用户名: 密码: 验证码:
临界滑动场法的改进与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边坡临界滑动场将极限平衡法与最优性原理有机结合起来,能够快速、准确和方便地找出边坡任意形状的全局临界滑动面、局部临界滑动面和其对应的安全系数,全面评价边坡的整体和局部稳定性。经过十余年的发展,临界滑动场方法已初步成为计算边坡,土压力和地基承载力的岩土稳定分析新方法。本文在已有研究成果基础上,完善临界滑动场方法的理论基础,拓展其应用范围,并将改进和拓展后的方法成功应用于工程实例中,使其逐渐成为理论严密、适应性强、功能完善、通用性好的岩土稳定分析新方法。同时本文基于滑面正应力修正的三维边坡稳定性分析方法,提出了基于滑面正应力修正的计算浅埋矩形基础地基承载力的三维分析方法。本文主要研究工作如下:
     1.针对岩体介质非线性破坏的特点,采取国际上广泛接受应用的建立在地质强度指标(GSI)法基础上的Hoek-Brown屈服准则,建立基于广义Hoek-Brown破坏准则的边坡临界滑动场新方法。首先,根据Hoek-Brown准则确定岩体强度参数;然后将Hoek-Brown准则不同法向应力水平上的剪切强度逐点等效到Mohr-Coulomb强度线上,用等效摩擦角和等效黏聚力的Mohr-Coulomb准则代替Hoek-Brown准则;最后将基于Mohr-Coulomb破坏准则的边坡临界滑动场计算方法进行改进,建立新的迭代方法,获得边坡在满足力与力矩平衡条件下的整体和局部临界滑动面和相对应的安全系数。将该方法应用于两个算例和铜陵新桥硫铁矿露天边坡的稳定性分析与比较,计算结果表明该方法既继承了临界滑动场方法快速、准确找到边坡整体局部临界滑动面的优点,又能考虑岩质边坡非线性破坏的特点,更加符合工程实际。
     2.针对岩体介质不连续性的特点,充分考虑结构面存在对岩质边坡稳定性的影响,对结构面采取新的处理方法,并基于岩体介质具有抗拉性的特点,灵活设置张拉裂缝,建立考虑岩体不连续结构面的边坡临界滑动场。将此方法应用于五个算例和铜陵新桥硫铁矿露天边坡的稳定性分析与比较,结果表明该方法在岩质边坡稳定性分析中的准确性和合理性。
     3.库水位升降过程中,边坡体内的孔隙水压力分布和坡外水位的变化,会对边坡的稳定性产生影响。对边坡临界滑动场进行改进,提出了可以考虑水位变化过程的边坡临界滑动场方法,该方法能够方便、快速的计算出边坡局部、整体安全系数和相对应的临界滑动面在水位变化程中的变化历程。通过对一个典型边坡和金坪子Ⅱ区蠕滑坡体在水位上升和下降过程中的稳定性分析与比较,结果表明水位变化过程中的临界滑动场方法能搜索任意形状的最危险滑面,计算得到的安全系数是合理的。
     4.降雨入渗过程中,孔隙水压力升高与基质吸力降低引起边坡稳定性的下降,是导致边坡滑塌的主要诱导因素。利用饱和-非饱和渗流有限元计算得到的孔隙水压力场,基于Fredlund提出的非饱和土抗剪强度理论,对边坡临界滑动场进行改进,提出了可以考虑降雨过程的边坡临界滑动场方法,该方法能够方便、快速的计算出边坡局部、整体安全系数和相对应的临界滑动面在降雨过程中的变化历程。将该方法用于两个典型边坡算例和绩溪至黄山高速公路红砂岩路基边坡在降雨过程中的稳定性计算,分析了降雨持续时间、降雨强度和非饱和强度参数取值等因素对边坡稳定性的影响,并将计算结果与其他方法进行比较,结果表明降雨过程中的临界滑动场方法能搜索任意形状最危险滑面,计算得到的安全系数合理。
     5.数值分析方法可以计算边坡应力、变形和破坏,但直接计算边坡安全系数比较困难;而极限平衡法需对边坡体内力做出假设,计算精度受到限制。利用数值分析方法计算得到的应力场,重新定义推力最大原理中推力的含义,将边坡临界滑动场方法作进一步的改进,提出了基于数值应力场的边坡临界滑动场方法。该方法可充分发挥两大方法的优势,能够准确、快速搜索出边坡临界滑动面位置,并给出更合理的边坡安全系数。通过两个算例的稳定性分析,并和其他方法进行比较,验证了该方法的准确性和合理性。
     6.将改进和拓展后的临界滑动场计算方法应用到铜陵新桥硫铁矿下盘边坡、金坪子Ⅱ区蠕滑坡体和绩溪至黄山高速公路红砂岩路基边坡的稳定性分析与评价,并结合实际情况,给出了合理的治理建议,结果令人满意。结果表明改进和拓展后的方法完善了临界滑动场方法的理论基础,并拓展了其应用范围,大幅度得提高了计算结果的可靠性。
     7.提出一种能够计算浅埋矩形基础地基承载力的三维分析方法。首先,假设滑动面为一组由沿基础长轴方向的具有不同初始半径的螺旋线构成的三维椭球滑面;然后,对基于滑面正应力修正的三维边坡极限平衡方法进行改进,建立基于滑面正应力修正的计算固定三维滑面极限承载力方法;最后,通过改变螺旋线极点位置,构造所有可能破坏的滑动面,试算不同滑面所对应的极限承载力,搜索出的最小值即为基础地基承载力,其对应的滑面即为破坏滑动面。为了使该方法能用传统的叠加法公式进行地基承载力计算,给出了三维条件下的各地基承载力系数值,并研究了基础长宽比和土的内摩擦角对各系数的影响。用该方法和给出的三维地基承载力系数分别对算例进行计算分析,并和其他方法进行比较,结果表明该方法合理可靠,能够方便、快速计算矩形基础地基承载力。
Combined with limit equilibrium method and optimality principle, critical slip field of slope method allows us to find critical slip surfaces quickly、exactly and conveniently as well as the corresponding safety factors. With decades of development, critical slip field method has preliminarily been developed as a new method used in calculation of slope stability, soil pressure and bearing capacity. Based on existing analysis results, in this paper, critical slip field gradually becomes a new geotechnical stability analysis method which is more rigorous、adaptable、functional and universal. The theory of the method is perfected and its application realm is extended,then the improved method has been applied to the stability analysis of engineering application. In addition, based on the modification of normal stresses over slip surface, a new method for the three-dimensional problem of bearing capacity of rectangular shallow footing is proposed.the main works and results are listed as follows:
     1. According to nonlinear failure characteristic of rock mass, the new analysis method for critical slip field of slope based generalized Hoek-Brown failure criterion is proposed. The Hoek-Brown failure criterion based on the geology strength index (GSI) is one of the most useful criteria in forecasting and computing of rock mass strength. Firstly, the parameters of rock mass strength are obtained by Hoek-Brown failure criterion. Secondly, the shear strength of each point on the Hoek-Brown strength envelope is transferred equivalently to the Mohr-Coulomb linear relation which is tangent to the nonlinear envelope with relevant cohesive and frictional parameters. Finally, the new iterative method is established and the critical slip field of slope by Morgenster-Price method is improved. And then, the most dangerous sliding surfaces are traced according to the principle of maximum thrusts with satisfying both force and moment equilibriums and the corresponding safety factors are calculated quickly and exactly. This method is applied to the stability analysis of two slope examples and the slope in the Xinqiao open-cut pyrite mine. The results show that the present method absorbs the advantages of critical slip field and Hoek-Brown failure criterion and can further considers the nonlinear failure characteristic of slope. The calculation results are well agreed with the practical situation.
