用户名: 密码: 验证码:
基于OFDR技术的管道防破坏预警系统设计与信号分析处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管道输送方式是当前油气产品运输的主要途径,第三方破坏已成为影响油气管道安全运行的最重要因素之一,不仅影响了重要能源产品的可靠稳定供应,还对国家、人民的生命财产安全以及环境安全构成了极大的威胁。目前管道安全检测方法主要依靠基于管道运行参数及管壁状态的检测技术,对于管道泄漏检测有一定的效果,而对于日益严重的管道第三方破坏事故检测效果不佳,只能在泄漏事故发生之后给出报警,由于泄漏造成的能源浪费、环境污染以及其他直接、间接损失无法挽回。因此,急需一种具有对第三方破坏活动具有预警检测能力的管道安全检测技术,在第三方破坏活动实施之初即可给出报警信息,以便相关部门及时采取措施阻止第三方破坏活动的进行,从而有效避免管道泄漏事故的发生。
     针对油气输送管道特点和第三方破坏活动特征,本文提出了一种基于OFDR技术的第三方破坏活动预警检测方案,设计了基于该检测方案的管道防破坏预警检测系统,对系统各个环节部件的工作原理以及设计方法进行了详细的分析和研究。
     基于该方案的检测系统用普通单模光纤作为分布式传感器,沿输送线路敷设于管道附近,可以对长距离油气管道实现分布式检测。在传感光纤中准分布式地植入了大规模的光纤光栅阵列,与常规光纤光栅应用不同,在本系统中光纤光栅不直接起传感器作用而是作为光反射器件起反射镜作用。因此,对光纤光栅的参数有特定的要求,本文根据系统原理分析了光纤光栅参数选择的原则,并对其制作方法进行了研究,制作了满足系统使用要求的光纤光栅,完成了传感光纤的制作和光缆的加工。传感光缆对管道沿途伴随第三方破坏活动发出的振动信号进行拾取,通过基于OFDR技术的光外差探测法进行信号探测,根据探测信号特点设计了光电转换与信号调理电路,通过采集卡对检测信号进行了数字化采集。利用专门设计的计算机软件对采集信号进行分析处理,采用信号功率谱分析方法来发现并定位出现在管线沿途的扰动事件,并应用锁相环技术对扰动事件引起的调制信号进行提取,为进一步识别扰动事件的类型、判断扰动事件的性质提供依据。
     目前设计的传感光缆已经敷设在港-枣(天津大港至山东枣庄)成品油管线沧州至德州段,经多次现场测试其性能满足系统使用要求。作为阶段性成果,目前系统样机已经初具功能,实验室模拟实验及现场测试结果表明,系统方案基本可行,功能有待进一步完善。
Pipeline transmission approach is currently the main way to transport oil and gas production. However, the third-party damage has become the most important threat to the safe operation of oil and gas pipeline. It not only affects the steady and reliable supply of important energy products, but also poses a great threat to the safety of the country, people's lives and property as well as the environment. Current pipeline detection methods rely mainly on pipeline operating parameters and pipe-wall state detection technology, which is effective to pipeline leak detection to a certain degree, but produces poor results in the detection of the growing third party pipeline damages since it only gives an alarm only after the leakage accident. It is impossible to retrieve losses of energy waste, pollution and other direct or indirect caused by leakage. Therefore, the need for pipeline safety inspection techniques with an early warning and detection against the third party damage is urgent so that alarm information can be given to the relevant departments when the third-party damage is caused and timely measures can be taken by those departments to prevent third-party damage activ
     In connection with the characteristics of oil and gas pipeline and third-party sabotage activities, this paper prop ities. Hence, the occurrence of pipeline leakage accidents can be avoided effectively.oses an early warning and detection program for the third-party sabotage activities based on OFDR technique and fiber Michelson interferometer principles. A pipeline damage prevention, early warning and detection system is designed based on the detection program and detailed analysis and research are conducted on the working principle of every components of the system and its design methods.
