用户名: 密码: 验证码:
受扰时滞系统的控制方法研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在化工、炼油、冶金和造纸等一些复杂的工业过程中,广泛地存在干扰和时滞现象。干扰是影响系统综合性能的重要因素,干扰的消除或抑制是设计高性能鲁棒控制器的关键环节。由于时滞的存在,使得被控变量不能及时地反映系统输入变量的影响,从而使控制系统产生明显的超调,系统的稳定性变差,调节时间加长,这些因素都导致了时滞系统难于控制,时滞的存在常常是系统不稳定或产生不良性能的原因。因此,研究受扰时滞系统的控制具有重要的理论和实际价值,它们越来越成为过程控制界深入研究的热点。
     在实际工程应用中通常很难得到被控对象的精确数学模型,在控制系统设计过程中所采用的模型常常是在一定程度上经过近似化处理的数学模型,数学模型的这种不确定性必须在控制系统设计时予以考虑。因此,如何切实有效地处理不确定性的影响已经越来越成为工程应用中刻不容缓的迫切要求,对其进行研究具有重大的理论意义和实际意义。本文针对受扰时滞系统控制中的几个重要问题及应用进行了研究,对传统控制方法做了不同程度的改进,并提出了一些新的控制算法。
     本文的主要工作和贡献有以下几个方面:
     (1)研究了复合有色噪声的特性,针对状态空间模型具有非线性、非高斯特点的、并且未知量有可能是高维的复合有色噪声的干扰,提出了采用粒子滤波对其进行状态估计。研究了随机扰动序列功率谱特性,提出了一种统计自相关函数,使得功率谱估计的系数矩阵正定,解决了传统Levinsion算法系数矩阵非正定问题。
     (2)在基本前馈-反馈控制结构的基础上,提出了基于粒子滤波前馈-反馈控制系统整套设计和整定方法。首先基于闭环系统的稳态增益指标设计给定值状态目标跟踪控制器,利用粒子滤波的方法消除非高斯噪声对控制系统的影响。然后根据系统稳态运行时的抗扰动要求,基于鲁棒最优性能指标,通过提出期望的闭环灵敏度函数的方法来反向确定控制器的设计,从而实现闭环控制系统的输出响应平稳且无振荡。本文提出的控制方法对给定值响应和负载干扰响应分别进行优化调节,调节的灵活性显著得到提高。
     (3)针对受扰时滞不确定非线性连续系统的鲁棒控制问题,对其进行了时域特性的研究,研究了受扰时滞不确定非线性系统的控制问题,且不确定性不要求满足匹配条件。提出了具有范数有界参数不确定性受扰时滞非线性连续系统的鲁棒H∞控制问题,分别推导出通过状态反馈控制器和通过动态输出反馈控制器,不仅确保闭环系统二次稳定而且确保闭环系统满足H∞范数界约束的充分条件。本文设计的鲁棒H∞控制器使得闭环系统最终有界。
     (4)研究了受扰时滞时变不确定离散系统的鲁棒H∞控制问题。针对受扰时滞时变不确定线性离散系统,基于线性矩阵不等式(LMI)方法,推导出存在无记忆状态反馈控制律使闭环系统镇定及具有H∞性能指标的充分条件;另外,以具有时变状态时滞和输入时滞的不确定受扰非线性离散系统为研究对象,基于适当的Lyapunov函数,给出了时滞相关型状态反馈控制器设计方案,使得闭环系统一致最终有界。
     (5)为了验证控制方法的有效性,本文将基于粒子滤波前馈控制器和扰动观测器的二自由度控制系统实施于永磁同步电机速度控制上,具有很强的抗扰动性能,能更精确地实现对控制对象的速度控制。另外,提出了一种改进型重复控制系统来对伺服电机的位置系统进行控制,以进一步改善系统的稳定性和跟踪精度。通过仿真,实现了控制系统算法和设计验证。
Disturbances and time-delay are common phenomenon in the complex process industry, such as Chemical Engineering, Oil refining, Metallurgy, and Paper-making industry. Disturbance has important effect for system performance. Removing and controlling disturbance is key for design robust controller of high performance. Since the controlled variable in time-delayed system can not reflect the manipulate variable in time, it causes high overshoot and long settling time. The stability of closed-loop system will be degraded. It is difficult to control time-delayed system. Hence, there are much important theory and practical value on the study of control on disturbances and time-delay system. More and more researchers devote to research on control method for controlling disturbances and time-delayed processes.
