用户名: 密码: 验证码:
东营凹陷盐—泥构造与油气运移和聚集的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐-泥构造是东营凹陷最重要的含油气构造。研究盐-泥构造与油气运移和聚集的关系,
    具有重要的理论意义和实践意义。在国家自然科学基金和胜利石油管理局“九五”攻关课
    题的资助下,在国内外关于盐或泥构造、盆地流体分析、油气运移和聚集过程研究的最新
    理论和方法的指导下,本文切入了盐-泥构造与油气运移和聚集关系这一复杂而富有魅力的
    研究课题。在提出盐-泥层和盐-泥构造的前提下,本文确定了东营凹陷盐-泥构造的类型、
    空间展布规律、成因机制和演化过程,讨论了盐-泥构造对油气运移和聚集的控制作用和作
    用机制,建立了与盐-泥构造相关的流体成藏动力学模式,指出了与盐-泥构造相关的油气
    勘探方向。
     1. 东营凹陷含盐层序原始沉积的典型特征是:盐类岩石与超压泥岩等构成互层的多韵
    律结构。这在我国陆相断陷盆地中具有普遍性。针对这一特点,本文提出了盐-泥层和盐-
    泥构造的概念。盐-泥层是指盐类岩石与超压泥岩呈互层的沉积层序,具有一定的塑性或流
    动性。盐-泥构造是由盐-泥层的流动变形而形成的一类构造样式。盐-泥构造与纯粹的盐构
    造或泥构造相比具有特殊性。
     2. 以地震剖面的精细解释为基础,借鉴典型盐或泥构造的研究成果,本文确立了东营
    凹陷盐-泥构造样式包括:盐-泥枕构造、盐-泥滚—滑脱断层簇—滚动背斜构造、盐-泥核
    背斜—拱顶断层簇构造。根据盐-泥构造的空间展布规律,将传统的中央隆起带划分为 3
    个构造带:北部盐-泥核背斜—拱顶断层簇构造带(东营构造带)、中部盐-泥枕-滑脱断层
    簇—滚动背斜构造带辛镇构造带、郝家构造带)、南部盐-泥滚—滑脱断层簇—滚动背斜
    构造带(史南-现河庄构造带、梁家楼构造带)。
     3.区域伸展作用下的重力滑动作用是东营凹陷盐-泥构造的成因机制。重力滑动作用表
    现为触发盐-泥层的聚集—隆升和引起薄皮滑脱作用。由此将盐-泥构造演化历程划分为盐-
    泥枕发育期(SB6’前)和滑脱断层—盐-泥滚—盐-泥核背斜发育期(SB6’后)。最终建立
    了东营凹陷盐-泥构造的成因-演化模式。
     4.利用了声波时差测井曲线和实测地层压力资料,在编制单井、剖面和平面压力系统
    结构图的基础上,概括出东营凹陷存在以沙河街组三、四段及孔店组活跃的烃源岩为主体
    的巨型烃源岩-超压封存箱复合体(SR-OPCC);划分出超压流体动力系统和静水压力-低压
    流体动力系统;特别讨论了超压释放和超压传递两类引人注目的与超压流体活动相关的现
    象——认识盆地流体活动以及油气运移和聚集的 “金钥匙”。
     5.本文将盐度(TDS)大于 10g/L 的流体称为含盐流体,具体划分出低盐度流体
    (1000g/L)。在编绘沙四
    上—沙二段 5 个地层单元流体盐度平面分布图的基础上,总结出高盐度异常沿主要断裂带
    
    
    展布的规律,提出沙河街组四段上亚段—东营组的高盐度流体,是盐-泥层中盐岩溶解形成
    的超压高盐度流体沿运移通道运移和注入的结果。从压力与盐度关系的角度认识了压力系
    数和盐度变化的 3 种趋势,并以超压释放和超压传递机制解释了变化现象。
    6. 根据凹陷地层孔隙流体的压力、盐度和温度特征以及流体运移动力和样式,本文划
    分出 3 个流体动力系统:深部超压含盐流体动力系统、中部静水压力含盐流体动力系统和
    浅部静水压力-低压淡水动力系统。在这样的流体动力系统背景下,含盐流体发生了别具特
    色的流动。
    7. 与盐-泥构造相关的流体活动和油气运移通道有断层型、裂隙型和砂岩型。以岩心
    观测和包裹体、电子探针、激光拉曼的测试数据和压力、盐度数据为依据,证实了这些运
    移通道的幕式活动。运移通道的动态性与超压释放作用有密切联系。
    8. 与盐-泥构造相关的油气圈闭组合包括:盐-泥枕—滑脱断层簇—滚动背斜型圈闭组
    合、盐-泥滚—滑脱断层簇—滚动背斜型圈闭组合、盐-泥核背斜—拱顶断层簇型圈闭组合。
    对应了 3 种油气藏组合,并分别命名为辛镇型(辛镇油田、郝家油田)、史南-现河庄型(史
    南油田、现河庄油田和梁家楼油田)、东营型(东营油田)油气藏组合。盐-泥构造对圈闭
    的控制作用表现在两方面:一是与盐-泥构造相关的断层或背斜直接参与圈闭的形成和演
    化;二是通过控制沉积作用,间接影响圈闭的形成和演化。
    9.在归纳成藏基本要素和油气成藏过程的基础上,厘定了与盐-泥构造相关的油气成藏
    事件。以史南-现河庄型油气藏组合为典型,剖析了与盐-泥构造相关的油气成藏过程。在
    此基础上,建立了与盐-泥构造相关的流体成藏动力学模型——概括出超压含盐流体动力系
    统、静水压力含盐流体动力系统和静水压力-低压淡水动力系统内的油气运移和聚集的过
    程。
    10. 从盐-泥构造与油气运移和聚集关系的角度出发,依据盐-泥构造样式及其展布规
    律以及与盐-泥构造相关的油气运移和聚集规律,对与盐-泥构造相关的油气勘探提出初步
    的设想——盐-泥上覆层有 3 类远景区:与盐-泥枕相关的远景区、与盐-泥滚—滑脱断层簇
    相关的远景区和与盐-泥核背斜相关的远景区。这些远景区的目的层均为沙三中、下和沙四
    上。同时指出,盐-泥层层间?
Salt-mud tectonics is the most important structure for hydrocarbon accumulation in the
    Dongying Depression. It is necessary to research on salt-mud tectonics in both theoretically and
