaneously under the same condition. Various spectroscopic and imaging techniques confirm that most of the chemical functional groups present on GO are removed by irradiation, and Au nanoparticles are deposited on r-GO sheets. The size of nanoparticles increases with increasing Au3+doping level. Moreover, the catalytic activity of the r-GO/Au nanocomposites was investigated.
引文
[1]Bockstaller MR, Mickiewicz RA, Thomas EL. Block copolymer nanocomposites: Perspectives for tailored functional materials [J]. Advanced Materials,2005,17 (11):1331-1349.
    [2]Zhang HW, Shen PK. Advances in the high performance polymer electrolyte membranes for fuel cells [J]. Chemical Society Reviews,2012,41 (6):2382-2394.
    [3]Liu C. Recent developments in polymer MEMS [J]. Advanced Materials,2007,19 (22): 3783-3790.
    [4]Zou H, Wu SS, Shen J. Polymer/silica nanocomposites:Preparation, characterization, properties, and applications [J]. Chemical Reviews,2008,108 (9):3893-3957.
    [5]Komarneni S. Nanocomposites [J]. Journal of Materials Chemistry,1992,2 (12): 1219-1230.
    [6]Roy R, Komarneni S, Roy DM, et al. Multi-Phasic Ceramic Composites made by Sol-Gel Technique [J]. Materials Research Society Symposium Proceedings,1984,32:347-359.
    [7]Armelao L, Barreca D, Bottaro G, et al. Recent trends on nanocomposites based on Cu, Ag and Au clusters:A closer look [J]. Coordination Chemistry Reviews,2006,250 (11-12): 1294-1314.
    [8]Kubacka A, Fernandez-Garcia M, Colon G Advanced Nanoarchitectures for Solar Photocatalytic Applications [J]. Chemical Reviews,2012,112 (3):1555-1614.
    [9]Chen D, Feng HB, Li JH. Graphene Oxide:Preparation, Functionalization, and Electrochemical Applications [J]. Chemical Reviews,2012,112 (11):6027-6053.
    [10]Leung KCF, Xuan SH, Zhu XM, et al. Gold and iron oxide hybrid nanocomposite materials [J]. Chemical Society Reviews,2012,41 (5):1911-1928.
    [11]Singh V, Joung D, Zhai L, et al. Graphene based materials:Past, present and future [J]. Progress in Materials Science,2011,56 (8):1178-1271.
    [12]Shi J. On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts [J]. Chemical Reviews,2013,113:2139-2181.
    [13]Gangopadhyay R, De A. Conducting polymer nanocomposites:A brief overview [J]. Chemistry of Materials,2000,12 (3):608-622.
    [14]Hussain F, Hojjati M, Okamoto M, et al. Review article:Polymer-matrix nanocomposites, processing, manufacturing, and application:An overview [J]. Journal of Composite Materials, 2006,40(17):1511-1575.
    [15]Balazs AC, Emrick T, Russell TP. Nanoparticle polymer composites:Where two small worlds meet [J]. Science,2006,314 (5802):1107-1110.
    [16]Karousis N, Tagmatarchis N, Tasis D. Current Progress on the Chemical Modification of Carbon Nanotubes [J]. Chemical Reviews,2010,110 (9):5366-5397.
    [17]Daniel MC, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chemical Reviews,2004,104 (1):293-346.
    [18]Ray SS, Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing [J]. Progress in Polymer Science,2003,28 (11):1539-1641.
    [19]Haas KH. Hybrid inorganic-organic polymers based on organically modified Si-alkoxides [J]. Advanced Engineering Materials,2000,2 (9):571-582.
    [20]Althues H, Henle J, Kaskel S. Functional inorganic nanofillers for transparent polymers [J]. Chemical Society Reviews,2007,36 (9):1454-1465.
    [21]Sanchez C, Lebeau B, Chaput F, et al. Optical properties of functional hybrid organic-inorganic nanocomposites [J]. Advanced Materials,2003,15 (23):1969-1994.
    [22]Beecroft LL, Ober CK. Nanocomposite materials for optical applications [J]. Chemistry of Materials,1997,9 (6):1302-1317.
    [23]Chen BQ, Evans JRG. Impact strength of polymer-clay nanocomposites [J]. Soft Matter, 2009,5 (19):3572-3584.
    [24]Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Composites Science and Technology,2003,63 (15): 2223-2253.
    [25]Georgakilas V, Otyepka M, Bourlinos AB, et al. Functionalization of Graphene:Covalent and Non-Covalent Approaches, Derivatives and Applications [J]. Chemical Reviews,2012,112 (11):6156-6214.
    [26]Manias E, Touny A, Wu L, et al. Polypropylene/Montmorillonite nanocomposites. Review of the synthetic routes and materials properties [J]. Chemistry of Materials,2001,13 (10): 3516-3523.
    [27]Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery [J]. Advanced Drug Delivery Reviews,2001,53(3):321-339.
    [28]Vermonden T, Censi R, Hennink WE. Hydrogels for Protein Delivery [J]. Chemical Reviews,2012,112 (5):2853-2888.
    [29]Nayak S, Lyon LA. Soft nanotechnology with soft nanoparticles [J]. AngewandteChemie-International Edition,2005,44 (47):7686-7708.
    [30]Buenger D, Topuz F, Groll J. Hydrogels in sensing applications [J]. Progress in Polymer Science,2012,37 (12):1678-1719.
    [31]Li YL, Rodrigues J, Tomas H. Injectable and biodegradable hydrogels:gelation, biodegradation and biomedical applications [J]. Chemical Society Reviews,2012,41 (6): 2193-2221.
    [32]Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery [J]. Advanced Drug Delivery Reviews,2006,58 (15):1655-1670.
