用户名: 密码: 验证码:
岩质边坡安全性评价集成分析系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡每年给全世界造成巨大的经济损失和人员伤亡。近年来我国对西部进行开发,涌现出了大量的岩质边坡工程,边坡的安全性研究日益突出,基于此,本文开发了岩质边坡安全性评价分析集成系统。该程序不但可以对岩质边坡的稳定性做出分析,还可以对边坡的变形进行短期和长期的预测,确定边坡的安全状况。该程序主要有两个子系统:岩质边坡的稳定分析子系统和边坡的变形预测子系统。
     岩质边坡节理裂隙发育,它的稳定性通常受结构面的控制,而实际上垂直方向的结构面数量很少,大部分结构面与垂直方向成一定的角度,因此本文采用改进的Sarma法作为稳定分析子系统的分析方法。使用稳定分析子系统计算边坡的稳定系数时,事先并不假定一系列滑裂面,而是子系统自动搜索出最危险滑裂面。子系统搜索临界滑裂面,是以最小抗剪力为准则,以A算法为搜索方法。在搜索滑裂面以前,用三维网络模拟程序再现结构面在边坡中的分布状况,并把结构面“点化”。最危险滑裂面确定后,稳定分析子系统根据结构面特征自动对边坡体进行斜条分,计算出正常工况和暴雨情况下边坡的稳定系数。
     对于边坡变形预测子系统,采用了模拟退火优化的神经网络技术。神经网络具有高度的非线性变换和高度的并行处理能力,适合用于变形预测;但BP神经网络有收敛不到全局最小点、网络结构设计比较主观等缺点,因此本文用模拟退火算法克服BP神经网络的缺点与不足,建立了模拟退火优化地神经网络模型。另外,边坡变形预测子系统采用动态预测技术以减小前期变形对变形预测的影响,从而实现更高的预测精度。
     最后用岩质边坡安全性评价集成分析系统分析了天荒坪抽水蓄能电站“3.29滑坡”区的安全情况,分析结果与边坡的实际情况相符,说明本文的岩质边坡安全性评价集成分析系统是比较成功的。
Landslide has already became one of the three most geo-hazards, the others were earthquake and volcano. Because of slide, there are a lot of economy loss and personnel casualty. Recently, the western part of our country, there are a lot of rock slopes in there, so the safety research on stability analysis of slope is more important day after day. Because of that, developed safety estimate compositive system on rock slope in this paper. It not only can analyze safety of rock slope, but also can predict the displacement in short time and in long time, confirm the safety condition. The system has two parts: the safety analysis of rock slope and the displacement predicting of rock slope.There are lots of joints in rock slope, safety of rock slope is controlled by joints, but there are a few of joints whose direction is vertical, a majority of joints' direction is not vertical, so the Sarma is adopted to be the safety analysis method of rock slope. We didn't suppose several critical slip surfaces before confirming the safety factor, using the program which is edited by myself to search the critical slip surface. The safety analysis subsystem searches the critical slip surface based on the least shearing strength and A* algorithm. Before searching the critical slip surface, using 3-D Joint Network Simulated program to recurrence joint distribute in the slope and point joints. After the critical slip surface confirmed, the subsystem separates inclining the slope automatically and computes the slope safety factor.About the displacement predicting subsystem of slope, adopting neural network developed by simulated algorithm. Because that neural network has better nonlinear and parallel proceeding, it adapts to process displacement predicting. Neural network cant convergence at the least point and the network structure design is more subjective. In this paper, using simulated algorithm to overcome the disadvantage of BP neural network, and constitute the developed neural network model. In additional, using dynamic forecasting technique to reduce the influence of the prophase displacement, so it can achieve better forecast precision.We used the safety estimate compositive system on rock slope to analyze the "3.29 landslide" slope in Tian Huangping. The result is coincident to the real condition of the slope, so the safety estimate compositive system on rock slope is relatively viable.
引文
[1] Jorge, Nicholass, James KM. Performance of Geo-synthetic reinforced slopes at failure [J]. Journal of Geotechnical and Geo-environmental engineering, 1998, 124(8): 670—683.