    practically. This work is supported by National Natural Science Foundation of China (NSFC).
    Guiding with new theories and methods on salt tectonics and mud tectonics, basin-fluid analysis,
    hydrocarbon migration and accumulation, the thesis focus on studying the relationships between
    salt-mud tectonics and hydrocarbon migration and accumulation, which is also a charming and
    challenged theme at home and aboard. Firstly, the paper proposes the concepts of the salt-mud
    bed and salt-mud tectonics. Then the styles, characteristics of spatial distribution, genetic
    mechanics and evolution of salt-mud tectonics are refined in the Dongying Depression. Based on
    which the paper discussed the controls of salt-mud tectonics on hydrocarbon migration and
    accumulation and their mechanics, subsequently established fluid dynamic system model of
    hydrocarbon migration and accumulation related to salt-mud tectonics. Finally, the prospects of
    potential reservoirs are proposed related to the salt-mud tectonics.
     1. The typical feature of primary sediments of saline sequence in the Dongying Depression
    is the rhythmic succession characterized by interbeds of evaporite and overpressured mudstone,
    which is prevalent in continental fault basins in China. So the concepts of salt-mud bed and
    salt-mud tectonics are proposed in this paper. Salt-mud bed refer to sedimentary sequences
    consisted of the interbeds of evaporite and overpressured mudstone, which has the ductile or
    fluid properties. Salt-mud tectonics is one kind of tectonics resulted from the distortion of
    salt-mud bed flow. Salt-mud tectonics is different significantly to pure salt or mud tectonics.
     2. Based on the seismic profiles with seismic net spacing in almost 2km, the salt-mud
    tectonic styles in the Dongying Depression defined in this paper include salt-mud pillow,
    salt-mud roller—detachment fault family—rollover anticline, and salt-mud core anticline—
    keystone fault family. According to the spatial distribution features, the conventional Central
    Uplift Zone is re-divided into three subtectonic zones. They are the northern zone of
    salt-mud-core anticline and keystone fault family (Dongying tectonic zone ), the middle zone
    composed of salt-mud pillow, detachment fault family and rollover anticline ( Xinzhen and
    Haojia tectonic zones ), and the southern zone composed of salt-mud roller, detachment fault
    family and rollover anticline (Shinan-Xianhezhuang and Liangjialou tectonic zone).