     2. Improvement and extension of critical slip fields of rock slope is performed, in view of the discontinuity of rock. Considering the influence of structural surface on the stability of the slope, a new method is proposed for dealing with structural planes, and tensile cracks are readily introduced based on the tensile strength of rock. This method has been applied to the stability analysis of five example slopes and the slope in the Xinqiao open-cut pyrite mine, and the results prove its accuracy and high efficiency in rock slope stability analysis by compared with those obtained by other methods.
     3. The process of reservoir water level fluctuation may cause the changes of the slope body in the pore water pressure distribution, which has influences on slope stability. Considering the process of water level changes, a improved numerical simulation method of critical slip field of slope was proposed. Thus, the local and global safety factor of the slope in the process of water changing are obtained conveniently and rapidly. By means of stability analysis of a typical slope in the process of rise and fall in water level and comparing with those by other methods, the results show that the critical slip field method could search for any shape of the most dangerous slip surface, and the safety factor is reasonable.
     4. The rising of pore water pressure and decreasing of matric suction in the process of the infiltration of rainfall into slope is the main factor of slope failures.Numerical simulation method of critical slip field of slope considering rainfall process is proposed based on proposed unsaturated soil shear strength theory and water pressure field obtained by finite element method analysis of saturated-unsaturated seepage. Thus, slope local safety factor and slope safety factor of the whole as well as the corresponding critical slip surfaces during infiltration were calculated conveniently and rapidly. This method has been applied to the stability analysis of two slope cases and the effect study of rainfall intensity, duration and strength parameter on slope stability, the results show that the critical slip field method could search for any shape of the most dangerous slip surface, and the safety factor is reasonable.
     5. Numerical methods can be used to calculate stress, strain and failure of slope; but it is difficult to calculate the safety factor of slope stability directly. Limit equilibrium methods can obtain the factor of safety, but they need to assume the interslice forces, which affects the calculation accuracy. Based on the stress field obtained by numerical methods, by defining the maximum thrust forces and improving numerical simulation method of conventional critical slip field of slope, the critical slip field method of slope based on numerical stress field is proposed. The results obtained by using this method for two examples have been compared with other methods. It is shown that the proposed method combines the advantages of numerical method and limit equilibrium method so as to find the critical slip surface of slope accurately and conveniently, and give more reasonable safety factor.
     6. The improved and expanded calculation method of the critical slip field of slope theory is applied to the stability analysis and evaluation of the slope in the Xinqiao open-cut pyrite mine, the roadbeds of the expressway from Jixi to Huangshan and Jinpingzi Ⅱ section creep mass. Combining with practical situation, reasonable governance recommendations are provided, and the results are satisfactory. It demonstrates that the improved and expanded calculation method consummates the critical slip field of slope theory, expanding its applied range, and enhances the results' reliability by a wide margin.
     7. A new method is proposed for three-dimensional analysis of bearing capacity of rectangular shallow footing based on the modification of normal stresses over slip surface. Firstly, the shape of the slip surface is assumed as ellipsoidal, which is composed of a set of log-spirals with different initial radii in the direction on the longer axis of the footing base. Secondly, establishing a method for analysis of bearing capacity of a fixed three-dimensional slip surface, by improving the limit equilibrium solution of3D slope stability based on the modification of normal stresses over slip surface. Finally, the bearing capacity of the footing is the minimum of selected fixed three-dimensional slip surfaces, by changing the position of the pole of log-spirals. Bearing capacity coefficients are then given for calculating the bearing capacity by using the method of the superposition involved in the conventional bearing capacity formula and investigating the effects of the angle of internal friction and the length-width ratio of footing. This method has been applied to calculate the bearing capacity of one example and compared with other methods; the results show its accuracy and reasonable and high effectiveness in three-dimensional bearing capacity analysis of rectangular shallow footing.
引文
[1]Duncan, J.M. State-of-the-art:Limit equilibrium and finite-element analysis of slope. J. Geotech. Engrg.,ASCE.1996,122(7):577-596.
    [2]Chowdhury, R.N. Slope Analysis. Elsevier, Amsterdam.,1978.
    [3]Bromhead, E,N. The Stability of Slopes.2nd edition. Blackie Academic & Professional.1994.
    [4]陈祖煜.土质边坡稳定分析——原理,方法,程序[M].北京:中国水利水电出版社,2003.
    [5]陈祖煜,汪小刚,杨健等.岩质边坡稳定分析——原理,方法,程序[M].北京:中国水利水电出版社,2005.
    [6]Griffiths,D.V., and Lane, P.A. Slope stability analysis by finite elements. Geotechnique,1999, 49(3):387-403.
    [7]钱德玲.土力学[M].北京:中国建筑工业出版社,2009.
    [8]Bishop A W. The use of slip circle in the stability analysis of slopes[J]. Geotechnique,1955, 5(1):7-17.