    [33]Mano JF. Stimuli-responsive polymeric systems for biomedical applications [J]. Advanced Engineering Materials,2008,10 (6):515-527.
    [34]Zhang XZ, Yang YY, Chung TS. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels [J]. Langmuir,2002,18 (7):2538-2542.
    [35]Geever LM, Devine DM, Nugent MJD, et al. The synthesis, characterisation, phase behaviour and swelling of temperature sensitive physically crosslinked poly(l-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels [J]. European Polymer Journal,2006,42 (1):69-80.
    [36]Alarcon CDH, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications [J]. Chemical Society Reviews,2005,34 (3):276-285.
    [37]Miyako E, Nagata H, Hirano K, et al. Photodynamic ThermoresponsiveNanocarbon-Polymer Gel Hybrids [J]. Small,2008,4 (10):1711-1715.
    [38]Wang JF, Lin L, Cheng QF, et al. A Strong Bio-Inspired Layered PNIPAM-Clay Nanocomposite Hydrogel [J]. AngewandteChemie-International Edition,2012,51 (19): 4676-4680.
    [39]Lu Y, Spyra P, Mei Y, et al. Composite hydrogels:Robust carriers for catalytic nanoparticles [J]. Macromolecular Chemistry and Physics,2007,208 (3):254-261.
    [40]Charati MB, Lee I, Hribar KC, et al. Light-Sensitive Polypeptide Hydrogel and Nanorod Composites [J]. Small,2010,6 (15):1608-1611.
    [41]Schexnailder P, Schmidt G Nanocomposite polymer hydrogels [J]. Colloid and Polymer Science,2009,287(1):1-11.
    [42]Strong LE, West JL. Thermally responsive polymer-nanoparticle composites for biomedical applications [J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology,2011,3 (3):307-317.
    [43]Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites:a review of applications as remote controlled biomaterials [J]. Soft Matter,2010,6 (11):2364-2371.
    [44]Kazimierska EA, Ciszkowska M. Thermoresponsive poly-n-isopropylacrylamide gels modified with colloidal gold nanoparticles for electroanalytical applications.1. Preparation and characterization [J]. Electroanalysis,2005,17(15-16):1384-1395.
    [45]Kim J, Serpe MJ, Lyon LA. Photoswitchablemicrolens arrays [J]. AngewandteChemie-International Edition,2005,44 (9):1333-1336.
    [46]Huang C, Soenen SJ, Rejman J, et al. Stimuli-responsive electrospun fibers and their applications [J]. Chemical Society Reviews,2011,40 (5):2417-2434.
    [47]Haraguchi K. Nanocomposite hydrogels [J]. Current Opinion in Solid State& Materials Science,2007,11 (3-4):47-54.
    [48]Li YH, Huang GY, Zhang XH, et al. Magnetic Hydrogels and Their Potential Biomedical Applications [J]. Advanced Functional Materials,2013,23 (6):660-672.
    [49]Frimpong RA, Fraser S, Hilt JZ. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites [J]. Journal of Biomedical Materials Research Part A,2007, 80A(1):1-6.
    [50]Zhao XL, Ding XB, Deng ZH, et al. Thermo switchable electronic properties of a gold nanoparticle/hydrogel composite [J]. Macromolecular Rapid Communications,2005,26 (22): 1784-1787.
    [51]Haraguchi K, Li HJ. Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content [J]. Macromolecules,2006,39 (5):1898-1905.
    [52]Matos MA, White LR, Tilton RD. Electroosmotically enhanced mass transfer through polyacrylamide gels[J]. Journal of Colloid and Interface Science,2006,300 (1):429-436.
    [53]Brunsen A, Utech S, Maskos M, et al. Magnetic Composite Thin Films of FexOy Nanoparticles and Photocrosslinked Dextran Hydrogels [J]. Journal of Magnetism and Magnetic Materials,2012,324 (8):1488-1497.
    [54]Mohan YM, Premkumar T, Lee K, et al. Fabrication of silver nanoparticles in hydrogel networks [J]. Macromolecular Rapid Communications,2006,27 (16):1346-1354.
    [55]Mohan YM, Lee K, Premkumar T, et al. Hydrogel networks as nanoreactors:A novel approach to silver nanoparticles for antibacterial applications [J]. Polymer,2007,48 (1): 158-164.
    [56]Wang C, Flynn NT, Langer R. Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites [J]. Advanced Materials,2004,16 (13):1074-+.
    [57]Hernandez R, Mijangos C. In situ Synthesis of Magnetic Iron Oxide Nanoparticles in Thermally Responsive Alginate-Poly(N-isopropylacrylamide) Semi-Interpenetrating Polymer Networks [J]. Macromolecular Rapid Communications,2009,30 (3):176-181.
    [58]Tarnavchyk I, Voronov A, Kohut A, et al. Reactive Hydrogel Networks for the Fabrication of Metal-Polymer Nanocomposites [J]. Macromolecular Rapid Communications,2009,30 (18): 1564-1569.
    [59]Pardo-Yissar V, Gabai R, Shipway AN, et al. Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties [J]. Advanced Materials,2001,13 (17):1320-1323.
    [60]Sheeney-Haj-Ichia L, Sharabi G, Willner Ⅰ. Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and Au-nanoparticle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition [J]. Advanced Functional Materials,2002,12 (1): 27-32.
    [61]Johnson JA, Turro NJ, Koberstein JT, et al. Some hydrogels having novel molecular structures [J]. Progress in Polymer Science,2010,35 (3):332-337.
    [62]Calvert P. Hydrogels for Soft Machines [J]. Advanced Materials,2009,21 (7):743-756.
    [63]Gong JP. Why are double network hydrogels so tough? [J]. Soft Matter,2010,6 (12): 2583-2590.