     It is very difficult to get exact mathematical models of industrial processes, models used in design procedure of control systems are commonly mathematical models through approximation. Uncertainties of mathematical models must be considered in control systems design procedure. Hence, how to deal with effects of uncertainties is becoming urgent requirement, and it is also a big challenge facing control theory and application recently. Some problems in disturbance and time-delayed system control techniques and applications are researched in this thesis. Some improvements of tradition control methods have been made at different degree, and some new control algorithms are also proposed in this thesis.
     The main working results and contribution of this dissertation are stated as follows:
     Researched the character of coloured disturbance. A particle filter is proposed for the nonlinear non-Guassian filter problem in the state tracking process of coloured disturbance. A statistical autocorrelation function is proposed for power spectral character of random orders. So, using biased estimator, which produces a stable system with a matrix that numerically is positive definite.
     Based on the feedforward-feedback control structure, a set of design method and tuning rule of feedforward-feedback control system is proposed based on particle filter. The particle filter is utilized for rejecting the non-Guassian disturbance. Firstly the setpoint tracking controller is designed in terms of the robust optimal performance objective. Then according to the load disturbance rejection requirement during the system steady operation, based on robust optimal performance index, the design of controller is proposed based on the expected sensitivity function. The setpoint response and the load disturbance response are decoupled from each other so that both of them can be separately regulated and optimized on line. The performance is improved.
     For robust control of time-varying uncertain time-delay disturbance non-linear continuous systems, the characters are researched in time domain. It need not matched uncertainties. The robust control problems and related problems are presented for uncertain time-delay disturbance non-linear continuous systems. The design algorithms are given about robust state feedback controller and robust dynamic output feedback controller. The asymptotic stability of robust controller is guaranteed.
     The problem of robust control for time-varying disturbance discrete linear system with uncertain time-delay is investigated. Based on LMI method, design algorithms are presented about memoryless robust state feedback controller for system stability and performance index. On the other hand, based on new Lyapunov function, the design method of state feedback controller is presented for time-varying disturbance discrete non-linear systems with uncertain time-delay. The asymptotic stability of robust controller is guaranteed.
     To demonstrate the validity and superiority of the proposed control structure, a two-degree-of-freedom control structure with particle filter feedforward controller and disturbance observer is designed for PMSM speed control. It has strong rejecting the disturbance. The speed precision of motor can be effectively improved by the scheme. On the other hand, a new repeat control system is proposed for PMSM position control. The tracking precision and system stability of motor can be effectively improved by the scheme. The results of simulation examples show that the proposed control method is satisfied.
引文
[1] Astrom K. J., Hang C. C., Lim B. C (1994). New smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 39(2): 343-345.
    [2] Astrom K. J., Panagopoulos H., Hagglund T (1998). Design of PI controllers based on non-convex optimization. Automatica, 34(5): 585-601.
    [3] Broersen P. M. T., Wensink H. E (1996). On the penalty factor for autoregressive order selection in finite samples. IEEE Trans. Signal Processing, 44: 748–752.
    [4] Broersen P. M. T (1998). Autoregressive model order selection by a finite sample estimator for the Kullback-Leibler discrepancy. IEEE Trans. Signal Processing, 46: 2058–2061.
    [5] Broersen P. M. T (2000). Finite sample criteria for autoregressive order selection. IEEE Trans. Signal Processing, 48: 550–3558.
    [6] Cao C. F., Sun Y., Lam J (1998). Delay-dependent robust H∞. control of uncertain systems with time-varying delays. IEE Proc. Contr. Theory Appl, 145: 338–343.
    [7] Chen C. F (1975). Design of Piecewise Constant Gains for Optimal Control via Walsh function. IEEE Trans. Auto. Contr, 20: 596-602.
    [8] Chien I. L., Peng S. C., Liu J. H (2002). Simple control method for integrating processes with long deadtime. Journal of Process Control, 12(3): 391-404.
    [9] Choi H. H., Chung M. J (1997). An LMI approach to H∞. controller design for linear time-delay systems. Automatica, 33: 737-739.