    [9]Janbu N. Application of composite slip surface for stability analysis[C] Proceedings of the European Conference on Stability of Earth Slopes, Stockholm:Sweden,1954:43-49.
    [10]Morgenstern N R, Price V E. The analysis of stability of general slip surface[J]. Geotechnique, 1965,15(1):79-93.
    [11]陈祖煜.土质边坡稳定分析:原理·方法·程序[M].北京:中国水利水电出版社,2003.
    [12]Baker R, Gather M. Variation approach to slope stability[J]. Proc.9th Int. Conf. on Soil Mech. and Found. Engng. [C].1977, Vol.2:9-12.
    [13]Baker R, Determination of critical slip surface in slope stability computation[J]. Int. J. for Numer. and Anal~ical Meth. In Geomech.,1980.4,333-359.
    [14]Celestino, T.B., and Duncan, J.M. Simplified search for non-circular slip surfaces. Proc.,10th Int. Conf. S. M. F. E., Stockholm, Sweden,1981.391-394.
    [15]Boutrup E, Lovell C W. Searchtechnicalin slope stability analysis[J]. Engineering Geotechnical,1980,16(1):51.61.
    [16]Anthony T G. Genetic algorithm search for critical slip surface in multiple-wedge stability analysis[J]. Can. Geotech. J.,1999, Vol.36:382-391.
    [17]Mahfoud S W, Goldgerg D E. Parallel simulated annealing:A genetic algorithm[J]. Parallel Computing,1995,21(1):1-28.
    [18]朱大勇.边坡临界滑动场及其数值模拟.岩土工程学报.1997.19(1):63-69.
    [19]朱大勇,钱七虎,周早生,郑鸿泰.岩体边坡临界场计算方法及其在露天矿边坡设计中的应用.岩石力学与工程学报.1999.18(5):497-502.
    [20]Zhu, D.Y. A method for locating critical slip surface in slope stability analysis. Canadian Geotechnical Journal,2001,38:328-337.
    [21]Zhu, D.Y., Qian, Q.H., Lee, C.F. Active and passive critical slip field for cohensionless soils and calculation of lateral earth pressures. Geotechnique,2001,51(5):407-423.
    [22]Zhu, D.Y., Lee, C.F., Law, K.T. Determination of bearing capacity of shallow foundation without using superposition using superposition approximation. Canadian Geotechnical Journal,2003,40(2):450-459.
    [23]Narita K, Yamaguchi H.Three-dimensional bearing capacity analysis of foundations by use of a method of slices[J]. Soils and Foundations,1992,32(4):143-155.
    [24]Michalowski R L. Upper-bound load estimates on square and rectangular footings[J]. Geotechnique,2001,51(9):787-798.
    [25]Salgado R, Lyamin A V, Sloan S W, et al. Two-and three-dimensional bearing capacity of foundations in clay[J]. Geotechnique,2004,54(5):297-306.
    [26]A R MAJIDI, A A MIRGHASEMI. Seismic 3D bearing capacity analysis of shallow foundations[J]. Iranian Journal of Science & Technology, Transaction B,2008, B2:107-124.
    [27]朱大勇,刘华丽,丁秀丽,钱七虎.对称边坡三维稳定性计算方法[J].岩石力学与工程学报,2007,26(1):22-27. (ZHU Da-yong, LIU Hua-li, DING Xiu-li, QIAN Qi-hu. Method of Three-Dimensional Stability Analysis of A Symmetrical slope[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(1):22-27. (in Chinese))
    [28]朱大勇,钱七虎.三维边坡严格与准严格地基平衡解答及工程应用[J].岩石力学与工程学报,2007,26(8):1513-1528. (ZHU Da-yong, QIAN Qi-hu. Rigorous and Quasi-Rigorous Limit Equilibrium Solutions of 3D Slope Stability and Application to Engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1513-1528.(in Chinese))
    [29]Spencer E. A method of the analysis of the stability of embankments assuming parallel interslice forces[J]. Geotechnique,1967,17(1):11-26.
    [30]Sarma S K. Stability analysis of embankments and slopes[J]. Geotechnique,1973,23 (3):423-433.
    [31]朱大勇,李焯芬,黄茂松等.对3种著名边坡稳定性计算方法的改进[J].岩石力学与工程学报,2005,24(2):183-194.
    [32]戴自航,沈蒲生.土坡稳定分析普遍极限平衡法的数值解研究[J].岩土工程学报,2002,24(3):327-331.
    [33]邹广电,魏汝龙.土坡稳定分析普遍极限平衡法数值解的理论及方法研究[J].岩石力学与工程学报,2006,25(2):363-370.
    [34]Ching R K, Fredlund D G. Some difficulties associated with the limit equilibrium method of slices[J]. Canadian Geotechnical Journal,1983,20(4):661-672.
    [35]Espinoza R D. Bourdeau P L P C, Muhunthan B. Unified formulation for analysis of slopes with general slip surface[J]. Journal of Geotechnical Engineering, ASCE,1994,120(7): 1185-1204.
    [36]丁桦,张均锋,郑哲敏.关于边坡稳定分析的通用条分法的探讨(理论分析部分)[J].岩石力学与工程学报,2004,23(21):3684-3688.
    [37]朱大勇,邓建辉,台佳佳.简化Bishop法严格性的论证[J].岩石力学与工程学报,2007,26(3):455-458.
    [38]Zhu D Y, Lee C F, Jiang H D. Generalized framework of limit equilibrium methods and numerical procedure for slope stability analysis[J].Geotechnique,2003,53(4):377-395.
    [39]郑颖人,杨明成.边坡稳定安全系数求解格式的分类统一[J].岩石力学与工程学报,2004,23(16):2836-2841.
    [40]Zhu D Y, Lee C F. Explicit limit equilibrium solution for slope stability[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(15):1573-1590.
    [41]郑宏,谭国焕,刘德富.边坡稳定性分析的无条分法[J].岩土力学,2007,28(7):1285-1290.
    [42]葛修润.岩石疲劳破坏的变形控制律、岩土力学试验的实时X射线CT扫描和边坡坝基抗滑稳定分析的新方法.岩土工程学报,2008,30(1):1-18.
    [43]潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [44]孙君实.条分法的数值分析方法[J].岩土工程学报.1984,6(2):1-22.
    [45]陈祖煜.潘家铮最大最小原理的证明[J].清华大学学报,1998,(1):6-13.