     The detection system of the program adopts ordinary single-mode fiber as distributed sensors, which are laid near the pipeline along the transmission route and enable non-blind area distributed detection of the long-distance oil and gas pipeline. A large-scale quasi-distributed fiber Bragg grating array is implanted in the sensor fiber as multiple reflectors, which forms a fiber Michelson interferometer detection system that has a positioning capability to external perturbations in association with the reflector set in the reference arm of the fiber-optic Michelson interferometer. Being different from the application of conventional optical fiber grating, the fiber Bragg grating in this system does not function as a sensor but as a reflector which reflects light. Therefore, the parameters of the fiber grating have a specific requirement. This paper analyses the selection principles of the fiber grating parameters according to the system principles and studies methods to produce it. Then fiber Bragg grating which meets the requirements of the system is produced and the sensing fiber production and fiber processing are completed. Sensor cable along the pipeline picks up the vibration signals sent out by the third-party sabotage activities, then detects the signals based on OFDR optical heterodyne detection method. It further designs the signal transfer and signal conditioning circuit according to the characteristics of the detected signals and carries out the digital collection of the detection signals through the use of capture card. Specially designed computer software is used to analyze and process the collected signal so that disturbance incidents alongside the pipeline is detected and located using signal power spectrum analysis and vibration information caused by disturbance events is retrieved by the application of the phase-locked loop technology which provide basis for the further identification of the type of disturbance events as well as the determination of the nature of disturbance events.
     Currently the designed sensor optical cable has been laid in Cangzhou-Dezhou section of the Gang-Zao (Dagang, Tianjin to Zaozhuang, Shandong) oil pipeline. It has been proved to meet the system requirements after several field tests. As the initial results, the current system prototype has already begun to function and laboratory simulation and field test results show that the system solutions are feasible with its functions to be further improved.
引文
[1]张露.我国能源运输方式比较研究-油气水上运输与管道运输方案比较分析:[硕士学位论文].上海:上海海运学院,2000
    [2]高育红.最经济的运输方式-管道运输.交通与运输,2009,4:53~54
    [3]蒲明.中国油气管道发展现状及展望.国际石油经济,2009,17(3):40~47
    [4]朗需庆,赵志勇,宫宏,等.油气管道事故统计分析与安全运行对策.安全健康和环境,2006,6(10):15~17
    [5] J Griffin. Gas visualization Technology provides efficient leak detection. Offshore, 2002, 62(3): 94
    [6]朱建华.油气管道事故危险危害分析.劳动保护科学技术,1998,18(4):39~43
    [7]李全平.油气输送管道失效事故及典型案例.焊管,2005,28(4):76~92
    [8] SI Levin, VV Kharionovsky.Causes and frequency of failures on gas mains in the USSR. Pipe&Pipeline international, 1993, Vol.3 No.4:9~13