    [10] Clarke D. W., Mohtadi C., Tuffs P. S (1987). Generalized Predictive Control. Automatica, 23(2): 137-160.
    [11] Dahlin E. B (1968). Designing and tuning digital controllers. Instruments and Control Systems, 41(7): 77-83.
    [12] Delfour M. C (1993). Stability and the Infinite time Quadratic Cost Problem for Linear Here ditary Diferential Systems. SIAM J. Control, 13 (1): 126–135.
    [13] Ding Z (2003). Universal disturbance rejection for nonlinear systems in output feedback form. IEEE Transactions on Automatic Control, 48(7): 1222–1227.
    [14] Doyle J. C., Stein G (1979). Robustness with Observers. IEEE Trans. Automat. Contr, 24(4): 607-611.
    [15] Doyle J. C., Glover K., Khargonekar P., Francis B (1989). State-Space Solutions to Standard H2 and H∞. Control Problems. IEEE Trans. Automat.Contr, 34(8): 831-848.
    [16] Doyle J. C., Francis B. A., Tannenbaum A. R (1992). Feedback control theory. NY: Macmillan Publishing Company.
    [17] Ebach U., Graeser A (1995). Design of an extended Smith controller with gain adaptation. Control Engineering Practice, 3(10): 1467-1470.
    [18] Economou C. G., Morari M., Palsson B. O (1986). Internal Model Control Extension to Nonlinear Systems. Industrial & Engineering Chemistry, Process Design and Development, 25(2): 403-411.
    [19] Fujino T. (1991). Inverse transfer function compensation for NC control. International Journal Series Ⅱ , 34(3): 297-301.
    [20] Fridman E., Shaked U (2003). Parameter dependent stability and stabilization of uncertaintime-delay systems. IEEE Transactions on Automatic Control, 48(5): 861-866.
    [21] Gao H. J., Wang C. H (2004). A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed systems. IEEE Trans on Sig. Processing, 52(6): 1631-1640.
    [22] Gao H. J., Lam J., Wang C., Wang Y (2004). Delay-dependent output-feedback stabilization of discrete-time systems with time-varying state delay. Control Theory and Applications, 151(6): 691-698.
    [23] Gareia C. E., Morari M (1982). Internal Model Control 1: An Unifying Review and Some New Results. Ind. Eng. Chem. Process Des., 21: 308-323.
    [24] Gareia C. E., Morari M (1985a). Internal Model Control 2: Mul-tivariable Control Law Computation and Tuning Guidelines. Ind. Eng. Chem. Process Des., 24.
    [25] Gareia C. E., Morari M (1985b). Internal Model Control 3: Mul-tivariable Control Law Computation and Tuning Guidelines. Ind. Eng. Chem. Process Dev., 24.
    [26] Garcia C. E., Morari M (1985). Internal Model Control. 2. Design Procedure for Multivariable Systems. Industrial & Engineering Chemistry, Process Design and Development, 24(2): 472-484.
    [27] Giles R. F., Bartley T. M (1977). Gain-adaptive Dead-time Compensation. ISA Transactions, 16(1): 59-64.
    [28] Glover K., Doyle J. C (1988). State-space formulae for all stabilizing controllers that satisfy an H∞ norm bound and relations to risk sensitivity. Sys. & Contr. Let, 11: 167-172.
    [29] Gong X.F., Gao J., Zhou C (1996). Extension of IMC tuning to improve controller performance. Proceedings of the 1996 IEEE International Conference on Systems, Man and Cybernetics. Part 3 (of 4), Oct 14-17 1996. Beijing, China: IEEE, Piscataway, NJ, USA, 1770-1775.
    [30] Gordon N., Salmond D (1993). Novel approach to non-linear and non-Gaussian Bayesian state estimation. Proc of Institute Electric Engineering, 140(2): 107-113.
    [31] Grimble M. J (2005). Non-linear generalized minimum variance feedback., feedforward and tracking control. Automatica, 41: 957-969.
    [32] Han Q. L., Keqin G., Yu X H (2003). An improved estimate of the robust stability bound of time-delay systems with norm-bounded uncertainty. IEEE Transactions on Automatic Control, 48(9): 1629-1633.