    [46]朱大勇,周早生.边坡全局临界滑动场(GCSF)理论及工程应用[J].土木工程学报,1999,32(3):66-72.
    [47]朱大勇,钱七虎.基于余推力法的边坡临界滑动场[J].岩石力学与工程学报,1999,18(6):667-670.
    [48]朱大勇,钱七虎.严格极限平衡条分法框架下的边坡临界滑动场[J].土木工程学报,2000,33(5):68-74.
    [49]朱大勇,余振锡.临界滑动场GCSF法分析:以新桥硫铁矿为例[J].水文地质工程地质,1999,26(3):9-12.
    [50]朱大勇,姜弘道.边坡临界滑动场方法与应用-工程应用[J].水利水电科技进展,2000,20(6):64-67.
    [51]苏军,杨小聪.基于斯宾塞法假设的临界滑动场法的实现及应用[J].矿冶,2004,13(1):21-25.
    [52]李建明.临界滑动场算法的改进及应用[J].水文地质工程地质,2004,31(3):76-78.
    [53]段荣福,白世伟.基于临界滑动场的岩质边坡临界滑动面搜索方法[J].岩土力学,2007,28(5):861-864.
    [54]李亮,褚雪松.基于能量定义的边坡临界滑动场方法[J].岩土工程技术,2008,22(6):277-280.
    [55]李亮,于广明,褚雪松.边坡临界滑动场方法的优化算法实现[J].岩土工程学报,2010,32(6):827-831.
    [56]李亮,杨小礼,褚雪松等.基于Bishop法假定的边坡临界滑动场方法及应用[J].中南大学学报(自然科学版),2011,42(9):2848-2852.
    [57]李强,朱大勇.加筋土边坡临界滑动场[J].防灾减灾工程学报,2010,30(4):431-434.
    [58]谭亮,孙世国,冉启发等.基于剩余推力法和优化原理的边坡三维稳定分析[J].北京科技大学学报,2007,29(12):1180-1185.
    [59]Chen W F. Limit analysis and soil plasticity[M]. Amsterdam:Elservier Science Publishing Company,1975.
    [60]赵彭年.松散介质力学,地震出版社,1995年.
    [61]肖大平等.滑移线法求解极限承载力问题的一些进展,岩土工程学报,1998年,20(4),25-29.
    [62]Chen, W.F., and McCarron, W.O. Bearing capacity of shallow foundations. In:Foundation Engineering Handbook 2ed Edtion Edited by Fans, H.Y. Van Nostrand Reinhold. 1991,144-165
    [63]朱百里,沈珠江等.计算土力学上海科学技术出版社,1990年.
    [64]潘家铮.建筑物的抗滑稳定和滑坡分析.1980,水利出版社.
    [65]Michalowski R L. Slope stability analysis a kinematical approach[J]. Geotechnique,1995,45 (2):283-293.
    [66]Donald, I. and Chen, Z. Y. Slope stability analysis by an upper bound plasticity method[J]. Canadian Geotechnical Journal, December.1997.34:853-862.
    [67]陈祖煜,高锋.地基承载力的数值分析方法[J],岩土工程学报,1997年,19(5),6-13.
    [68]Anderhgeggen E, Knopfel H. Finite element limit analysis using linear programming[J]. International Journal of solids and struetures,1972,8:1413-1431.
    [69]Lysmer J. Limit analysis of Plane Problems in soil mechanics[J]. Journal of soil Mechanics and Foundation Division, ASCE,1970,96(4):1131-1334.
    [70]Sloan S W.Steepest edge active set algorithm for sloving sparse linear programming problems[J].International Journal for Numerical Methods in Engineering,1988,26(12): 2671-2685
    [71]Kim J, Salgado R, Yu H S. Limit analysis of soil slopes subjected to pore-water pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(l):49-58.
    [72]Bottero A, Negre R, Pastor J, Thrgeman S. Finite element method and limit analysis theory for soil mechanics Problems[J]. Computational Methods in Applied Mechanics and Engineering, 1980,22:131-149.
    [73]Yu H S, Sloan S W. Lower bound limit analysis of axisymmetric problems using finite elements and linear programming[A].Proceedings of the 6th Internationl Conference in Australia on Finite Elements,1991, Sydney,1:48-82.
    [74]Lymain A V, Slona S W. Upper bound limit anaylsis using linear finite elements and non-linear Programming[J]. Intenrational Journal of Numerieal and Analytieal Methods in Geomeehnaies,2002,26:181-216.
    [75]Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics[J].Geotechnique,1975,25(4):671-689.
    [76]宋二祥.土工结构安全系数的有限元计算[J].岩土工程学报,1997,19(2):1-7.
    [77]Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction[J]. Geotechnique, 1999,49(6):835-840.
    [78]Zheng H, Liu D F, Li C G. Slope stability analysis based on elasto-plastic finite element method[J]. International Journal for Numerical Methods in Engineering,2005,64(14): 1871-1888.
    [79]赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡失稳的判据探讨[J].岩土力学,2005,26(2):332-336.
    [80]王栋,年廷凯,陈煜淼.边坡稳定有限元分析中的三个问题[J].岩土力学,2007,28(11):2309-2313.
    [81]Kulhawy F H. Finite element analysis of the behavior of embankments [D]. University of California,1969.
    [82]Wright S G, Kulhawy F H, Duncan J M. Accuracy of equilibrium slope stability analysis[J].American Society of Civil Engineers, Journal of the Soil Mechanics and Foundations Division,1973,99(SM10):783-779.
    [83]Resendiz D. Discussion of 'Accuracy equilibrium slope stability analysis'[J]. Journal of the Soil Mechanics and Foundations Divsion,1974,100(GT8):967-970.
    [84]Adikari G S N, Cummins P J. An effective stress slope stability analysis method for dams.// Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco,1985:713-718.
    [85]Naylor D J. Finite elements and slope stability. Martins J B. Numerical Methods inGeomechanics:Proceedings of the NATO Advanced Study Institute. Dordrecht: D.ReidelPublishing Company,1982:229-244.
    [86]Farias M M, Naylor D J. Safety analysis using finite elements[J]. Computers andGeotechnics, 1998,22(2):165-181.