    [64]Nie JJ, Du BY, Oppermann W. Swelling, elasticity, and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels [J]. Macromolecules,2005,38 (13): 5729-5736.
    [65]Choudalakis G, Gotsis AD. Permeability of polymer/clay nanocomposites:A review [J]. European Polymer Journal,2009,45 (4):967-984.
    [66]Okada A, Usuki A. Twenty years of polymer-clay nanocomposites[J]. Macromolecular Materials and Engineering,2006,291 (12):1449-1476.
    [67]Zhu MF, Liu Y, Sun B, et al. A novel highly resilient nanocomposite hydrogel with low hysteresis and ultrahigh elongation [J]. Macromolecular Rapid Communications,2006,27 (13): 1023-1028.
    [68]Seliktar D. Designing Cell-Compatible Hydrogels for Biomedical Applications [J]. Science, 2012,336(6085):1124-1128.
    [69]Kawano T, Niidome Y, Mori T, et al. PNIPAM Gel-Coated Gold Nanorods, for Targeted Delivery Responding to a Near-Infrared Laser [J]. Bioconjugate Chemistry,2009,20 (2): 209-212.
    [70]Huang XH, Neretina S, El-Sayed MA. Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications [J]. Advanced Materials,2009,21 (48):4880-4910.
    [71]Liu Z, Tabakman S, Welsher K, et al. Carbon Nanotubes in Biology and Medicine:In vitro and in vivo Detection, Imaging and Drug Delivery[J]. Nano Research,2009,2 (2):85-120.
    [72]Govorov AO, Richardson HH. Generating heat with metal nanoparticles [J]. Nano Today, 2007,2 (1):30-38.
    [73]Huang HC, Rege K, Heys JJ. Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods [J]. Acs Nano, 2010,4 (5):2892-2900.
    [74]Hribar KC, Lee MH, Lee D, et al. Enhanced Release of Small Molecules from Near-Infrared Light Responsive Polymer-Nanorod Composites [J]. Acs Nano,2011,5 (4): 2948-2956.
    [75]Shiotani A, Mori T, Niidome T, et al. Stable incorporation of gold nanorods into N-isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation [J]. Langmuir,2007,23 (7):4012-4018.
    [76]Minelli C, Lowe SB, Stevens MM. Engineering Nanocomposite Materials for Cancer Therapy [J]. Small,2010,6 (21):2336-2357.
    [77]Andra W, Nowak H. Magnetism in Medicine [J]. Wiley-VCH, Berlin,1998.
    [78]Meenach SA, Hilt JZ, Anderson KW. Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy [J]. ActaBiomaterialia,2010,6 (3):1039-1046.
    [79]Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release [J]. Journal of Controlled Release,2008,130 (3):246-251.
    [80]Lao LL, Ramanujan RV. Magnetic and hydrogel composite materials for hyperthermia applications [J]. Journal of Materials Science-Materials in Medicine,2004,15 (10):1061-1064.
    [81]Satarkar NS, Hilt JZ. Hydrogel nanocomposites as remote-controlled biomaterials [J]. ActaBiomaterialia,2008,4 (1):11-16.
    [82]Hawkins AM, Satarkar NS, Hilt JZ. Nanocomposite Degradable Hydrogels:Demonstration of Remote Controlled Degradation and Drug Release [J]. Pharmaceutical Research,2009,26 (3): 667-673.
    [83]Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery [J]. Journal of Biomedical Materials Research,2000,51 (3):293-298.
    [84]Zhang CS, Xing D, Li YY. Micropumps, microvalves, and micromixers within PCR microfluidic chips:Advances and trends [J]. Biotechnology Advances,2007,25 (5):483-514.
    [85]Satarkar NS, Zhang WL, Eitel RE, et al. Magnetic hydrogel nanocomposites as remote controlled microfluidic valves [J]. Lab on a Chip,2009,9 (12):1773-1779.
    [86]Sershen SR, Mensing GA, Ng M, et al. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels [J]. Advanced Materials, 2005,17(11):1366-+.
    [87]Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles:Modulating the catalytic activity by a phase transition in networks [J]. Angewandte Chemie-International Edition,2006,45 (5):813-816.
    [88]Lu Y, Mei Y, Ballauff M, et al. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles [J]. Journal of Physical Chemistry B,2006,110 (9):3930-3937.
    [89]Zhang XB, Pint CL, Lee MH, et al. Optically-and Thermally-Responsive Programmable Materials Based on Carbon Nanotube-Hydrogel Polymer Composites [J]. Nano Letters,2011,11 (8):3239-3244.
    [90]Huang X, Qi XY, Boey F, et al. Graphene-based composites [J]. Chemical Society Reviews, 2012,41 (2):666-686.
    [91]Allen MJ, Tung VC, Kaner RB. Honeycomb Carbon:A Review of Graphene [J]. Chemical Reviews,2010,110(1):132-145.
    [92]Shin HJ, Kim KK, Benayad A, et al. Efficient Reduction of Graphite Oxide by Sodium Borohydrilde and Its Effect on Electrical Conductance[J]. Advanced Functional Materials,2009, 19 (12):1987-1992.
    [93]Cote LJ, Cruz-Silva R, Huang JX. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite [J]. Journal of the American Chemical Society,2009,131 (31): 11027-11032.
    [94]Zhu YW, Murali S, Cai WW, et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications [J]. Advanced Materials,2010,22 (35):3906-3924.
    [95]Xu C, Wang X, Zhu JW. Graphene-Metal Particle Nanocomposites [J]. Journal of Physical Chemistry C,2008,112 (50):19841-19845.