    [33] Hang C.C., Chin D (1991). Reduced order process modelling in self-tuning control. Automatica, 27(3): 529-534.
    [34] He Y., Wu M., She J. H., Liu J. P (2004). Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Transactions on Automatic Control, 49(5): 828-832.
    [35] Higham J. D (1968). Single-term control of first and second-order processes with time delay. Control, 2: 136-140.
    [36] Ho W. K., Xu W (1998). PID tuning for unstable processes based on gain and phase-margin specifications. IEE Proceedings: Control Theory and Applications, 145(5): 392-396.
    [37] Huang H. P., Chen C. C (1997). Control-system synthesis for open-loop unstable process with time delay. IEE Proceedings: Control Theory and Applications, 144(4): 334-346.
    [38] Hwang J. H., Tsay S. Y., Hwang C (2004). Optimal tuning of PID controllers with specified gain and phase margins. Chemical Engineering Communications, 191(9): 1208-1233.
    [39] Hwang C., Shih Y. P (1985). Optimal control of delay systems via block pulse functions .J. Optimal Theory Appl, 45(1): 215-221.
    [40] Isidori A (1989). Nonlinear Control Systems. 2nd ed., Springer-Verlag, New York.
    [41] Isidori A (2000). A Tool for Semiglobal. Stabilization of Uncertain Non-Minimum-Phase Nonlinear Systems via Output Feedback.正 EE Trans. Amoinat. Contr, 45(10): 1817-1827.
    [42] Jiang Z. P., Repperger D. W., Hill D. J (2001). Decentralized nonlinear output-feedback stabilization with disturbance attenuation. IEEE Transactions on Automatic Control, 46(11): 1623–1629.
    [43] Julier S., Unlmann J (2004). Unscented filtering and nonlinear estimation. Proceedings of IEEE, 192(3): 401-422.
    [44] Kandil T. H., Khalil H. K., et, al, (2005). Adaptive feedforward cancellation of sinusoidal disturbances in superconducting RF cavities. Nuclear Instruments and Methods in Physics Research A, 550: 514–520.
    [45] Kaya I (2003a). Autotuning of a new PI-PD smith predictor based on time domain specifications. ISA Transactions, 42(4): 559-575.
    [46] Kaya I (2003b). A new Smith predictor and controller for control of processes with long dead time. ISA Transactions, 42(1): 101-110.
    [47] Kaya I (2003c). Obtaining controller parameters for a new PI-PD Smith predictor using autotuning. Journal of Process Control, 13(2): 465-472.
    [48] Kaya I (2004). Two-degree-of-freedom IMC structure and controller design for integrating processes based on gain and phase-margin specifications. IEE Proc. –Control Theory Appl, 151(4): 481–487.
    [49] Keel L. H., Bhattacharyya S. P (1997). Robust, Fragile, or Optimal. IEEE Trans. Automat. Contr., 42(8): 1098-1105.
    [50] Khalil H .K (1996).Nonlinear Systems.Second Edition, Prentice Hall.
    [51] Khalil H. K (1996). Robust Servomechanism Output Feedback Controllers for a Class of Feedback Linearizable Systems. Automatica, 30: 1587-159.
    [52] Kharatishivili G. L (1961). The maximum principle in the theory of optimal process with time-lay. Dokl. Al ad .Nauk. SSSR, 6(1): 185-192.
    [53] Khargonekar P. P., Petersen I. R., Zhou K (1990). Robust stabilization of uncertain linear systems: quadratic stabilizability and H∞ control theory. IEEE Trans. on Automatic Control, 35(3): 356-361.
    [54] Kharitonov V. L., Niculescu S. I (2003). On the stability of linear systems with uncertain delay. IEEE Trans. on Automatic Control, 48(1): 127-132.
    [55] Khuen Ho, Chieh H. W., Cao L. S (1995). Tuning of PID controllers based on gain and phase margin specifications. Automatica, 31(3): 497-502.
    [56] Kim K. T., Cho S. H., Bang K. H., Park H. B (2001). H∞ control for discrete-time linear systems with time-varying delays in state. Industrial Electronics Society, 1: 707-711.
    [57] Kleinman D. I (1969). Optimal Control of Linear Systems with Time Delay and Observation Noise. IEEE Trans.Auto.Contr., 4 .