    [2] John TC, Alredou. Probabilistic evaluation of earthquake induced slope failure [J]. Journal of Geotechnical and Geo-environmental engineering, 1998, 124(11): 1140—1143.
    [3] 常春,周德培.水对岩石屈服强度的影响.岩石力学与工程学报,1998.8.17(4):407-411.
    [4] Timothy DS, Hishamt. Performance of three-dimensional slope stability methods in practice[J]. Journal of Geotechnical and Geo-environmental engineering, 1998, 124(11): 1049—1060.
    [5] Jorge, Nicholass, James KM. Limit equilibrium as basis for design of Geo-synthetic reinforced slope [J]. Journal of Geotechnical and Geo-environmental engineering, 1998, 124(8):684—698.
    [6] 汤连生,水—岩土反应的力学与环境效应研究.岩石力学与工程学报,2000.9.19(5):681—682.
    [7] 张玉浩,张立宏.边坡稳定性分析方法及其研究进展[J].广西水利水电.2005(2):13—16.
    [8] 钱家欢.土力学[M].南京:河海大学出版社,1995.
    [9] 钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [10] 潘家铮.建筑物的抗滑稳定和滑坡分析[M].北京:水利出版社,1980.
    [11] 张雄.边坡稳定性的刚性有限元评价[J].成都科技大学学报.1994(6):48—52.
    [12] 郑颖人.用有限元强度折减法进行边坡稳定分析[J]中国工程科学.2002(10):57—61.
    [13] 赵尚毅,郑颖人.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报.2002(5):343—346.
    [14] 崔政权,李宁.边坡工程—理论与实践最新发展[M].中国水利水电出版社,1999.
    [15] 王泳嘉等.离散元法及其在岩土力学中地应用[M].辽宁:东北大学出版社,1991(2).
    [16] 石根华著,任放等译.块体系统不连续变形数值分析新方法[M].北京:科学出版社,1993.
    [17] 李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(5):490—495.
    [18] 张小辉,王辉,戴富初等.基于关系矩阵和模糊集权的斜坡稳定性综合评价[J].岩石力学与工程学报,2000,19(3):346—351.
    [19] 夏元友,朱瑞赓.岩质边坡稳定性多层次模糊综合评价系统研究[J].工程地质学报,1999,7(1):46—53.
    [20] 邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    [21] 邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [22] 邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1985.
    [23] 陈新民,罗国煜.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638—641.
    [24] 夏元友,朱瑞赓.边坡稳定性分析专家系统研制[J].灾害学,1997,12(4):10—14.
    [25] 夏元友.基于神经网络的岩质边坡稳定性评估系统研究[J].自然灾害学报,1996,5(1):98—104.
    [26] 夏元友.基于人工神经网络的边坡稳定性工程地质评价方法[J].岩土力学,1996,17(3):27—33.
    [27] 山田刚二,杜正亮,小桥澄治.滑坡与斜坡崩塌及其防治[M].北京:科学出版社,1980.
    [28] 张有天,周维垣.岩石高边坡的变形与稳定[M],北京:中国水利水电出版社,1999.
    [29] 张强勇,刘大文,蔡德文.Sarma法在加锚岩质高边坡安全稳定性评价分析中的应用[J],岩石力学与工程学报,2005,24(18):3368—3372.
    [30] Sarma S K. Stability analysis of embankments and slopes[J]. Geo-technique, 1973, 23(3): 423—433.
    [31] Duncan J M. Limit equilibrium and finite element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(7): 577—596.
    [32] 王铁海,龚玉锋.改进Sarma法在实际工程中的应用.东北水利水电2004,22(10):24—25.
    [33] 郑人权.预测学原理[M].北京:中国统计出版社,1983.
    [34] 姜仁锋,卢兵.实用预测技术[M].哈尔滨:哈尔滨船舶工业学院出版社,1993.
    [35] 张乃尧,阎平凡.神经网络与模糊控制[M].北京:清华大学出版社,1998.
    [36] 王士同.神经模糊系统及其应用[M].北京:北京航空航天大学出版社,1998.
    [37] 王永骥,涂健.神经元网络控制[M].北京:机械工业出版社,1997.