     3. The trigger mechanism of the salt-mud tectonics is the gravitational gliding within
    regional extension. Salt-mud bed accumulating and upwelling and thin-skinned detachment
    incarnate gravitational gliding. Consequently, the evolution of salt-mud tectonics is divided into
    two stages composed of salt-mud pillow developing stage (Before SB6’) and detachment fault,
    salt-mud roller and salt-mud-core anticline developing stage (After SB6’).
    
    
    4. Combined acoustic logs and drill stem test (DST) data, structure of pressure system are
    complied on wells, profiles and planes, all of which indicate that a huge source rock –
    overpressure compartment complex (SR-OPCC) exist in the Dongying Depression. The active
    source rocks in third-forth member of Shahejie Formation and Kongdian Formation constitute
    the main body of SR-OPCC. And two systems can be divided as overpressure fluid dynamic
    system and hydrostatic-under pressured fluid dynamic system respectively. The overpressured
    expulsion and overpressued transference are discussed dramatically in this thesis, which is
    regarded as the “gold key” in understanding basin fluid flow and hydrocarbon migration and
    accumulation.
     5. Saline fluids are defined as the fluids with Total Dissolution Solidity (TDS) over 10g/l in
    this paper. There are three kinds of saline fluids including lower salinity fluids (10
引文
[1] 王秉海, 钱凯. 胜利油区地质研究与勘探实践[M]. 山东: 石油大学出版社, 1992, 1-357.
    [2] 胜利油田石油地质志编写组.中国石油地质志(卷六)——胜利油田[M]. 北京: 石油工业出版社, 1993,
     1-518.
    [3] 吴世祥, 钱凯. 场势效应在东营凹陷含油气系统形成与分布中的作用[A]. 见: 中国石油学会石油地
     质专业委员会. 中国含油气系统的应用与进展[M]. 北京: 石油工业出版社, 1997, 1-307.
    [4] 李春光. 试论东营断陷盆地区域盖层对油气藏分布控制[J]. 石油与天然气地质, 1991, 12(1):
     65-70.
    [5] 李春光. 东营凹陷断裂系统对油气藏分布的控制. 石油与天然气质[J], 1994, 15(1): 87-92.
    [6] Szatmari P, Guerra M C M, Pequeno M A. Genesis of large counter-regional normal fault by
     flow of Cretaceous salt in the South Atlantic Santos Basin, Brazil[C]. In: Alsop G I, Blundell
     D J, Davison D J. eds. Salt tectonics. Geological Society Special Publication, 100.London:
     The Geological Society, 1996, 259-264.
    [7] Harrison J C. Tectonics and kinematics of a foreland folded belt influenced by salt, Arctic
     Canada [J]. In: Jackson M P A, Roberts D G, Snelson S. eds. Salt tectonics: a global perspetive.
     AAPG Memoir65, 1995, 379-412.
    [8] 湖北省石油学会. 蒸发岩与油气. 北京: 石油工业出版社, 1985, 1-142.
    [9] Stewart S A, Harvey M J, Otto S C, Weston P J. Influence of salt on fault geometry: example
     from the UK salt basins. In: Alsop G I, Blundell D, Davison I, eds. Salt tectonics [M].
     Geological Society Special Publication ,100. London: The Geological Society, 1996: 175-264.
    [10] 马新华, 华爱刚, 李景明, 等. 含盐油气盆地[M]. 北京:石油工业出版社, 2000,1-112.
    [11] 费琪, 王燮培. 初论中国东部含油气盆地的底辟构造[J]. 石油与天然气地质, 1982, 3(2):113-123.
    [12] 戈红星,Jackson M P A,Vendeville B C. 文留盐构造成因与掩埋机制[J]. 石油学报, 1997,18
     (2):35-40.
    [13] 唐祥华. 含盐盆地油气资源远景分析[J]. 中国地质, 1998, 10:28-29.
    [14] 张朝军,田在艺. 塔里木盆地库车坳陷第三系盐构造与油气[J]. 石油学报, 1998, 19(1):6-10.
    [15] 岳建华,韩燕英,虎北辰. 塔里木盆地艾协克地区石炭系盐体成因机制研究[J]. 新疆地质,1999,
     17(2):157-164.