    [96]Moussa S, Atkinson G, SamyEl-Shall M, et al. Laser assisted photocatalytic reduction of metal ions by graphene oxide [J]. Journal of Materials Chemistry,2011,21 (26):9608-9619.
    [97]Huang J, Zhang LM, Chen BA, et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in SERS and catalysis [J]. Nanoscale,2010,2 (12):2733-2738.
    [98]Yang X, Xu MS, Qiu WM, et al. Graphene uniformly decorated with gold nanodots:in situ synthesis, enhanced dispersibility and applications [J]. Journal of Materials Chemistry,2011,21 (22):8096-8103.
    [1]Daniel MC, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104(1):293-346.
    [2]Min BK, Friend CM. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation[J]. Chemical Reviews,2007,107(6): 2709-2724.
    [3]Ghosh SK, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:From theory to applications[J]. Chemical Reviews,2007,107(11):4797-4862.
    [4]Schexnailder P, Schmidt G Nanocomposite polymer hydrogels[J]. Colloid and Polymer Science,2009,287(1):1-11.
    [5]Sheeney-Haj-Ichia L, Sharabi G, Willner I. Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and Au-nanoparticle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition[J]. Advanced Functional Materials,2002,12(1): 27-32.
    [6]Matos MA, White LR, Tilton RD. Electroosmotically enhanced mass transfer through polyacryiamide gels[J]. Journal of Colloid and Interface Science,2006,300(1):429-436.
    [7]Zhao XL, Ding XB, Deng ZH, et al. Thermo switchable electronic properties of a gold nanoparticle/hydrogel composite[J]. Macromolecular Rapid Communications,2005,26(22): 1784-1787.
    [8]Lu Y, Spyra P, Mei Y, et al. Composite hydrogels:Robust carriers for catalytic nanoparticles[J]. Macromolecular Chemistry and Physics,2007,208(3):254-261.
    [9]Satarkar NS, Hilt JZ. Hydrogel nanocomposites as remote-controlled biomaterials[J]. ActaBiomaterialia,2008,4(1):11-16.
    [10]Mohan YM, Lee K, Premkumar T, et al. Hydrogel networks as nanoreactors:A novel approach to silver nanoparticles for antibacterial applications^]. Polymer,2007,48(1):158-164.
    [11]Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites:a review of applications as remote controlled biomaterials[J]. Soft Matter,2010,6(11):2364-2371.
    [12]Kazimierska EA, Ciszkowska M. Thermoresponsive poly-n-isopropylacrylamide gels modified with colloidal gold nanoparticles for electroanalytical applications.1. Preparation and characterization[J]. Electroanalysis,2005,17(15-16):1384-1395.
    [13]Pardo-Yissar V, Gabai R, Shipway AN, et al. Gold nanoparticle/hydrogel composites with solvent-switchable electronic properties[J]. Advanced Materials,2001,13(17):1320-1323.
    [14]Mitra RN, Das PK. In situ preparation of gold nanoparticles of varying shape in molecular hydrogel of peptide amphiphiles[J]. Journal of Physical Chemistry C,2008,112(22):8159-8166.
    [15]Hernandez R, Sacristan J, Nogales A, et al. Structural Organization of Iron Oxide Nanoparticles Synthesized Inside Hybrid Polymer Gels Derived from Alginate Studied with Small-Angle X-ray Scattering[J]. Langmuir,2009,25(22):13212-13218.
    [16]Mohan YM, Premkumar T, Lee K, et al. Fabrication of silver nanoparticles in hydrogel networks[J]. Macromolecular Rapid Communications,2006,27(16):1346-1354.
    [17]Wang C, Flynn NT, Langer R. Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites[J]. Advanced Materials,2004,16(13):1074-+.
    [18]Gachard E, Remita H, Khatouri J, et al. Radiation-induced and chemical formation of gold clusters[J]. New Journal of Chemistry,1998,22(11):3257-1265.
    [19]Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions[J]. Langmuir,1999,15(20): 6738-6744.
    [20]Tsuda T, Seino S, Kuwabata S. Gold nanoparticles prepared with a room-temperature ionic liquid-radiation irradiation method[J]. Chemical Communications,2009,(44):6792-6794.
    [21]Senel S, IsikYuruksoy B, Cicek H, et al. Thermoresponsive isopropylacrylamide-vinylpyrrolidone copolymer by radiation polymerization[J]. Journal of Applied Polymer Science,1997,64(9):1775-1784.
    [22]Syaubari, Saari M, Chuah TG, et al. Preparation of conjugated p-aminobenzamidine on thermosensitive poly(NIPAM) by irradiation grafted process[J]. Polymer-Plastics Technology and Engineering,2008,47(7):692-696.
    [23]Belloni J. Nucleation, growth and properties of nanoclusters studied by radiation chemistry-Application to catalysis[J]. Catalysis Today,2006,113(3-4):141-156.
    [24]Nagaoka N, Safranj A, Yoshida M, et al. Synthesis of Poly(N-Isopropylacrylamide) Hydrogels by Radiation Polymerization and Cross-Linking[J], Macromolecules,1993,26(26): 7386-7388.
    [25]Strauss P, Knolle W, Naumov S. Radiation-induced radical formation and crosslinking in aqueous solutions of N-isopropylacrylamide[J]. Macromolecular Chemistry and Physics, 1998,199(10):2229-2235.
    [26]Safrany A, Wojnarovits L. Electron-beam initiated crosslinking in poly(N-isopropylacrylamide) aqueous solution[J]. Radiation Physics and Chemistry,2004,69(4): 289-293.
    [27]Wang BL, Mukataka S, Kodama M, et al. Viscometric and light scattering studies on microgel formation by gamma-ray irradiation to aqueous oxygen-free solutions of poly(vinyl alcohol)[J]. Langmuir,1997,13(23):6108-6114.