    [9] RJ Eiber DJ Johns. Outside force causes most natural gas pipeline failures. Oil & Gas, 1987, Vol.85:11. 52~57
    [10]王玉梅,郭书平.国外天然气管道事故分析.油气储运,2000,19(7):5~10
    [11]国辉.我国城市天然气管道事故统计及分析.安全健康和环境,2008,8(4):6~8
    [12]赵忠刚,姚安林,蒋宏业,等.油气管道第三方破坏的研究进展.石油工业技术监督,2008,11:5~9
    [13]周琰.分布式光纤管道安全检测技术研究:[博士学位论文].天津:天津大学,2006
    [14]王立.基于分布式光纤传感的智能环境感知技术研究:[博士学位论文].天津:南开大学,2008
    [15]王方,邵宗宝.长输石油管道打孔盗油的形式及安全修复对策.安全健康和环境.2005年第5卷第1期长输管道专栏
    [16]杨杰,王桂增.输气管道泄漏诊断技术综述.化工自动化及仪表.2004,31(3):1~5
    [17] Sperl J L.System pinpoints leaks on point arguello offshore line.Oil&Gas Journal,1991,89(36):47~52
    [18]付道明,孙军,等.国内外管道泄漏检测技术研究进展.石油机械,2004,32(3):48~51
    [19] Hennigar G W.Advances in gas leak detection.Pipeline&Gas Journal,1985,212(11):39~42
    [20] Hurt N H.Stand-alone sensors monitor for combustible gas leaks.Pipe Line Industry,1991,74(1):65~66
    [21] [日]森村正直,正崎弘郎主编,黄香泉译.传感器技术.北京:科学出版社,1988
    [22] Huebler J E.State-of-the-art detection of unauthorized construction equipment in pipeline right-of ways. US Department of Energy, Des Plaines, IL, 2001
    [23]王延年,朱强,等.长输油管道泄漏检测方法研究进展.石油机械,2007,35(5):49~53
    [24] Chet Sandberg.The application of a continuous leak detection system to pipeline andasscciated equipments.IEEE Transactions on Industry Application,1989,25(5):906~909
    [25]吴国忠,李栋,等.红外成像技术在管道防盗检测中的应用可行性.油气储运.2005,24(9):49~50
    [26]周鹏,王明时,等.基于红外图像处理的埋地石油管道自动探测技术.天津大学学报.2007.1,40(1):89~93
    [27] Reichardt T A,Einfeld W,Kulp T J.Review of remote detection for natural gas transmission pipeline leaks.California,USA:Sandia National Laboratory,2002
    [28] Griffin J.Aerial gas leak detection system unveiled.Underground construction,2003,58(2):40~41
    [29]夏海波,张来斌,王朝辉.国内外油气管道泄漏检测技术的发展现状.油气储运,2001,20(1):1~5
    [30]冯建.流体输送管道泄漏智能诊断与定位方法的研究:[博士学位论文].沈阳:东北大学,2005
    [31] N.E. Flournoy and W.W. Schroeder.Development of a pipeline leak detector.Journal of Canadian Petroleum Technology,1978,17(3):33~36
    [32] J.A. De Raad.Comparison between ultrasonic and magnetic flux pigs for pipelines and associated equipment.Pipes&Pipelines International,1987,32(1):7~15
    [33] G. Dobmann.Magnetic leakage flux testing with probes.Physical principles and restrictions for application,NDT International,1987,20(2):295
    [34]李东升,王昌明,施祖德,等.管道壁缺陷超声波在役检测的量化分析研究.仪器仪表学报,2002,23(2):131~134
    [35]周明.在役管道壁厚超声检测爬机技术.无损检测,1999,21(6):249~295,257
    [36]魏茂安.油气管道MFL检测信号处理与管道缺陷评估技术研究:[博士学位论文].天津:天津大学,2004
    [37]李靖,刘微.分布式FBG传感器在管道检测中的应用.石家庄铁路职业技术学院学报,2008,7(1):67~70
    [38]李靖,刘微,史振江,等.分布式双光纤阵列在泄漏检测中的应用.传感器与仪器仪表,2009,25(11):145~146
    [39]马云宾,胡志新,杨晶,等.基于光纤光栅的输油管道安全监测系统.应用光学,2009,30(3):505~509
    [40]何存富,杭利军,吴斌.分布式光纤传感器在管道泄漏检测中的应用.传感器与微系统,2006,25(9):8~11,14
    [41] A J Rogers.Distributed optical-fiber sensing.Proceedings of SPIE,1991,1511:2~24
    [42] A Kung,J Budin,L Thevenaz etal.Rayleigh fiber optics gyroscope.IEEE photonics technology letters,1997,9(7):973~975
    [43] Mostafa Ahangrani,Torsten Gogolla.Spontaneous Ramman scattering in optical fibers with modulated temperature Raman remote sensing.Journal of lightwave technology,1999, Vol.17:1379