    [16] 王燮培,费琪,张家骅. 石油勘探构造分析[M]. 武汉:中国地质大学出版社,1992,1-274.
    [17] Morley C K, Guerin G. Comparison of gravity-dricen deformation sryles and behavior associated
     with mobile shales and salt[J]. Tectonics, 1996,15(6): 1154-1170.
    [18] Hongxin Ge, Vendeville B C, Jackson M P A. Salt tectonics in the Dongying and Dongpu
     depressions, Bohai Bay Basin, China—a new interpretation based on physical modeling
     results[A]. International Geological Congree30, Abstracts, Resumes 30, 1996, 2: 288.
    [19] Jackson M P A, Vendeville B C, Schulz-ela. Salt-related structures in the Gulf of Mexico:
    
    
    2003.04 中国地质大学博士学位论文 101
     A field guide for geophysicists[J]. The Leading Edge, 1994 : 837-842.
    [20] Rowan M G, Jackson M P A, Trudgill B D. Salt-related fault families and fault welds in the
     Northern Gulf of Mexico [J]. AAPG Bulletin,1999,83(9): 1454-1484.
    [21] Jackson M P A, Talbot C J. External shapes,strain rates,and dynamics of salt structures[J].
     Geological Society of America Bulletin, 1986, 97:305-323.
    [22] 戈红星,Jackson M P A. 盐构造与油气圈闭及其综合利用[J]. 南京大学学报,1996,32(4):640-649.
    [23] Jackson M P A, Vendeville B C. Regional extension as a geologic trigger for diapirism [J].
     Geological Society of America Bulletin, 1994, 106:57-73.
    [24] Jackson M P A. Retrospective salt tectonics[C]. In: Jackson M P A, Roberts D G, Snelson S.
     eds. Salt tectonics: a global perspetive. AAPG Memoir65, 1995, 1-28.
    [25] Withjack M O, Callaway S. Active normal faulting beneath a salt layer: an experimental study
     of deformation patterns in the cover sequence [J]. AAPG Bulletin,2000,84(5): 627-651.
    [26] Demercian S, Szatmari P, Cobbold P R. Style and pattern of salt diapers due to thin-skinned
     gravitational gliding, Campos and Santos basins, offshore Brazil [J]. Tectonophysics,
     1993,228:393-433.
    [27] Gaullier V, Brun J P, Guerin G, Lecanu H. Raft tectonics: the effects of residual topography
     below a salt decollement [J]. Tectonophysics, 1993, 228: 363-381.
    [28] Coward M, Stewart S. Salt-influenced structures in the Mesozoic-Tertiary cover of the U.K.
     Southern North Sea[C]. In: Jackson M P A, Roberts D G, Snelson S. eds. Salt tectonics: a
     global perspetive. AAPG Memoir65, 1995, 1-28.
    [29] Schuster D C. Deformation of Allochthonous salt and evolution of related salt-structural
     systems, Eastern Lousiana Gulf Coast[C]. In: Jackson M P A, Roberts D G, Snelson S. eds.
     Salt tectonics: a global perspetive. AAPG Memoir65, 1995, 1-28.
    [30] Diegel F A, Karlo J F, Schuster D C, et al. Cenozoic structural evolution and
     tectono-stratigraphic framework of the Northern Gulf Coast Continental Margin[C]. In:
     Jackson M P A, Roberts D G, Snelson S. eds. Salt tectonics: a global perspetive. AAPG Memoir65,
     1995, 109-152.
    [31] Alsop G I, Blundell D, Davison I. Salt tectonics [M]. Geological Society Special Publication,
     100. London: The Geological Society, 1996: 1-303.
    [32] Spathopoulos F. An insight on salt tectonics in the Angola Basin, South Atlantic[C]. In:
     Alsop G I, Blundell D J, Davison D J. eds. Salt tectonics. Geological Society Special
     Publication, 100. London: The Geological Society, 1996, 153-174.
    [33] Hafid M. Triassic-early extensional systems and their Tertiary inversion, Essaouira Basin
     (Morocco) [J]. Marine and Petroleum Geology, 2000,17: 409-429.
    [34] Cartwright J, Stewart S, Clark J. Salt dissolution and salt-related deformation of the forth
     approaches basin, UK North Sea [J]. Marine and Petroleum Geology, 2001, 18: 757-778.