    [28]Creighton JA, Eadon DG. Ultraviolet Visible Absorption-Spectra of the Colloidal Metallic Elements[J]. Journal of the Chemical Society-Faraday Transactions,1991,87(24):3881-3891.
    [29]Henglein A, Meisel D. Radiolytic control of the size of colloidal gold nanoparticles[J]. Langmuir,1998,14(26):7392-7396.
    [30]a)Zhang XZ, Yang YY, Chung TS. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels[J]. Langmuir,2002,18(7):2538-2542. b)Mu JF, Zheng SX. Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomericsilsesquioxane: Temperature-responsive behavior of hydrogels[J]. Journal of Colloid and Interface Science, 2007,307(2):377-385.
    [31]Hou Y, Matthews AR, Smitherman AM, et al. Thermoresponsivenanocomposite hydrogels with cell-releasing behavior[J]. Biomaterials,2008,29(22):3175-3184.
    [32]Dotzauer DA, Bhattacharjee S, Wen Y, et al. Nanoparticle-Containing Membranes for the Catalytic Reduction of Nitroaromatic Compounds[J]. Langmuir,2009,25(3):1865-1871.
    [33]Huang J, Zhang LM, Chen BA, et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in SERS and catalysis[J]. Nanoscale,2010,2(12): 2733-2738.
    [34]Lu Y, Mei Y, Ballauff M, et al. Thermosensitive core-shell particles as carrier systems for metallic nanoparticles[J]. Journal of Physical Chemistry B,2006,110(9):3930-3937,
    [35]Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles:Modulating the catalytic activity by a phase transition in networks[J]. AngewandteChemie-International Edition,2006,45(5):813-816.
    [36]Zhu YH, Shen JH, Zhou KF, et al. Multifunctional Magnetic Composite Microspheres with in Situ Growth Au Nanoparticles:A Highly Efficient Catalyst System[J]. Journal of Physical Chemistry C,2011,115(5):1614-1619.
    [37]Li SJ, Ge Y, Tiwari A, et al. A Temperature-Responsive Nanoreactor[J]. Small,2010,6(21): 2453-2459.
    [38]Narayanan R, El-Sayed MA. Effect of colloidal nanocatalysis on the metallic nanoparticle shape:The Suzuki reaction[J]. Langmuir,2005,21(5):2027-2033.
    [1]Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery[J]. Advanced Drug Delivery Reviews,2001,53(3):321-339.
    [2]Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery[J]. Advanced Drug Delivery Reviews,2006,58(15):1655-1670.
    [3]Chaterji S, Kwon IK, Park K. Smart polymeric gels:Redefining the limits of biomedical devices[J]. Progress in Polymer Science,2007,32(8-9):1083-1122.
    [4]Mano JF. Stimuli-responsive polymeric systems for biomedical applications[J]. Advanced Engineering Materials,2008,10(6):515-527.
    [5]a) Sershen SR, Mensing GA, Ng M, et al. Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels[J]. Advanced Materials, 2005,17(11):1366; b) Wei Q, Ji J, Shen J. Synthesis of near-infrared responsive gold nanorod/PNIPAAm core/shell nanohybrids via surface initiated ATRP for smart drug delivery[J]. Macromolecular Rapid Communications,2008,29(8):645-650; c) Kim J, Serpe MJ, Lyon LA. Photoswitchablemicrolens arrays[J]. AngewandteChemie-International Edition,2005,44(9): 1333-1336.
    [6]Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites:a review of applications as remote controlled biomaterials[J]. Soft Matter,2010,6(11):2364-2371.
    [7]Strong LE, West JL. Thermally responsive polymer-nanoparticle composites for biomedical applications[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2011,3(3):307-317.
    [8]Katz JS, Burdick JA. Light-Responsive Biomaterials:Development and Applications[J]. Macromolecular Bioscience,2010,10(4):339-348.
    [9]Huang XH, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006,128(6):2115-2120.
    [10]a) Lu Y, Shi C, Hu M-J, et al. Magnetic Alloy Nanorings Loaded with Gold Nanoparticles: Synthesis and Applications as Multimodal Imaging Contrast Agents[J]. Advanced Functional Materials,2010,20(21):3701-3706; b) Lu Y, Zhao Y, Yu L, et al. Hydrophilic Co@Au Yolk/Shell Nanospheres:Synthesis, Assembly, and Application to Gene Delivery[J], Advanced Materials, 2010,22(12):1407; c) Charati MB, Lee I, Hribar KC, et al. Light-Sensitive Polypeptide Hydrogel and Nanorod Composites[J]. Small,2010,6(15):1608-1611.
    [11]Liu Z, Tabakman S, Welsher K, et al. Carbon Nanotubes in Biology and Medicine:In vitro and in vivo Detection, Imaging and Drug Delivery[J]. Nano Research,2009,2(2):85-120.
    [12]Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery[J]. Journal of Biomedical Materials Research,2000,51(3):293-298.
    [13]Miyako E, Nagata H, Hirano K, et al. Photodynamic ThermoresponsiveNanocarbon-Polymer Gel Hybrids[J]. Small,2008,4(10):1711-1715.
    [14]Robinson JT, Tabakman SM, Liang Y, et al. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy[J]. Journal of the American Chemical Society,2011,133(17):6825-6831.
    [15]Acik M, Lee G, Mattevi C, et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J], Nature Materials,2010,9(10):840-845.
    [16]Bai H, Li C, Shi G. Functional Composite Materials Based on Chemically Converted Graphene[J]. Advanced Materials,2011,23(9):1089-1115.