    [58] Krstic M., Kanellakopoulos I., Kokotovic P. V (1994). Nonlinear design of adaptive controllers for linear systems. IEEE Trans. AC- 39(4): 738-758.
    [59] Kwakemaak H (1967). Optimal filtering in linear systems with time delay. IEEE Trans .Auto. Comr., 12.
    [60] Kwon W. H (1988). LQGILTR Methods for Linear Systems with Delay in State. IEEE Trans.Auto. Contr., 33(7): 621-629.
    [61] Landau I. D (1994). Robust digital control of systems with time delay. Proceedings of the 33rd IEEE Conference on Decision and Control. Part 1 (of 4), Dec 14-16 1994. Lake Buena Vista, FL, USA:IEEE, Piscataway, NJ, USA, 865-869.
    [62] Landau I. D (1995). Robust digital control of systems with time delay (the Smith predictor revisited). International Journal of Control, 62(2): 325-347.
    [63] Larson E. C., Parker B. E., Clar, J. R (2002). Modern spectral estimation techniques for structural health monitoring [C]. Proceedings of the American Control Conference ,Anchorage,AK,4220-4223.
    [64] Lee J. Y., Lee J. G (1999). Delay-dependent stability criteria for discrete-time delay systems. Proc. Of American Contr. Confer, 319–320.
    [65] Lee Y., Moon Y. S., Kwon W. H., Kwan H. L (2001). Delay-dependent robust H∞ control for uncertain systems with time-varying state delay. Proc. of Conf. On Decision and Control, 3218–3213.
    [66] Lee Y., Park S (2000). PID controllers tuning for integrating and unstable processes with time delay. Chem. Eng. Sci. 55: 3481–3493.
    [67] Lee C. H., Teng C. C (2002). Tuning of PID controllers for unstable processes based on gain and phase margin specifications: A fuzzy neural approach. Fuzzy Sets and Systems, 128(1): 95-106.
    [68] Li X., Souza C. E (1997). Delay-dependent robust stability and stabilization of uncertain linear delay systems: a LMI approach. IEEE Transactions on Automatic Control, 42: 1141-1144.
    [69] Lin C. L., Hsiao Y. H (2001). Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop. IEEE Trans. Control systems technology, 9(1): 108–121.
    [70] Lindquist A (1972). A theorem in duality between estimation and control for linear stochastic systems wit time delays. J. Math. Anal. appl., 37.
    [71] Liu T., Gu D., Zhang W (2003). A infinity design method of PID controller for second- order processes with integrator and time delay. 42nd IEEE Conference on Decision and Control, Dec 9-12 2003. Maui, HI, United States: Institute of Electrical and Electronics Engineers Inc., 6044-6049.
    [72] Lu G. P., Ho D. W. C (2002). Robust stabilization for a class of discrete-time systems with nonlinear perturbations. Proceedings of the 4th World Congress on Intelligent Control and Automation, 2: 993-997.
    [73] Majhi S., Atherton D. P (1998). New Smith predictor and controller for unstable and integrating processes with time delay. Proceedings of the IEEE Conference on Decision and Control. Proceedings of the 1998 37th IEEE Conference on Decision and Control (CDC), Dec 16-Dec 18 1998, 1341-1345.
    [74] Majhi S., Atherton D. P (1999). Modified Smith predictor and controller for processes with time delay. IEE Proceedings: Control Theory and Applications, 146(5): 359-366.
    [75] Majhi S., Atherton D. P (2000a). Automatic tuning of the modified smith predictor controllers. 39th IEEE Confernce on Decision and Control, Dec 12-15 2000. Sydney, NSW: Institute of Electrical and Electronics Engineers Inc., 1116-1120.
    [76] Majhi S., Atherton D. P (2000b). Obtaining controller parameters for a new Smith predictor using autotuning. Automatica, 36(11): 1651-1658.
    [77] Mao X (1994). Exponential Stability of Stochastic Differential Equations. New York: Marcel Dekker.
    [78] Marconi L., Isidori A., Serrani A (2002). Input disturbance suppression for a class of feedforward uncertain nonlinear systems. Systems & Control Letters, 45(2): 227–236.