    [44] Liou C P.Leak detection by mass balance effectiver for Norman wells line.Oil&Gas Journal,1996(3):69~74】【Rajtar J M,Muthiah R.Pipeline leak detection system for oil and gas flowlines.Journal of Manufacturing Science and Engineering,1997,119:105~109
    [45]蒋仕章,蒲家宁.用动态质量平衡原理进行管道检漏的精度分析.油气储运,2000,19(2):12~13
    [46]于达,申龙涉.用压力波检测法监测管道泄漏技术的研究.管道技术与设备.1993(3):1~4
    [47] Hough J E.Leak Testing of Pipelines Uses Pressure and Acoustic Velocity.Oil&Gas Journal.1998,86(47):35~41
    [48]江崇礼,孟庆操,董明.管道泄漏的压力测量诊断方法实验研究.大连理工大学学报,1998,38(1):101~104
    [49]靳世久,王立宁,李健.瞬态负压波结构模式识别法原油管道泄漏检测技术.电子测量与仪器学报,1998,12(1):59~64
    [50] Seiders E J.Hydraulic gradient eyed in leak location.Oil&Gas Journal,1979,77(47):116~125
    [51] Wang G Z,Dong D,Fang C Z.Leak Detection for transport pipelines based on autoregressive moduleing.IEEE Transactions on Instruction and Measurement,1993,42(1):68~71
    [52]唐秀家.不等温长输管道泄漏定位理论.北京大学学报(自然科学版),1997,33(5):575~579
    [53] M.Amanda Clark,Lance E.Rewerts,Ron R.Roerts.Experimental studies on the role of backfill and pipeline characteristics in the application of acoustic leak location to underground pipelines.Review of Progress in Quantitative Nondestructive Evaluation,1997,16:467~473
    [54] Hough J E.Leak testing of pipelines uses pressure and acoustic velocity.Oil&Gas Journal,1988,86(47):467~473
    [55]Klein W R.Acoustic leak detection.American Society of Mechanical Engineers,Petroleum Division,1993(55):57~61
    [56] Kenya Fukushima,Reiko Maeshima.Gas pipeline leak detection system using the online simulation method.Computers and Chemical Engineering,2000(24):453~456
    [57] Verde C.Multi-leak detection and isolation in fluid pipelines。Control Engineering Practice,June2001,9(6):673~682
    [58] Hoeijmakers J,Lewis J.Real time statistical leak detection on the RRP crude oil network.Proceedings of International Pipeline Conference,Calgary,Alberta,2002
    [59] Zhang Xuejun.Statistical leak detection in gas and liquid pipelines.Pipes&Pipelines,International,1993,38(4):26~29
    [60] Zhang Jun,Michael Twomey.Statistical pipeline leak detection techniques for all operating conditions.26thEnvironment symposium&Exhibition,California,March,2000:27~30
    [61]夏炜东译,李维绪校.气体和液体管道的统计检漏法.油气储运,1995,13(1):42~45
    [62] Francini R B,Hyatt R W,Leis B N.Real-time monitoring to detect Third-Party damage.U.S.,GTI,April,1997
    [63]张朝晖,耿艳峰,廖明燕。油气管道的破坏监测.仪器仪表学报,2001,22(3):374~377
    [64] John L L,Gary J M,et al.Acoustic detecting and locating gas pipe line infringement-fian contract report.NETL Strategic Center For Natural Gas,Dec,2004
    [65]王强.基于声信号检测的管道TPD预警系统研究:[博士学位论文].杭州:浙江大学,2005
    [66]李志刚.FFT在泄漏电缆周界入侵探测系统中的应用:[硕士学位论文].大庆:大庆石油学院,2009
    [67]郭彭.负载信号谱位相调制光纤传感技术的研究:[博士学位论文].天津:南开大学,2007
    [68]王延年.油气管线泄漏检测分布式光纤传感器的研究.西安交通大学学报,2003(9):933~936
    [69]岳剑锋.分布式光纤Φ-OTDR安防系统实用化研究.硕士学位论文.成都:电子科技大学.2009年5月
    [70]邱昆.光纤通信导论.成都:电子科技大学出版社,1994
    [71]郭凤珍,于长泰.光纤传感技术与应用.杭州:浙江大学出版社,1992
    [72]王惠文,江先进.光纤传感技术与应用.北京:国防工业出版社,2001
    [73]靳伟,廖延彪,等.导波光学传感器:原理与技术.北京:科学出版社,1998