    [17]Schild HG. POLY (N-ISOPROPYLACRYLAMIDE)-EXPERIMENT, THEORY AND APPLICATION[J]. Progress in Polymer Science,1992,17(2):163-249.
    [18]Pan Y, Bao H, Sahoo NG, et al. Water-Soluble Poly(N-isopropylacrylamide)-Graphene Sheets Synthesized via Click Chemistry for Drug Deli very [J]. Advanced Functional Materials, 2011,21(14):2754-2763.
    [19]Sun S, Wu P. A one-step strategy for thermal-and pH-responsive graphene oxide interpenetrating polymer hydrogel networks[J]. Journal of Materials Chemistry,2011,21(12): 4095-4097.
    [20]Zhu C-H, Hai Z-B, Cui C-H, et al. In Situ Controlled Synthesis of Thermosensitive Poly(N-isopropylacrylarhide)/Au Nanocomposite Hydrogels by Gamma Radiation for Catalytic Application[J]. Small,2012,8(6):930-936.
    [21]Li D, Mueller MB, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105.
    [22]Stankovich S, Piner RD, Chen XQ, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16(2):155-158.
    [23]Lo C-W, Zhu D, Jiang H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite[J]. Soft Matter,2011,7(12):5604-5609.
    [24]Gachard E, Remita H, Khatouri J, et al. Radiation-induced and chemical formation of gold clusters[J], New Journal of Chemistry,1998,22(11):1257-1265.
    [25]Ding YH, Zhang P, Zhuo Q, et al. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation[J]. Nanotechnology,2011,22(21).
    [26]Zhou XF, Liu ZP. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets[J]. Chemical Communications,2010,46(15):2611-2613.
    [27]Cote LJ, Cruz-Silva R, Huang JX. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite[J]. Journal of the American Chemical Society,2009,131(31):11027-11032.
    [28]Moussa S, Atkinson G, SamyEl-Shall M, et al. Laser assisted photocatalytic reduction of metal ions by graphene oxide[J]. Journal of Materials Chemistry,2011,21(26):9608-9619.
    [29]Fernandez-Merino MJ, Guardia L, Paredes JI, et al. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions[J]. Journal of Physical Chemistry C, 2010,114(14):6426-6432.
    [30]Huang L, Liu Y, Ji LC, et al. Pulsed laser assisted reduction of graphene oxide[J]. Carbon, 2011,49(7):2431-2436.
    [31]Liang J, Huang Y, Zhang L, et al. Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites[J]. Advanced Functional Materials,2009,19(14):2297-2302.
    [32]Fang M, Wang K, Lu H, et al. Single-layer graphene nanosheets with controlled grafting of polymer chains[J]. Journal of Materials Chemistry,2010,20(10):1982-1992.
    [33]Fang M, Wang K, Lu H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites[J]. Journal of Materials Chemistry,2009,19(38): 7098-7105.
    [34]Zhang XZ, Yang YY, Chung TS. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels[J]. Langmuir,2002,18(7):2538-2542.
    [35]Yoshida R, Sakai K, Okano T, et al. MODULATING THE PHASE-TRANSITION TEMPERATURE AND THERMOSENSITIVITY IN N-ISOPROPYLACRYLAMIDE COPOLYMER GELS[J]. Journal of Biomaterials Science-Polymer Edition,1994,6(6):585-598.
    [36]Bae YH, Okano T, Kim SW. on off thermocontrol of solute transport 1. Temperature-dependence of swelling of N-isopropylacrylamide networks modififd with hydrophobic components in water [J]. Pharmaceutical Research,1991,8(4):531-537.
    [37]Hou Y, Matthews AR, Smitherman AM, et al. Thermoresponsive nanocomposite hydrogels with cell-releasing behavior[J]. Biomaterials,2008,29(22):3175-3184.
    [38]Geever LM, Devine DM, Nugent MJD, et al. The synthesis, characterisation, phase behaviour and swelling of temperature sensitive physically crosslinked poly(l-vinyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) hydrogels[J]. European Polymer Journal,2006,42(1):69-80.
    [39]Liu J, Yang W, Tao L, et al. Thermosensitive Graphene Nanocomposites Formed Using Pyrene-Terminal Polymers Made by RAFT Polymerization[J]. Journal of Polymer Science Part a-Polymer Chemistry,2010,48(2):425-433.
    [40]Kudin KN, Ozbas B, Schniepp HC, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters,2008,8(1):36-41.
    [41]Liang J, Xu Y, Huang Y, et al. Infrared-Triggered Actuators from Graphene-Based Nanocomposites[J]. Journal of Physical Chemistry C,2009,113(22):9921-9927. b) Pradhan B, Setyowati K, Liu H, et al. Carbon nanotube-Polymer nanocomposite infrared sensor[J]. Nano Letters,2008,8(4):1142-1146; c) Compton OC, Kim S, Pierre C, et al. Crumpled Graphene Nanosheets as Highly Effective Barrier Property Enhancers[J]. Advanced Materials,2010,22(42): 4759.
    [42]Hribar KC, Metter RB, Ifkovits JL, et al. Light-Induced Temperature Transitions in Biodegradable Polymer and Nanorod Composites [J]. Small,2009,5(16):1830-1834.
    [43]Tomatsu I, Peng K, Kros A. Photoresponsive hydrogels for biomedical applications[J]. Advanced Drug Delivery Reviews,2011,63(14-15):1257-1266.
    [1]Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites:a review of applications as remote controlled biomaterials[J]. Soft Matter,2010,6(11):2364-2371.
    [2]Mano JF. Stimuli-responsive polymeric systems for biomedical applications[J]. Advanced Engineering Materials,2008,10(6):515-527.
    [3]Haraguchi K. Nanocomposite hydrogels[J]. Current Opinion in Solid State& Materials Science,2007,11(3-4):47-54.