    [35] Waltham D. Why does salt start to move? [J]. Tectonophysics, 1997,282: 117-128.
    [36] Koyi H, Jenyon M K, Petersen K. The effect of basement faulting on diapirism [J]. Journal
     of Petroleum Geology, 1993, 16(3): 285-312.
    [37] 解习农,刘晓峰. 超压盆地流体动力系统与油气运聚关系[J]. 矿物岩石地球化学通报,2000,19(2):
    
    
    102 刘晓峰:东营凹陷盐-泥构造与油气运移和聚集的关系研究 2003.04
     103-108.
    [38] Coustau H. Formation waters and hydrodynamics [J]. Journal of Geochemical Exploration. 1977,
     7: 213-247.
    [39] Powley D E. Pressure and hydrogeology in petroleum basins [J]. Earth Science Reviews, 1990,
     29 (1): 15-226.
    [40] Bethke C M, Reed J D, Oltz D F. Long-range petroleum migration in the Illinois Basin [J].
     AAPG Bulletin, 1991, 75(5): 925-945.
    [41] Leonard R C. Distribution of sub-surface pressure in the Norwegian Central Graben and
     applications for exploration [C]. In: Parker J R, eds. Petroleum geology of Nortthwest Europe.
     Proceedings of 4th conference. 1993,1295-1303.
    [42] 康永尚, 湛卓恒, 金之钧. 含油气系统油气成藏动力学[C]. 见:中国石油学会石油地质专业委员会.
     中国含油气系统的应用与进展. 北京: 石油工业出版社, 1997, 1-307.
    [43] 康永尚, 郭黔杰. 论油气成藏流体动力系统.地球科学――中国地质大学学报, 1998, 23(3):
     281-284.
    [44] Hanor J S,Sacsen R. Evidence for large-scale vertical and lateral migration of formation
     waters, dissolved salt, and crude oil [A]. Schumacher D,Perkins B F,eds. GCSSEPM Foundation
     Ninth Annual Research Conference Proceedings [M]. Texas:Earth Enterprises Inc, 1990,
     283-296.
    [45] 康永尚,张一伟. 油气成藏流体动力学.北京:地质出版社,1999,1-120.
    [46] 叶加仁,杨香华,孙永传,等. 歧南断阶带温度压力场研究[J]. 中国海上油气(地质),1997,11
     (3):161-167.
    [47] 陈荷立,汤锡元. 山东东营凹陷泥岩压实作用及油气初次运移问题探讨[J].石油学报,1983,4(2):
     9-16.
    [48] 杨绪充. 济阳坳陷沙河街组区域地层压力及水动力特征探讨[J]. 石油勘探与开发, 1985,12(4):
     13-20.
    [49] 谯汉生. 渤海湾地区异常高压与烃的生成及运移[J]. 石油勘探与开发,1985,12(3):1-4.
    [50] 胡济世. 异常高压、流体压裂与油气运移(上 ) [J]. 石油勘探与开发, 1989,16(2): 16-23.
    [51] 胡济世. 异常高压、流体压裂与油气运移(下)[J]. 石油勘探与开发, 1989,16(3): 16-23.
    [52] 王明明, 谯汉生, 胡见义. 东营凹陷牛庄-六户地区高压油气藏成因分布[J]. 石油勘探与开发, 1990,
     17 (2):13-20.
    [53] 李春光. 试论东营盆地高压油气藏的特征及找油意义[J].石油学报,1992,13(1):37-43.
    [54] Xie X, Bethke C M, li S, et al. Overpressure and petroleum generation and accumulation in
     the Dongying Depression of the Bohaiwan Basin, China. Geofluids, 2001,1: 257-271.
    [55] Magara K. Compaction and fluid migration——Practical Petroleum Geology. Amsterdam –Oxford
     -New York: Elsevier Scientific Publishing Company, 1978:1-313.
    [56] Fertl W H. Abnormal formation pressures——Implications to exploration, drilling, and
     production of oil and gas resources. Amsterdam-Oxford-New York : Elsevier Scientific
     Publishing Company, 1978, 1-365.
    [57] Sahay B,Fertl W H. Origin and evaluation of formation pressures.London: Kluwer Academic
     Publishers,1988, 1-287.
    
    
    2003.04 中国地质大学博士学位论文 103
    [58] 陈发景, 田世澄. 压实与油气运移[M]. 武汉:中国地质大学出版社,1989:1-177.