    [87]Fredlund D G, Scoular R E G.Using limit equilibrium concepts in finite element slopestability analysis. Yagi N, Yamagami T, Jiang J-C. Slope Stabilityengineering:Proceedings of the International Symposium on Slope StabilityEngineering-IS-Shikoku'99. Rotterdam:Balkema, 1999:31-47.
    [88]Pham H T V, Fredlund D G. The application of dynamic programming to slope stability analysis[J]. Canadian Geotechnical Journal,2003,40(4):830-847.
    [89]邓俊晔.边坡极限平衡有限元稳定分析的Dijkstra算法的理论及应用[D].南京:河海大学,2006.94
    [90]徐卫亚,周家文,邓俊晔等.基于Dijkstra算法的边坡极限平衡有限元分析.岩土工程学报,2007,29(8):1159-1172.
    [91]Loehr J E. Development of a hybrid limit equilibrium-finite element procedure forthree-dimensional slope stability analysis [D]. The University of Texas at Austin,1998.
    [92]周维垣,杨若琼,杨强等.岩石力学的解析与数值模拟[C].王思敬编.中国岩石力学与工程世纪成就.南京:河海大学出版社,2004:357-386.
    [93]焦玉勇,葛修润,刘泉声等.三维离散单元法及其在滑坡分析中的应用[J].岩土工程学报,2000,22(1):101-104.
    [94]Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41(8):1329-1364.
    [95]贺续文,刘忠,廖彪,王翠翠.基于离散元法的节理岩体边坡稳定性分析[J].岩土力学,2011,32(7):2199-2204.
    [96]宁宇,徐卫亚,郑文棠.应用离散元强度折减对复杂边坡进行稳定性分析[J].岩土力学,2007,28(S1):569-574.
    [97]Shi G H. Discontinuous deformation analysis--a new numerical model for the static and dynamics of block system[Pk D. Thesis][D]. Berkeley:Department ofCivil Ellgi∞erillg, University ofCalifornia,1988.
    [98]Shi G H,Goodmam R E. Generalization of two-dimensional discontinuous deformation analysis far forward modeling[J]. Journal for Nmeficai and Analytical Methods in Geomechanics-,1989,13(4):359-380.
    [99]Amadei B, LIN C, DWYER J. Recent extensions to the DDA method[C].//Proceedings of the 1st Internatioral Forum on Deformation Analysis(DDA)and Simulation of Discontinuous Media. Berkeley:[s.n.],1996:1-30.
    [100]张国新,武晓峰.裂隙渗流对边坡稳定的影响——渗流、变形耦合作用的DDA法[J].岩石力学与工程学报,2003,22(8):1269-1275.
    [101]姜清辉,周创兵,罗先启,郑宏.块状结构岩体在一般水压分布模式下的不连续变形分析[J].岩石力学与工程学报,2005,24(3):.401-405.
    [102]张国新,李海枫,黄涛.三维不连续变形分析理论及其在岩质边坡工程中的应用[J].岩石力 学与工程学报,2010,29(10):2116-2126.
    [103]李新平,郭运华,彭元平,张成良,王涛.基于FLAC~(3D)的改进边坡极限状态确定方法[J].岩石力学与工程学报,2005,24(S2):5287-5291.
    [104]迟世春,关立军.基于强度折减的拉格朗日差分方法分析土坡稳定性[J].岩土工程学报,2004,26(1):42-46.
    [105]邓琴,郭明伟,李春光,葛修润.基于边界元法的边坡矢量和稳定分析[J].岩土力学,2010,31(6):1971-1976..
    [106]周焕林,边界元法中边界层效应和薄体问题的研究[博士学位论文D].合肥:中国科学技术大学,2003.
    [107]Christian J T, Ladd C C, Baecher G B. Reliability applied to slope stability analysis[J]. Journal of geotechnical engineering Division,1994,120(12):2180-2207.
    [108]Deng Jian, Gu DS. A reliability based approach for evaluating slope stability under seismic ioadings[A].9th International conferenceOil structural reliability and safety[C]. Rome, Italy: June 19-22,2005:175-181.
    [109]苏永华,何满潮.利用矩点估计法简化响应面可靠度指标的计算[J].工程力学,2007,24(7):11-15.
    [110]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1996.
    [111]徐卫亚,蒋晗,谢守益,姜平.三峡永久船闸高边坡变形预测人工神经网络分析[J].岩土力学,1999,20(2):27-32
    [112]林鲁生,冯夏庭,白世伟,刘祖德.人工神经网络在边坡滑移预测中的应用[J].岩土力学,2002,23(4):508-510.
    [113]陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638-641.
    [114]黄铭,葛修润,王浩.灰色模型在岩体线法变形测量中的应用[J].岩石力学与工程学报,2001,20(2):235-238.
    [115]赵静波,李莉,高谦.边坡变形预测的灰色理论研究与应用[J].岩石力学与工程学报,2005,24(S2):5799-5802.
    [116]刘杰,李建林,胡海浪,郑涛,王小虎.基于有限元分析的岩质边坡稳定性模糊评判方法研究[J].岩石力学与工程学报,2007,26(S1):3438-3445.
    [117]蒋中明.模糊分析理论及其岩土工程中的应用研究[J].岩石力学与工程学报,2004,23(24):4263-4263.
    [118]唐纯喜,金伟良,陈进.基于遗传算法的土坡三维可靠度分析[J].岩石力学与工程学报,2007,26(S2).:4164-4169
    [119]阙金声,陈剑平,王清,石丙飞,孟庆辉.遗传算法在土坡整体稳定性分析中的应用[J].岩土力学,2008,29(2):415-419.
    [120]毛谦,陈胜宏,彭成佳.三维边坡最不利滑裂面的遗传算法搜索[J].岩土力学,2008,29(5):1345-1350.
    [121]Prandtl L. Ober die Harte plastischer Korper, Nachr. Konigl. Ges.Wissensch., Gottingen, Mathematisch-physikalische Klasse (1920) 74-85.
    [122]Reissner H. Zum Erddruckproblem, First Int. Congress for Appli Mechanics, eds. C.B. Biezeno, J.M. Burgers, Delft 1924,295-311.
    [123]Terzaghi K. Theoretical soil mechanics.5th Ed., John Wiley and Sons Inc., New York, N.Y. 1943.
    [124]Meyerhof G G. The ultimate bearing capacity of foundations[J]. Geotechnique,1951, (2): 301-331.