    [4]Schexnailder P, Schmidt G Nanocomposite polymer hydrogels[J]. Colloid and Polymer Science,2009,287(1):1-11.
    [5]Strong LE, West JL. Thermally responsive polymer-nanoparticle composites for biomedical applications[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2011,3(3):307-317.
    [6]Nardecchia S, Carriazo D, Ferrer ML, et al. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene:synthesis and applications[J]. Chemical Society Reviews,2013,42(2):794-830.
    [7]Zhu CH, Hai ZB, Cui CH, et al. In Situ Controlled Synthesis of Thermosensitive Poly(N-isopropylacrylamide)/Au Nanocomposite Hydrogels by Gamma Radiation for Catalytic Application[J]. Small,2012,8(6):930-936.
    [8]Zhu CH, Lu Y, Peng J, et al. Photothermally Sensitive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves[J]. Advanced Functional Materials,2012,22(19): 4017-4022.
    [9]Charati MB, Lee I, Hribar KC, et al. Light-Sensitive Polypeptide Hydrogel and Nanorod Composites[J]. Small,2010,6(15):1608-1611.
    [10]Miyako E, Nagata H, Hirano K, et al. Photodynamic Thermoresponsive Nanocarbon-Polymer Gel Hybrids[J]. Small,2008,4(10):1711-1715.
    [11]Li YH, Huang GY, Zhang XH, et al. Magnetic Hydrogels and Their Potential Biomedical Applications[J]. Advanced Functional Materials,2013,23(6):660-672.
    [12]Satarkar NS, Zhang WL, Eitel RE, et al. Magnetic hydrogel nanocomposites as remote controlled microfluidic valves[J]. Lab on a Chip,2009,9(12):1773-1779.
    [13]Sun C, Lee JSH, Zhang MQ. Magnetic nanoparticles in MR imaging and drug delivery[J]. Advanced Drug Delivery Reviews,2008,60(11):1252-1265.
    [14]Regmi R, Bhattarai SR, Sudakar C, et al. Hyperthermia controlled rapid drug release from thermosensitive magnetic microgels[J]. Journal of Materials Chemistry,2010,20(29):6158-6163.
    [15]Lao LL, Ramanujan RV. Magnetic and hydrogel composite materials for hyperthermia applications[J]. Journal of Materials Science-Materials in Medicine,2004,15(10):1061-1064.
    [16]Satarkar NS, Hilt JZ. Hydrogel nanocomposites as remote-controlled biomaterials[J]. ActaBiomaterialia,2008,4(1):11-16.
    [17]Satarkar NS, Hilt JZ. Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release[J]. Journal of Controlled Release,2008,130(3):246-251.
    [18]Ray PC, Khan SA, Singh AK, et al. Nanomaterials for targeted detection and photothermal killing of bacteria[J]. Chemical Society Reviews,2012,41(8):3193-3209.
    [19]Yang K, Hu LL, Ma XX, et al. Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles[J]. Advanced Materials,2012,24(14):1868-1872.
    [20]Ma XX, Tao HQ, Yang K, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Research,2012,5(3):199-212.
    [21]Chen "WJ, Tsai PJ, Chen YC. Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria[J]. Small,2008,4(4):485-491.
    [22]Liu JW, Che RC, Chen HJ, et al. Microwave Absorption Enhancement of Multifunctional Composite Microspheres with Spinel Fe3O4 Cores and Anatase TiO2 Shells[J]. Small,2012,8(8): 1214-1221.
    [23]Zhang XZ, Yang YY, Chung TS. Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels[J]. Langmuir,2002,18(7):2538-2542.
    [24]Liao MY, Lai PS, Yu HP, et al. Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics[J]. Chemical Communications,2012,48(43):5319-5321.
    [25]Yakacki CM, Satarkar NS, Gall K, et al. Shape-Memory Polymer Networks with Fe3O4 Nanoparticles for Remote Activation[J]. Journal of Applied Polymer Science,2009,112(5): 3166-3176.
    [26]Hernandez R, Mijangos C. In situ Synthesis of Magnetic Iron Oxide Nanoparticles in Thermally Responsive Alginate-Poly(N-isopropylacrylamide) Semi-Interpenetrating Polymer Networks[J]. Macromolecular Rapid Communications,2009,30(3):176-181.
    [27]Suh SK, Yuet K, Hwang DK, et al. Synthesis of NonsphericalSuperparamagnetic Particles: In Situ Coprecipitation of Magnetic Nanoparticles in Microgels Prepared by Stop-Flow Lithography [J]. Journal of the American Chemical Society,2012,134(17):7337-7343.
    [28]Schild HG. Poly (N-Isopropylacrylamide)-Experiment, Theory and Application[J]. Progress in Polymer Science,1992,17(2):163-249.
    [29]Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery[J]. Advanced Drug Delivery Reviews,2006,58(15):1655-1670.
    [30]Ai ZH, Deng KJ, Wan QF, et al. Facile Microwave-Assisted Synthesis and Magnetic and Gas Sensing Properties of Fe(3)O4 Nanoroses[J]. Journal of Physical Chemistry C,2010,114(14): 6237-6242.
    [31]Ma YX, Li YF, Zhao GH, et al. Preparation and characterization of graphite nanosheets decorated with Fe3O4 nanoparticles used in the immobilization of glucoamylase[J]. Carbon, 2012,50(8):2976-2986.
    [32]Hou Y, Matthews AR, Smitherman AM, et al. Thermoresponsive nanocomposite hydrogels with cell-releasing behavior[J]. Biomaterials,2008,29(22):3175-3184.
    [33]Mu JF, Zheng SX. Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomericsilsesquioxane:Temperature-responsive behavior of hydrogels[J]. Journal of Colloid and Interface Science,2007,307(2):377-385.