    [59] 张博全. 压实在油气勘探中的应用[M]. 武汉:中国地质大学出版社,1992:1-178.
    [60] Bradley J S. Abnormal formation pressure [J]. The American Association of Petroleum
     Geologists Bulletin,1975,59(6): 957-973.
    [61] Hunt J. M. Generation and Migration of petroleum from abnormally pressured fluid compartments
     [J]. AAPG Bulletin, 1990,74(1): 1-12.
    [62] Al-Shaieb Z. Compartmentation, fluid pressure important in Anadarko exploration [J]. Oil
     and Gas Journal, 1991,7(1): 52-55.
    [63] Martinsen R S.Summary of published literature on anomalous pressures: implications for the
     study of pressure compartments [C]. In:Ortoleva P. ed. Basin Compartments and Seals: AAPG
     Memoir 61,1994:27-38.
    [64] Mann D M,Mackenzie A S. Prediction of pore fluid pressures in sedimentary basins. Marine
     and Petroleum Geology,1990,7:55-65.
    [65] Dickinson G. Geological aspects of abnormal reservoir pressures in Gulf coast Louisiana.
     Bulletin of the American Association of Petroleum Geologists.1953,37(2):410-432.
    [66] 卢焕章. 成矿流体[M]. 北京: 北京科学技术出版社, 1997,1-120.
    [67] 刘群,陈郁华,等. 中国中、新生代陆源碎屑-化学岩型盐类沉积[M]. 北京:科学技术出版社,1994,
     1-200.
    [68] 查明. 断陷盆地油气二次运移与聚集[M]. 北京:地质出版社,1997, 1-125.
    [69] 田在艺,张庆春. 中国含油气盆地岩相古地理与油气[M]. 北京,地质出版社,1997,1-260.
    [70] Hanor J S. 盆地卤水化学成分的一级控制因素[J]. 地质科技情报,1994,13(1):60-64.
    [71] 孙向阳,解习农. 东营凹陷地层水化学特征与油气聚集关系[J]. 石油实验地质,2001,23(3):
     291-296.
    [72] Land L S, Macpherson G L. Origin of saline formation waters, Cenozoic section, Gulf of Mexico
     sedimentary basin [J]. AAPG Bulletin,1992, 7(9):1344-1362.
    [73] Hanor J S. Origin of saline fluids in sedimentary basins[J].In: Parnell J, eds. Geofluids:
     Origin, migration and evolution of fluids in sedimentary basins[C]. Geological Society
     Special Publication, 1994, 78:151-174.
    [74] Spencer C W. Hydrocarbon generation as a mechanism for overpressuring in Rocky Mountain
     region [J]. AAPG Bulletin, 1987,71(4): 368-388.
    [75] 解习农, 刘晓峰, 胡祥云等。超压盆地中泥岩的流体压裂与幕式排烃作用[J]. 地质科技情报, 1998,
     17(4):59-64.
    [76] 解习农, 王其允, 李思田. 沉积盆地低渗岩石的水力破裂与幕式压实作用[J]. 科学通报, 1997,
     42(20):2193-2195.
    [77] Dickey P A,Shiram C R,Paine W R. Abnormal pressure in deep wells of southwestern Louisiana
     [J]. Science,1968,160:609-615.
    [78] Berg R R,Habeck M F. Abnormal pressures in the Lower Vicksburg,McAlten Ranch field,south
     Texas [J].Gulf Coast Association of Geological Society,Transactions,1983,32:247-253.
    [79] Chapman R E. Mechanical versus thermal cause of abnormal high pore pressure in shales: Reply
     [J]. AAPG Bulletin.1980, 64:2179-2183.
    
    
    104 刘晓峰:东营凹陷盐-泥构造与油气运移和聚集的关系研究 2003.04
    [80] Hooper E C D. Fluid migration along growth faults in compacting sediments [J]. Journal of
     Petroleum Geology. 1991,14(2): 161-280.
    [81] Du Rouchet J. Stress field: a key to oil migration [J]. AAPG Bulletin.1981, 65:74-85.
    [82] Roberts S J, Nunn J A. Episodic fluid expulsion from geopressured sediments [J]. Marine and
     Petroleum Geology, 1995,12(2): 195-204.