    [74] Hill K O,Fujii Y,Johson D C.photosensitivity in optical fiber waveguides:Application to reflection filter fabrication,Appl.Phys.Lett.,1978,32(10):646~649
    [75] Porter J H,Murray D B.Fiber optic pressure detector.U.S.,Patens 3.686 958.1972.4.20 Dils J J.Optical Fiber Thermometry,J.Appl.Phys.m1973,10(84):1198~1200
    [76] M.K. Barnoski,S.M. Jensen.Fiber waveguides:A novel technique for investigating attenuation characteristics,1976,15(9):2112~2115
    [77] A.H. Hartog,M.P. Gold.On the theory of backscattering in single-mode optical fiber.Light Wave Techonl,1984,LT-2:76~82
    [78]沈一春,宋牟平,等.单模光纤中受激布里渊散射阈值研究.中国激光,2005,32:497~500
    [79]孟克.光纤干涉测量技术.哈尔滨:哈尔滨工程大学出版社,2008
    [80] T Sawa, K Kurosawa, T Kainishi et al.Development of Optical instrument transformers. IEEE Transactions of power delivery, 1990, Vol.5, No.2:884~891
    [81]肖冰.马赫-泽德光纤干涉仪的类别、特性及应用.长春大学学报,2005,15(6):16~18
    [82]姚建永,张森,王臻,等.光纤迈克尔逊干涉仪的理论与应用分析.仪表技术与传感器,2007,5:23~25
    [83]白韶红.法布里-珀罗干涉仪的发展与应用.传感器世界,2001,7:1~6
    [84]范彦平,巫建东,翟玉峰,等.分布式光纤Sagnac定位传感技术评述.传感器与微系统,2008,27(11):8~10,14
    [85]李亮,夏爱军,逯锋兵,等.光纤光栅传感技术的优势与应用.光通信技术,2007,7:62~64
    [86]李国利,李志全.光纤光栅应变传感测量中的温度补偿问题.激光与光电子学进展,2005,4,42(4):25~28
    [87] Dong L etal.Enhanced photosensitivity in tin-codoped germanosilicate opticalfibers.IEEE Photonics Technology Letters,1995,7(9):1048~1050
    [88] Morey W W,Meltz G,Glenn W H.Fiber optic Bragg grating sensors.Proc.SPIE.1989,1169:98~107
    [89] Rao Y J,Jackson D A,A Prototype multiplexing system for use with a large number of fiber-optic-based extrinsic Fabry-Perot sensors exploiting low coherence interrogation.Proc.SPIE1995,2507:90~98
    [90]孟凡勇,李志刚,郭转运,等.光纤光栅温度传感器在开关柜触头及母排温度监测中的应用.低压电器,2010,16:38~41
    [91] Hocker G B,Fiber-Optic sensing of pressure and temperature.Applied Optics,1979,18(9):1445~1448
    [92] Morey W W,Meltz G,Weiss J M.Evaluation of fiber Bragg grating hydrostatic pressure sensor.Proceedings of the 8th International conference on Optical Fiber Sensors,Monterrey,USA,PD 4.4,1992
    [93] Xu M G etal.Optical in-fiber grating high pressure sensor.Electronics Letters.1993,29(4):398~399
    [94]蔡志岗,靳珂,李伟良,等.光时域反射仪(OTDR)的研制.半导体光电,2002,23:48~50
    [95] B. Golubovic, B. E. Bouma, G. J. Tearney, J. G. Fujimoto. Optical frequency-domain-reflectometry using rapid tuning of a Cr4+.Forsterite laser Opt.Lett.1997,22:1704~1706
    [96] T. Amano, H. Hiro-Oka, D. Choi,H. Furukawa.Optical Frequency-Domain Reflectometry with a rapid wavelength-scanning superstructure-grating distributed bragg reflector laser.Appl,Opt,2005,44:808~816
    [97] S. H. Yun, G. J. Tearney, J. F. de Boer. High-speed optical frequency-domain imaging.Opt.Express 2003,11:2953~2963
    [98] U. Glombizta, E. Brinkmeyer. Coherent frequency-domain reflectometry for characterization of single-mode intergrated-optical waveguides.Lightwave Technol,1993,11:1377~1384
    [99] Stephen T. Kreger, Dawn K. Gifford. High resolution distributed strain or temperaturemeasurements in single-and multi-mode fiber using swept-wavelength interferometry.OSA/OFS,2006,42