    [34]Robinson JT, Tabakman SM, Liang YY, et al. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy [J]. Journal of the American Chemical Society,2011,133(17):6825-6831.
    [35]Huang XH, El-Sayed IH, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 2006,128(6):2115-2120.
    [36]Kawano T, Niidome Y, Mori T, et al. PNIPAM Gel-Coated Gold Nanorods, for Targeted Delivery Responding to a Near-Infrared Laser[J]. Bioconjugate Chemistry,2009,20(2):209-212.
    [37]Sershen SR, Westcott SL, Halas NJ, et al. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery[J]. Journal of Biomedical Materials Research,2000,51(3):293-298.
    [1]Huang X, Qi XY, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012,41(2):666-686.
    [2]Zhu YW, Murali S, Cai WW, et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications[J]. Advanced Materials,2010,22(35):3906-3924.
    [3]Allen MJ, Tung VC, Kaner RB. Honeycomb Carbon:A Review of Graphene[J]. Chemical Reviews,2010,110(1):132-145.
    [4]Singh V, Joung D, Zhai L, et al. Graphene based materials:Past, present and future[J]. Progress in Materials Science,2011,56(8):1178-1271.
    [5]Becerril HA, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J]. Acs Nano,2008,2(3):463-470.
    [6]Fernandez-Merino MJ, Guardia L, Paredes JI, et al. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions [J]. Journal of Physical Chemistry C, 2010,114(14):6426-6432.
    [7]Shin HJ, Kim KK, Benayad A, et al. Efficient Reduction of Graphite Oxide by Sodium Borohydrilde and Its Effect on Electrical Conductance[J]. Advanced Functional Materials, 2009,19(12):1987-1992.
    [8]Huang L, Liu Y, Ji LC, et al. Pulsed laser assisted reduction of graphene oxide[J]. Carbon, 2011,49(7):2431-2436.
    [9]Ding YH, Zhang P, Zhuo Q, et al. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation [J]. Nanotechnology,2011,22(21).
    [10]Cote LJ, Cruz-Silva R, Huang JX. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite[J]. Journal of the American Chemical Society,2009,131(31):11027-11032.
    [11]Moussa S, Atkinson G, SamyEl-Shall M, et al. Laser assisted photocatalytic reduction of metal ions by graphene oxide[J]. Journal of Materials Chemistry,2011,21(26):9608-9619.
    [12]Myung S, Park J, Lee H, et al. Ambipolar Memory Devices Based on Reduced Graphene Oxide and Nanoparticles[J]. Advanced Materials,2010,22(18):2045-+.
    [13]Huang J, Zhang LM, Chen BA, et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide:Formation and applications in SERS and catalysis[J]. Nanoscale,2010,2(12): 2733-2738.
    [14]Hong WJ, Bai H, Xu YX, et al. Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors[J]. Journal of Physical Chemistry C,2010,114(4):1822-1826.
    [15]Xiang GL, He J, Li TY, et al. Rapid preparation of noble metal nanocrystals via facile coreduction with graphene oxide and their enhanced catalytic properties[J]. Nanoscale,2011,3(9): 3737-3742.
    [16]Xu C, Wang X, Zhu JW. Graphene-Metal Particle Nanocomposites[J]. Journal of Physical Chemistry C,2008,112(50):19841-19845.
    [17]Yang X, Xu MS, Qiu WM, et al. Graphene uniformly decorated with gold nanodots:in situ synthesis, enhanced dispersibility and applications[J]. Journal of Materials Chemistry, 2011,21(22):8096-8103.
    [18]Jeon KJ, Lee Z. Size-dependent interaction of Au nanoparticles and graphene sheet[J]. Chemical Communications,2011,47(12):3610-3612.
    [19]Henglein A. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions[J]. Langmuir,1999,15(20): 6738-6744.
    [20]Gachard E, Remita H, Khatouri J, et al. Radiation-induced and chemical formation of gold clusters[J]. New Journal of Chemistry,1998,22(11):1257-1265.
    [21]Zhou XF, Liu ZP. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets[J]. Chemical Communications,2010,46(15):2611-2613.
    [22]Jeong HK, Lee YP, Lahaye RJWE, et al. Evidence of graphitic AB stacking order of graphite oxides[J]. Journal of the American Chemical Society,2008,130(4):1362-1366.
    [23]Zeng J, Zhang Q, Chen JY, et al. A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles[J]. Nano Letters,2010,10(1):30-35.
    [24]Zhu YH, Shen JH, Zhou KF, et al. Multifunctional Magnetic Composite Microspheres with in Situ Growth Au Nanoparticles:A Highly Efficient Catalyst System[J]. Journal of Physical Chemistry C,2011,115(5):1614-1619.
    [25]Lu Y, Mei Y, Ballauff M, et al. Thermosensitive core-shell particles as carrier systems for metallic nanoparticlesfJ]. Journal of Physical Chemistry B,2006,110(9):3930-3937.
    [26]Lu Y, Mei Y, Drechsler M, et al. Thermosensitive core-shell particles as carriers for Ag nanoparticles:Modulating the catalytic activity by a phase transition in networks[J]. Angewandte Chemie-International Edition,2006,45(5):813-816.
    [27]Zhang YW, Liu S, Lu WB, et al. In situ green synthesis of Au nanostructures on graphene oxide and their application for catalytic reduction of 4-nitrophenol[J]. Catalysis Science& Technology,2011,1 (7):1142-1144.
    [28]Daniel MC, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104(1):293-346.
    [29]Min BK, Friend CM. Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation[J]. Chemical Reviews,2007,107(6): 2709-2724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700