    [79] Matausek M. R., Kvascev G. S (2003). A unified step response procedure for autotuning of PI controller and Smith predictor for stable processes. Journal of Process Control, 13(8): 787-800.
    [80] Matausek M. R., Micic A. D (1996). Modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 41(8): 1199-1203.
    [81] Matausek M. R., Micic A. D (1999). On the modified smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 44(8): 1603-1606.
    [82] McNeilage C., Ivanov E. N., et. al (1998). Review of feedback and feedforward noise reduction techniques. IEEE Int. Freq. Con. Symp, 146-155.
    [83] Meyer C. B (1988). A sampled data controller for process with time delay and load disturbances, ISA Trans., 27.
    [84] Miroslav Krstic (2003). Feedback Linearizability and Explicit Integrator Forwarding Controllers for Classes of Feedforward Systems. IEEE Transactions on Automatic Control, 49(10): 1668-1682.
    [85] Moon Y., Park P., Kwon W (2001). Robust stabilization of uncertain input-delayed systems using reduction method. Automatica, 37: 307–312.
    [86] Morari M., Zafiriou E (1989). Robust process control. Englewood Cliffs, N.J: Prentice Hall.
    [87] Normey-Rico J. E., Bordons C., Camacho E. F (1997). Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 5(6): 801-810.
    [88] Paatilammi J., Makila P. M (2002). Fragility and Robustness: A Case Study on Paper Machine Headbox Control. IEEE Control Systems Magazine, 20(1): 13-22.
    [89] Palhares R. M., SouzaQu C. E., Dias Peres P. L (2001). Robust H∞ filtering for uncertain discrete-time state-delayed. IEEE Trans on Sig. Processing, 49(8): 1696-1703.
    [90] Park J. H., Jung H. Y (2003). On the exponential stability of a class of nonlinear systems including delayed perturbations. J. Computation and Application Mathematics, 159: 467-471.
    [91] Prempain E., Ian Postlethwaite (2001). Feedforward control: a full-information approach. Automatica, 37(1): 17–28.
    [92] Qu Z (1992). Global stabilization of nonlinear systems with a class of unmatched uncertainties. Systems and Control Letters, 18(4): 301–307.
    [93] Qu Z (1995). Robust control of nonlinear uncertain systems without generalized matching conditions. IEEE Trans on Automat. Contr, 40(8): 1453-1460.
    [94] Ray W. H (1981). Advanced Process Control .New York: McGraw-Hi.
    [95] Park P (1999). Delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Automat. Contr, 44(4): 876-877.
    [96] Peng Huei (2004). Modular adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Robust and Nonlinear Control for Automotive Applications, 14(6): 581-601.
    [97] Richard J. P (2003). Time-delayed systems: an overview of some recent advanced and open problems. Automatica, 39: 1667–1694.
    [98] Rivera D. E., Morari M., S Skogestad (1986). Internal Model Control. 4. PID Controller Design. Industrial & Engineering Chemistry, Process Design and Development, 25(1): 252-265.
    [99] Serrani A (2001). Toward universal nonlinear output regulation. In Proc. 40th IEEE Conf. Decision Control, Orlando, FL, 59–64.
    [100] Sinnaka S (1990). Adaptive algorithm. Sangyotosyo, 3: 1-97.
    [101] Smith O. J. M (1957). Close Control of Loops with Dead Time. Chemical Engineering Progress, 53(5): 217-219.
    [102] Soderstrom T (1999). Feedforward, correlated disturbances and identification. Automatica, 41(9): 1565–1571.
    [103] Song S., Kim J. K (1998). H∞ control of discrete-time linear systems with norm-bounded uncertainties and time delay in state. Automatica, 34(1): 137-139.
    [104] Su L. J., Huang C. G (1992). Robust stability of delay dependence for linear uncertain systems. IEEE Trans. Automat. Contr, 37(10): 1656-1659.
    [105] Tan W., Marquez H. J., Chen T (2003). IMC design for unstable processes with time delays. Journal of Process Control, 13(3): 203-213.
    [106] Tangi G. Y., Zhang B. L., Ma H (2004). Feedforward and feedback optimal control for linear discrete systems with persistent disturbances. Presented at the 2004 ICCA World Congr., Kunming, China.