    [100] Dieter Garus,Katerina Krebber,Frank Schliep. Distributed sensing technique based on brillouin optical-fiber frequency-domian analysis.Opt,Lett,1996,21:1402~1404
    [101] Mostafa Ahangrani Farahani.Torsten Gogolla. Spontaneous Raman scattering in optical fiber with modulated probe light for distributed temperature raman remote sensing. Journal of Lightwave Technology,1999,17:1379~1391
    [102]赵洋,李达成.激光外插干涉仪光电信号处理方法及特点.航空计测技术,1996,16(6):7~9
    [103]李家泽,朱宝亮,魏光辉.晶体光学.北京:北京理工大学出版社,1989
    [104]LIAO Yan-biao.Polarization optics.Beijing:Science Press,2003
    [105]Meng Zhou,Hu Yong-ming,Xiong Shui-dong.All polarization maintaining fiber hydrophone array.Chinese Journal of Laser,2002,A29(5):415~417
    [106]Wang Li-wei, Zhang Min, Mao Xian-hui etal.The arctangent approach of digital PGC demodulation for optic interferometric sensors.Proceedings of SPIE,2006,6292:62921E
    [107]A Dandridge, A B Tveten, T G Giallorenzi.Homodyne demodulation schemes for fiber optic sensors using phase generated carrier.IEEE J Quantum Electron,1982,QE-18(10):1647~1653
    [108]A D Kersey,M J Marrone,M A Davis.Polarisation insensitive fiber optic Michelson interderometer.Electronics Letters,1991,27(6):518~520
    [109]N J Frigo, A Dandridge, A B Tveten.Technique for elimination of Polarization fading in fiber interferometers.Electronics Letters,1984,20(8):319~320
    [110]王平,陈宇.偏振光经1/4波片后偏振态变化的理论分析.中国科技信息,2007,22:323,325
    [111] Stimulated brillouin scattering suppressed optical fiber .United States Patent 5848215
    [112]李立,饶云江,谢康,等.单模光纤受激布里渊散射阈值的研究.光学与光电技术,2009,7(1):17~19,32
    [113]大唐光通信公司.密集型波分复用系统概要(3).现代有线传输,1999,1:50~62
    [114] Lam D K W,Garside B K.Characterization of single-mode optical fiber filters.Applied Optics,1981,20:440~445
    [115]李宏男,任亮著.结构健康检测光纤光栅传感技术.北京:中国建筑工业出版社,2008
    [116] Malo B.Point-by-point fabrication of micro-bragg gratings in photosensitive fiber.Electron.Lett.,1993,29(3):1659~1662
    [117] Kashyap R.All-fiber narrow band reflection grating at 1550nm.Electron.Lett.,1990,26(5):730~732
    [118] Kashavp R.Assessment of tuning the wavelength of chirp and unchirp fiber bragg grating with simple phase mask.Electron.Lett.m1998,34(6):2025~2027
    [119]张书林.光纤熔接损耗浅析.电力系统通信,2004,7:61,64
    [120]Jihong Geng,Christine Spiegelberg,Shibin Jiang.Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry.IEEE photonics technology letters,2005,17(9):1827~1829
    [121]Xinyu Fan, Fumihiko Ito.Novel optical frequency domain reflectometry with measurement range byond laser coherence length realized using concatenatively generated reference signal.OSA 1-55752-834-9
    [122]丁炜.光纤传输特性浅析.中国有线电视,2001,7:16~18
    [123]Davis, Michael Andrew.Stimulated brillouin scattering in single mode optical fiber:[Dissertation of PhD]. University of Virginia,1997
    [124]富容国,常本康,钱芸生,等.PIN光电二极管探测器相应特性测试.光学与光电技术,2007,5(1):11~13
    [125]顾畹仪,李国瑞.光纤通信系统.北京:北京邮电大学出版社,1999
    [126]张孝登.调相信号的鉴频解调.无线电工程,1998,3:18~21
    [127]张厥盛,郑继禹,万心平.锁相技术.西安:西安电子科技大学出版社,1994
    [128]陈锡辉,张银鸿.LabVIEW 8.20程序设计从入门到精通.北京:清华大学出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700