    [83] Lerche I. Basin analysis, quantitative methods [M]. New York: Academic Press, 1991,1-562.
    [84] 解习农,王其允,李思田. 沉积盆地泥质岩石的水力破裂和幕式压实作用[J]. 科学通报,1997,
     42(20):2193-2195.
    [85] Chen W, Ortoleva P. Reaction front figering in carbonate cemented sandstones [J]. Earth
     Science Review, 1990, 29:183-198.
    [86] Anderson R N. Recovering dynamic Gulf of Mexico reserves and US energy future [J]. Oil and
     Gas Journal, 1993, 11: 85-91.
    [87] Roberts S J, Nunn J A. Episodic fluid expulsion from geopressured sediments [J]. Marine and
     Petroleum Geology, 1995,12(2): 195-204.
    [88] Roberts S J, Nunn J A. Expulsion of abnormally pressured fluid along faults [J]. Journal
     of Geophysical Research, 1996,101(B12): 28231-28252.
    [89] Xie X X, Li S T, Dong W L, Hu X Y. et al. Conduit system and formation mechanism of heat
     fluids in diapiric belt of Yinggehai Basin, China [J]. Science in China (Series D), 1999,
     42(6): 561-571.
    [90] Xie X X, Li S T, Dong W L, et al. Overpressure development and hydrofracturing in the Yinggehai
     Basin, South China Sea [J]. Journal of Petroleum Geology, 1999,22(4): 437-454.
    [91] Xie X X, Li S T, Dong W L, et al. Evidence for episodic expulsion of hot fluids along faults
     near diapiric structures of the Yinggehai Basin, South China Sea [J]. Marine and Petroleum
     Geology, 2001, 18: 715 -728.
    [92] 梅廉夫,徐思煌. 沉积盆地沉积物天然水利破裂理论及意义[J]. 地质科技情报, 1997, 16(1): 39-45.
    [93] Dewers T, Ortoleva P. Nonlinear dynamical aspects of deep basin hydrology:Fluid compartment
     formation and episodic fluid release. American Journal of Science, 1994, 294(5): 713-755.
    [94] Jenyon M K. Salt Tectonics[M]. London and New York: Elsevier Applied Science Publishers,
     1986, 1-191.
    [95] 王平,赵宝坤,严龙湘,等. 济阳坳陷复杂断快油田勘探开发方法[J]. 见:王秉海,沈娟华,颜捷
     先,编. 胜利油区开发研究与实践. 石油大学出版社,1993,21-35.
    [96] 蒋有录. 东辛复杂断块油气田成藏特征[J]. 石油与天然气地质,1998,19(1):68-73.
    [97] 张敦祥,张方吼,洛光华. 梁家楼湖相烃类从泥岩向浊积岩的初次运移. 石油与天然气地质,1990,
     11(3):334-343.
    [98] 李春光. 试论东营凹陷油气二次成藏. 复式油气田,1997,(4):12-19.
    [99] 李春光. 东营盆地断裂系统对油气藏分布的控制作用. 陆相石油地质,1991,4:13-10.
    [100]Magoon L B ,Dow W G .The petroleum system——from source to trap [J]. AAPG Memoir 60, 1994,
     1-643.
    [101] Perrodon A. Petroleum systems models and applications [J]. Journal of Petroleum Geology,
     1992, 15(3): 319-326.
    
    
    2003.04 中国地质大学博士学位论文 105
    [102]郑和荣,王宁,于建国,等. 东营凹陷中北部沙三、沙四上亚段岩性油气藏研究. 见: 潘元林编. 油
     气地质地球物理综合勘探技术. 北京:地震出版社,1998,1-263.
    [103]曾溅辉, 郑和荣, 王宁. 东营凹陷岩性油气藏成藏动力学特征[J]. 石油与天然气地质,1998,19(4):
     326-329.
    [104]Peters K E, Cassa M R. Applied Source rock geochemistry[J]. In : Magoon L B ,Dow W G ,
     eds.The petroleum system——from source to trap. AAPG Memoir 60,1994,93-120.
    [105]Downey M W. Hydrocarbon seal rocks. In: Magoon L B, Dow W G, eds. The petroleum system
     ——from source to trap. AAPG Memoir 60,1994,159-164.
    [106]Magara K,著. 赵天财,译. 压力封闭:油气圈闭的一种重要因素. 国外油气勘,1994,6(1):38-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700