    [125]Hansen J B. A revised extended formula for bearing capaciry[C]. Bulletin of Danish Geotechnical Institute. Copenhagen:Denmark,1970:5-11.
    [126]Vesic A S. Analysis of ultimate loads on shallow foundations[J]. Journal of the Soil Mechanics and Foundations Division, ASCE,1973,99(1):45-73.
    [127]D.Y. Zhu, C.F. Lee, H.D. Jiang. A numerical study of the bearing capacity factor Ny[J]. Canadian Geotechnical Journal,2001,38(5):1090-1096.
    [128]刘传林.基于三角条块法的临界滑动场在土压力及地基承载力计算中的应用[硕士学位论文][D].合肥:合肥工业大学,2010.
    [129]师林,朱大勇,沈银斌.基于广义Hoek-Brown非线性破坏准则的节理岩体地基承载力研究[J].岩石力学与工程学报,2012,s(2):4172-4179.
    [130]师林,朱大勇,沈银斌.基于非线性统一强度理论的节理岩体地基承载力研究[J].岩土力学,2012,33(S2):371-376.
    [131]Ghazavi M, Eghbali A.H. A Simple Limit Equilibrium Approach for Calculation of Ultimate Bearing Capacity of Shallow Foundations on Two-Layered Granular Soils[J]. Geotechnical and Geological Engineering,2008,26(5):535-542.
    [132]Castelli F.,Motta E.Bearing Capacity of Strip Footings Near Slopes[J].Geotechnical and Geological Engineering,2010,28(2):187-198.
    [133]栾茂田,林皋,郭莹.土体稳定分析改进滑楔模型及其应用[J].岩土工程学报,1995,17(4):1-9.
    [134]张钦喜,李继红.地基承载力的新计算方法[J].岩土工程学报,2010,32(增刊2):37-41.
    [135]王传志.地基极限荷载的广义极限平衡法[J].岩土工程学报,2009,29(3):328-332.
    [136]阮怀宁.广义极限平衡理论在地基与边坡稳定分析中的应用[J].水利学报,1996,3:46-56.
    [137]周小平,张永兴.基于统一强度理论的太沙基地基极限承载力[J].重庆大学学报,2004,26(11):133-136
    [138]范文,白晓宇,俞茂宏.基于统一强度理论的地基极限承载力公式[J].岩土力学,2005,26(10):1617-1622.
    [139]Budhu M,Al-Kami A. Seismic bearing capacity of soils[J].Giotechnique 1993,43(1), 181-187.
    [140]Deepankar Choudhury, K. S. Subba Rao. Seismic Bearing Capacity of Shallow Strip Footings Embedded in Slope[J]. International Journal of Geomechanics,2006,6(3):176-184.
    [141]J. Merlos, M.P. Romo. Fluctuant bearing capacity of shallow foundations during earthquakes[J]. Soil Dynamics and Earthquake Engineering,2006,26(2-4):103-114.
    [142]Hill R. Mathematical Theory of Plasticity[M]. London:Oxford,1950.
    [143]Florkiewicz A. Upper bound to bearing capacity of layered soils. Can Geotech J1989;26(4):730-736.
    [144]Radoslaw L.Michalowski;Lei Shi. Bearing Capacity of Footings over Two-Layer Foundation Soils[J]. Leadership and Management in Engineering,1995,121(5):421-428.
    [145]Radoslaw L. Michalowski, Liangzhi You. Effective width rule in calculations of bearing capacity of shallow footings[J]. Computers and Geotechnics 1998,23(4):237-253.
    [146]Soubra A H. Upper-bound solutions for bearing capacity of foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1999,125(1):59-68.
    [147]Maosong Huang, Hui-Lai Qin. Upper-bound multi-rigid-block solutions for bearing capacity of two-layered soils[J].Computers and Geotechnics,2009,36(3):525-529.
    [148]Orang Farzaneh,Navid Ganjian,Faradjollah Askari. Rotation-translation mechanisms for upper-bound solution of bearing capacity problems[J].Computers and Geotechnics, 2010,37(4):449-455.
    [149]Donald I. Chen, Z. Y. Upper bound stability solutions in Geomechanics. Computational Plasticity, Fundamentals and Applications. Proc.4th Int. Conf. Comp. Plas. April,1995, Barcelona, Pineridge Press. Vol.2.1797-1808.
    [150]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000,212-220.
    [151]Kentaro Yamamoto.Seismic bearing capacity of shallow foundations near slopes using the upper-bound method[J]. International Journal of Geotechnical Engineering,2010,4(2): 255-267.
    [152]徐干成,李成学,刘平.各向异性和非均质地基土上浅基础的极限承载力[J].岩土工程学报,2007,29(2):164-168.
    [153]杨小礼.线性与非线性破坏准则下岩土极限分析方法及其庆用[D].长沙:中南大学.2002.
    [154]Sloan S W. Upper bound limit analysis using finite elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1989,13 (3): 263-282.
    [155]M. Hjiaj, A.V. Lyamin, S.W. Sloan Numerical limit analysis solutionsfor the bearing capacity factor N γ [J].International Journal of Solids and Structures,2005,42:1681-1704.
    [156]黄齐武,贾苍琴.三维地基极限承载力的数值极限分析[J].岩土工程学报,2009,29(12):1809-1814.
    [157]A.N. Antao, M. Vicente da Silva, N. Guerra, R. Delgado.An upper bound-based solution for the shape factors of bearing capacity of footings under drained conditions using a parallelized mixed f.e. formulation with quadratic velocity fields[J]. Computers and Geotechnics,2012,41 (4):23-35.
    [158]J. S. Shiau, R. S. Merifield, A.V. Lyamin et al. Undrained Stability of Footings on Slopes[J]. International Journal of Geomechanics,2011,11(5):381-390.
    [159]Jyant Kumar, Paramita Bhattacharya.Bearing capacity of interfering multiple strip footings by using lower bound finite elements limit analysis[J]. Computers and Geotechnics,2010,37(5):731-736.
    [160]Sven Krabbenhoft,Lars Damkilde.Kristian Krabbenhoft. Lower-bound calculations of the bearing capacity of eccentrically loaded footings in cohesionless soil[J].Canadian Geotechnical Journal,2012,49(3):298-310.
    [161]Cox A.D.1962. Axially symmetrical plastic deformation in soils -Ⅱ Indentation of ponderable soils[J]. International Journal of Mechanical Sciences,4:371-380.