    [107] Toscano R (2005). A simple robust PI/PID controller design via numerical optimization approach. Journal of Process Control, 15(1): 81-88.
    [108] Trinh H., Aldeen M (1997). On robustness and stabilization of linear systems with delayed nonlinear perturbations. IEEE Trans on Automat. Contr, 42: 1001-1007.
    [109] Triuh H., Aldeen M (1997). On robustness and stabilization of linear systems with delayed nonlinear perturbations. IEEE Trans. Automat. Contr, 42: 1001-1007.
    [110] Tsai J. S. H., Lu C. Y., Su T. J., Jong G. J (2002). Robust stabilization of uncertain discrete time systems with state delay. P. of Amer. Contr., 3: 2404–2405.
    [111] Tsinias J., Tzamtzi M. P (2001). An explicit formula of bounded feedback stabilizers for feedforward systems. Syst. Control Lett., 43: 247–261.
    [112] Vapnik V. N., John Wiley (1998). Statistical learning theory, New York.
    [113] Wang Q. G., Bi Q., Zhang Y (2001). Partial internal model control. IEEE Transactions on Industrial Electronics, 48(5): 976-982.
    [114] Wang S., Chow J. H (2000). Low-order Controller Design for SISO Systems Using Coprime Factors and LMI. IEEE Trans on Automat. Contr, 45(6): 1166-1169.
    [115] Wang Y. G., Cai W. J (2001). PID tuning for integrating processes with sensitivity specification. 40th IEEE Conference on Decision and Control (CDC), Dec 4-7 2001. Orlando, FL: Institute of Electrical and Electronics Engineers Inc., 4087-4091.
    [116] Wang Q. G.., Hang C. C., Yang X. P (2001). Single-loop controller design via IMC principles. Automatica, 37(12): 2041-2048.
    [117] Wang Q. G., Zhang Y (2001). Robust identification of continuous systems with dead-time from step responses. Automatica, 37(3): 377-390.
    [118] Wang Q. G., Lee T. H., Tan K. K (1995). Automatic tuning of finite spectrum assignment controllers for delay systems. Automatica, 31, 477-482.
    [119] Whidbome J. F., Istepanian R. S. H., Wu J (2001). Reduction of Controller Fragility by Pole Sensitivity Minimization . IEEE Trans. Automat. Contr, 46(2): 320-325.
    [120] Wu H (1999). Uniform ultimate boundedness for uncertain non-linear systems. Int. J. Control, 72(2): 115-122.
    [121] Wu H (2002). Decentralized Adaptive Robust Control for a class of Large-Scale Systems Including Delaved State Perturbations in the Interconnections. IEEE Transactions on AutomaticControl, 47(10): 1745-1751.
    [122] Xiaohong Nian (2003). Stability of linear systems with time-varying delays: an Lyapunov functional approach. Proceedings of the 2003 American Control Conference, 1: 883-884
    [123] Xie L., Souza C. E (1990). Robust H∞ control for linear systems with norm-bounded time-varying uncertainty. IEEE Trans. on Automatic Control, 37(8): 1188-1191.
    [124] Xie L (1996). Output feedback H∞ control of systems with parameter uncertainty. Int. J. Contr, 63(4): 741-750.
    [125] Xu B (2001a). Stability of Retarded Dynamical Systems: A Lyapunov Function Approach. J. Math. Anal. Appl, 253(2): 590-615.
    [126] Xu B (2000b). Stability criteria for linear time-invariant systems with multiple delays. J. Math. Anal. Appl., 25: 484-494.
    [127] Xu B (2002c). Delay-Independent Sability Citeria for Linear Continuous Systems with Time-Varying Delays. nt. J. Systems Sci, 33(7): 543-550.
    [128] Xu B (2003a). Stability Criteria for Linear Systems with Uncertain Delays. J. Math. Anal. Appl. 284(2): 455-470.
    [129] Xu B (2003b). Stability Criteria for Linear Systems with Multiple Time-Varying Delays. J. of Control Theory&Appl, 1(1): 65-69.
    [130] Xu S. Y., Dooren P. V., Stefan R., Lam J (2002). Robust stability and stabilization for singular systems with state delay and parameter uncertainty. IEEE Trans. Automat. Contr, 47(7): 1122-1128.