    [162]Sokolovskii VV. Statics of Soil Media[M]. Translator Jones R, Schofield A. London: Butterworths Science,1965.
    [163]肖大平,朱唯一,陈环.滑移线法求解极限承载力问题的一些进展[J].岩土工程学报, 1998,20(4):25-29.
    [164]《港口工程技术规范(地基基础)》修订版[S].
    [165]Cheng Y M, Au S K.Solution of the bearing capacity problem by the slip line method[J]. Canadian Geotechnical Journal,2005,42 (4):1232-1241.
    [166]Kumar J. N Y for rough strip footing using the method of characteristics[J]. Canadian Geotechnical Journal,2003,40(3):669-674.
    [167]Martin C M. Exact bearing capacity calculations using the method of characteristics. In:Proc 11th int conf IACMAG Turin, vol.4; 2005. p.441-50.
    [168]陈乐意,姜安龙,李镜培.考虑地基土自重影响的地基承载力系数[J].岩土力学,2012,33(1):212-219.
    [169]D.V.Griffiths,Gordon A.Fenton, N.Manoharan. Bearing Capacity of Rough Rigid Strip Footing on Cohesive Soil:Probabilistic Study[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(9):743-755.
    [170]S. Benmebarek, M.S. Remadna, N. Benmebarek, L. Belounar.Numerical evaluation of the bearing capacity factor N Y of ring footings[J].Computers and Geotechnics,2012,44,132-138.
    [171]马少坤,于劲,王蓉.条形浅基础下无重土地基承载力研究[J].沈阳建筑大学学报(自然科学版),2008,24(2):230-233.
    [172]M. Tolga Yilmaz,B. Sadik Bakir. Capacity of shallow foundations on saturated cohesionless soils under combined loading[J]. Canadian Geotechnical Journal,2009,46(6):639-649.
    [173]D. Loukidis, R. Salgado. Bearing capacity of strip and circular footings in sand using finite elements[J]. Computers and GeotechnicS.2009,36(5):871-879.
    [174]杜佐龙,黄茂松,秦会来.基底宽度对承载力系数Nγ的影响分析[J].岩土工程学报,2010,32(3):409-414.
    [175]隋旺华.开挖沉陷土体变形工程地质研究[M].徐州.中国矿业大学出版社.1999:6-8.
    [176]D. Padmini a, K. Ilamparuthi b, K.P. Sudheer,Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models[J].Computers and Geotechnics.2008,35(1):33-46.
    [177]Kuo Y. L., Jaksa M:B, Lyamin A. V., Kaggwa W. S. ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil[J].Computers and Geotechnics,2009,36(3):503-516.
    [178]Chan-Ping Pan, Hsing-ChihTsai, Yong-HuangLin. Improving semi-empirical equations of ultimate bearing capacity of shallow foundations using soft computing polynomials[J]. Engineering Applications of Artificial Intelligence.2013,26 (1):478-487.
    [179]A.H. Soubar,D.S.Youssef, Abdel massih. Probabilistic analysis and design at the ultimate limit state of obliquely loaded strip footings[J]. Geotechnique,2010,60(4):275-285.
    [180]A. R. Majidi,A. A. Mirghasemi.Seismic 3D bearing capacity analysis of shallow foundations[J].Iranian Journal of Science and Technology,2008,32(B2):107-124.
    [181]Mabrouki, A. D. Benmeddour R. Frank b M. Mellas.Numerical study of the bearing capacity for two interfering strip footings on sands[J].Computers and Geotechnics,2010,37 (4) 431-439.
    [182]HOEK E, BROWN E T. Empirical strength criterion for rock mass[J]. Journal Geotechnical Engineering Division. American Society of Civil Engineers,1980,106(9):1013-1035.
    [183]HOEK E. Strength of jointed rock mass[J]. Geotechnique,1983,33(3):187-223.
    [184]HOEK E, Brown E T. The Hoek-Brown failure criterion a 1988 update[C] Proceeding of the 15th Canadian Rock Mechanics Symposium, Toronto:Civil Engineering University of Toronto,1988:31-38.
    [185]HOEK E, WOOD D, SHAH S. A modified Hoek-Brown criterion for jointed rock mass[C] Proceedings of a Symposium of the International Society of Rock Mechanics on Rock Characterization:Eurock 92. London:British Geotechnical Society,1992:209-213.
    [186]HOEK E. Strength of rock and rock mass[J]. ISRM News Journal,1994,2(2):4-16.
    [187]HOEK E, MARINOS P, BENISSI M. Applicability of the geological strength index(GSI) classification for very weak and sheared rock mass[J]. Bulletin of engineering geology and the environment,1998,57(2):151-160.
    [188]HOEK E, CARRANZA-TORRES C, CORKUM B. Hoek-Brown failure criterion-2002 edition[C]//HAMMAH R, BAWDEN W. CURRAN J, and TELESNICKI M, ed. Proceedings of NARMS-TAC 2002, Mining Innovation and Technology. Toronto:University of Toronto, 2002:267-273. R. Hammah,W. Bawden, J. Curran, and M. Telesnicki (Eds.),
    [189]ZHENG H, SUN G H. A practical procedure for searching critical slip surfaces of slopes based on the strength reduction technique[J].Computers and Geotechnics,2009,36(1):1-5.
    [190]WANG C, TANNANT D D, LILLY P A. Numerical analysis of stability of heavily jointed rock slopes using PFC2D[J]. International Journal of Rock Mechanics and Mining Science, 2003; 40(3):415-424.
    [191]EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes--the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Science,2004; 41(1):69-87.
    [192]STEAD D, EBERHARDT E, COGGAN J S. Developments in the characterization of complex rock slope deformation and failure using numerical modeling techniques[J]. Engineering Geology,2006,83 (1-3):217-235.
    [193]YANG X L, LI L, YIN J H. Stability analysis of rock slopes with modified Hoek-Brown failure criterion[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(2):181-190.
    [194]LI A J, MERIFIELDA R S, LYAMIN A V. Stability charts for rock slopes based on the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):689-700.
    [195]HACK R, PRICE D, RENGERS N. A new approach to rock slope stability-a probability classification(SSPC)[J]. Bulletin of Engineering Geology and the Environment,2003,62(2): 167-185.