    [131] Xu B., Liu Y. H (2003). Delay-Dependent/Delay-Independent Stability of Linear Systems with Multiple Time-Varying Delays. IEEE Trans. Auto. Contr, 48(4): 697-701.
    [132] Xue X., Qiu D (2000). Robust H∞-compensator design for time-delay systems with norm-bounded time-varying uncertainties. IEEE Trans. on Automatic Control, 45(7): 1363-1369.
    [133] Yamamoto K., Hashimoto S., Funato H., Kamiyama K (1997). Improvement of robust stability in two-degree-of-freedom control with adaptive control. Proc. of the 23rd International Conference on Industrial Electronics, Control, and Instrumentation, 1: 300-305.
    [134] Yaniv O., Nagurka M (2004). Design of PID controllers satisfying gain margin and sensitivity constraints on a set of plants. Automatica, 40(1): 111-116.
    [135] Yao B., Tomizuka M (1997). Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form. Automatica, l33(5): 890-900.
    [136] Yao B., Tomizuka M (2001). Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms. Automatica, 37(9): 1305-1321.
    [137] Yu L., Gao F. R (2000). Robust H∞ control of discrete-time linear systems with delayed state and Frobenius norm-bounded uncertainties. Proceedings of the 39th IEEE Conference on Decision and Control, 3: 2754-2755.
    [138] Yuan L (1996). Robust H∞ analysis and synthesis of linear systems with state-delay and norm-bounded time-varying uncertainties. Proceedings of the 35th Conference on Decision and Control, 2960-2961.
    [139] Yue D (2004). Robust stabilization of uncertain systems with unknown input delay. Automatica, 40: 331-336.
    [140] Yue D., Won S (2003). Design of delay dependent robust controller for uncertain systems with time varying delay. J. of Control Theory & Appl, 20: 261-265.
    [141] Zhang W., Yang Y. X., Xu X (2002). Design PID controllers for desired time-domain or frequency-domain response. ISA Transactions, 41(4): 511-520.
    [142] Zhang W., Xu X., Sun Y (1999). Quantitative performance design for integrating processes with time delay. Automatica, 35(4): 719-723.
    [143] Zhang W., Xu X., Zhang W (2000). PID design of unstable process by using closed loop constraints. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 34(5): 589-592.
    [144] Zheng F., Cheng M., Gao W. B (1995). Variable Structure Control of Time-delay Systems with a Simulation Study on Stabilizing Combustionin Liquid Propellant Rocket Motors. Automatica, 31(7): 1031-1037.
    [145] Zhou K. M., Doyle J. C., Glover K. (1998). Essentials of Robust Control. Prentice Hall, Upper Saddle River.
    [146] 李静 (2004). 粒子滤波器关键技术及其应用的研究. 南京:南京大学.
    [147] 邵惠鹤 (2003). 工业过程高级控制. 上海:上海交通大学出版社.
    [148] 胡泽新,蒋慰孙(1992). 新的非线性时滞系统预测控制及应用. 信息与控制,21(5).
    [149] 姜长生,孙隆和,吴庆宪,陈文华 (1998). 系统理论与鲁棒控制. 北京: 航天工业出版社.
    [150] 王景成 (1999). 不确定时滞连续系统鲁棒可靠控制研究. 上海:上海交通大学.
    [151] 任正云 (2003). 预测 PID 控制及其在工业中的应用. 上海:上海交通大学.
    [152] 朱宏栋 (2005). 时滞过程控制方法及应用研究. 上海:上海交通大学.
    [153] 汤红吉 (2005). 不确定时滞系统的鲁棒控制. 上海:华东师范大学.
    [154] 邵锡军 (2001). 不确定离散时滞系统的鲁棒控制. 南京:南京理工大学.
    [155] 俞立 (1999). 不确定离散线性系统的鲁棒镇定.控制与决策,2: 169-172.
    [156] 俞立 (1999). 不确定离散线性系统的最优保性能镇定.控制理论与应用,16(5): 639-642.
    [157] 梅生伟,申铁龙,刘志康 (2003).现代鲁棒控制理论与应用.清华大学出版社.
    [158] 奥斯特伦,威顿马克,周兆英 (2001).计算机控制系统:原理与设计.电子工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700