    [196]Yarahmadi B A R, VERDEL T. Sarma based key group method for rock slope reliability analyses[J].International Journal for Numerical and Analytical Methods in Geomechanics.2005,29(10):1019-1043.
    [197]Rocscience Inc.. Slide:2D limit equilibrium slope stability for soil and rock slopes, verification manual[M].Toronto, Canada:Rocsience Inc.,2003:6-26.
    [198]HOEK E, BROWN E T. Practical estimates of rock mass[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-1186.
    [199]Hoek E, Kaiser P K, Bawden W F. Support of underground excavations in Hard rock[M].Rotterdarn:Balkema,1995.
    [200]Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown failure criterion-2002 edition[J].In:Proceedings of the NARMS-TAC conference, Toronto,2002, (1):267-273
    [201]ZHUDY, LEE C F, QIAN Q H, et al. A new procedure for computing the factor of safety using the Morgenstern-Price method[J]. Canadian Geotechnical Journal,2001,38(4): 882-888.
    [202]陈祖煜,邵长明.最优化方法在确定边坡最小安全系数方面的应用[J].岩土工程学报,1998,10(4):1-13.
    [203]Greco V R. Efficient Monte Carlo technique for locating critical slip surface J Geotech Engrg, ASCE,1994,122(7):517-525
    [204]赵尚毅,郑颖人,邓卫东.用有限元强度折减法进行节理岩质边坡稳定性分析[J].岩石力学与工程学报,2003,22(2):254-260.
    [205]王书法,李树忱,李术才等.节理岩质边坡变形的(DDA)模拟[J].岩土力学,2002,22(3):352-354.
    [206]雷见远,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学,2006,27(10):1693-1698.
    [207]李宁,崔政权,段庆伟等.节理化块体边坡失稳机理数值分析[J].岩土力学,1997,18(3):53-59.
    [208]庄晓莹,蔡永昌,朱合华等.基于无网格—图论方法的岩质边坡稳定性分析研究[J].力学季刊,2008,29(4):537-543.
    [209]朱大勇,钱七虎,周早生等.岩质边坡临界滑动场计算方法及其在露天边坡设计中的应用[J].岩石力学与工程学报,1999,18(5):567-572.
    [210]LANE P A, GRIFFITHS D V. Assessment of stability of slopes under drawdown conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(5):443-450.
    [211]刘才华,陈从新,冯夏庭.库水位上升诱发边坡失稳机制研究[J].岩土力学,2005,26(5):769-773.
    [212]廖红建,盛谦,高石夯等.库水位下降对滑坡体稳定性的影响[J].岩石力学与工程学报,2005,24(19):3454-3458.
    [213]张文杰,詹良通,凌道盛等.水位升降对库区非饱和土质岸坡稳定性的影响[J].浙江大学学报(工学版),2006,40(8):1365-1370.
    [214]Mehmet M. Berilgen. Investigation of stability of slopes under drawdown conditions[J]. Computers and Geotechnics.2007,34:81-91.
    [215]Arezoo Rahimi,Harianto Rahardjo,Eng-Choon Leong, M.ASCE.Effect of Antecedent Rainfall Patterns on Rainfall-Induced Slope Failure[J].Journal of Geotechnical and Geoenvironmental Engineering[J].2011,137:483-491.
    [216]Fei Cai,Keizo Ugai.Numerical Analysis of Rainfall Effects on Slope Stability[J].Internaional Journal of Geomechanics.2004,4:69-78.
    [217]荣冠,王思敬,王恩志,王建新.强降雨下元磨公路典型工程边坡稳定性研究[J].岩石力学与工程学报,2008,27(4):704-711.
    [218]Geo-Slope International. (2004a). SEEP/W for finite element seepage analysis. Version 4, user's guide, Calgary, Alberta.
    [219]刘新喜,夏元友,练操等.库水位骤降时的滑坡稳定性评价方法研究[J].岩土力学,2005,26(9):1427-143].
    [220]李邵军,KNAPPETTJA,冯夏庭.库水位升降条件下边坡失稳离心模型试验研究[J].岩石力学与工程学报,2008,27(8):1586-1593.
    [221]Bishop AW. The Use of The Slip Circle in The Stability of Slopes[J]. Geotechnique,1955,5(1):7-17
    [222]Fredlund, D. G., Morgenstern, N. R., Widger, R. A. The shear strength of unsaturated soils[J]. Can. Geotech.,1978,15(3),313-321.
    [223]李兆平,张弥.考虑降雨入渗影响的非饱和土边坡瞬态安全系数研究[J].土木工程学报,2001,34(5):57-61.
    [224]Geo-Slope International. (2004b). SLOPE/W for slope stability analysis.Version 4, user's guide, Calgary, Alberta.
    [225]DONALD I B. Finite element assessment of slope Stability[R]. Melbourne:Department of Civil Engineering, Monash University,1993:1-18.
    [226]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381—3388.
    [227]吴海真,顾冲时.联合运用改进的极限平衡法和动态规划法分析边坡稳定性[J].水利学报,2007,38(10):1272—1277.
    [228]曾亚武,田伟明.边坡稳定分析的有限元法与极限平衡法的结合[J].岩石力学与工程学报,2005,24(增刊2):5355—5359.
    [229]朱大勇,卢坤林,台佳佳等.基于数值应力场的极限平衡法及其工程应用[J].岩石力学与工程学报,2009,28(10):1969-1975.
    [230]Flac-3D,Fast Lagrangian Ananlysis of Continua in 3Dimensions, Version 2.0.User's Manual,Itasca Consulting Group,Inc.USA.
    [231]De Beer, E.E. Experimental determination of the shape factors and the bearing capacity factors of sand[J]. Geotechnique,1970,20(4):387-411.
    [232]周中,傅鹤林,李亮.圆形浅基础地基承载力的理论解[J].长沙铁道学院学报,2002,20(3):12-16.
    [233]李伟,熊巨华,杨敏.方形浅基础地基地基承载力的理论解[J].同济大学学报,2004,32(10):1325-1327.
    [234]蒋益平,熊巨华.方形和圆形基础地基地基承载力分析[J].岩土力学,2005,26(12):1991-1995.
    [235]Narita K, Yamaguchi H. Analysis of bearing capacity for log-spiral sliding surfaces[J]. Soils and Foundations,1989,2:85-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700