    [38] 张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993.
    [39] 杨建刚.人工神经网络实用教程.杭州:浙江大学出版社,2003.
    [40] Sandro Ridolla, Stefano Rovetta and Rodolfo Zunino. Circular back-propagation Networks for classification, IEEE Transaction on Neural Networks, 8(1): 84—97, January 1997.
    [41] 张本柱.改进BP网络的性能研究及其应用.南京航空航天大学硕士学位论文,2001.
    [42] 康立山,谢云,尤矢勇,罗祖华.非数值并行算法(第一册)—模拟退火算法[M].北京:科学出版社,1994.
    [43] 曹星平,易东云,吴翊.基于神经网络的时间序列预测方法进展[J].电脑与信息技术,1999,(6):1—5.
    [44] 袁宝远等.边坡变形监测信息分析系统[C],第八届土力学及岩土工程学术会议论文集,万国学术出版社,1999.
    [45] 朱旭芬.基于ICBP神经网络与遗传算法深基坑监测信息动态预测研究[D].南京:河海大学硕士学位论文,2005.
    [46] 黄正加,邬爱清,盛谦.块体理论在三峡工程中的应用[J].岩石力学与工程学报.2001,20(5):648—652.
    [47] 余元华,胡宏涛,赖茂宏.层面模型的若干算法[J].西安石油学院学报.1994,9(4):44—48.
    [48] 张发明,汪小刚.贾志欣等,三维结构面连通率的随机模拟计算[J].岩石力学与工程学报.2004,23(9):486—490.
    [49] Chen Jianping, Wu Yuan, Shang Xiaochun. A disscussion on themethod for estimation of mean trace length in sampling windows. Journal of Engineering Geology, 2001, 9(3): 302—307.
    [50] 汪小刚,陈祖煜,刘文松.应用蒙特卡洛法确定节理岩体的连通率和综合抗剪强度指标[J].岩石力学与工程学报,1992,11(4):345—355.
    [51] Shapipo A, Delport JL. Statistical Analysis of Jointed Rock Data[J]. Int J Rock Mech Min Sci& GeoMech Abstr, 1991, 28(5): 375—382.
    [52] Faming Zhang, Zhifang Zhou, Yongqing Huang, and Zuyu Chen. Determining the Permeability of Fractured Rocks Based on Joint Mapping [J]. GROUDWATER 2004, 42(4): 509—515
    [53] 张发明,汪小刚,贾志欣,陈祖煜,弥宏亮.3D裂隙网络随机模拟及其工程应用研究[J].现代地质.2002,16(1):100—103.
    [54] 张发明、陈祖煜、贾志欣、汪小刚.岩体结构面网络计算机模拟及应用的当代水平,岩石力学与工程会议论文集,吉林科学技术出版社,2001.
    [55] Bingham, C. Distribution on the sphere and on the Projective Peane. Ph.D. Dissertation, Yale University, New Haven, 1964.
    [56] Mardia, K. V. Sfahistcs of Directional Data. Academic Press. New York. 1972.
    [57] 王成华,夏绪勇.边坡稳定分析中的临界滑动面搜索方法述评[J].四川建筑科学研究.2002,28(3):34—39.
    [58] Baker R, Garber M. Variation approach to slope stability[J]. Proc. 9th Int. Conf. on Soil Mech. and Found. Engng. [C]. 1977, Vol. 2: 9—12.
    [59] Castillo E, Revilla J. The calculus of variations and the stability ofslopes[A]. Proc. 9th Int. Conf. on Soil Mech. and Found. Engng. [C]. 1977, Vol. 2:25—30.
    [60] Revilla J, Castillo E. The calculus of variations applied to stability of slopes [J]. Geotechnique, 1977, 27(1): 1—11.
    [61] Ramamurthy T, Narayan C G P, Bhatkar V P. Variational method for slope stability analysis [A]. Proc. 9th Int. Conf. on Soil Mech. andFound. Engng. [C]. 1977, Vol.3: 139—142.
    [62] Celestino TB, Duncan JM. Simplified search for non2circular slip surface[A]. Proc., 10th Int. Conf. on Soil Mech. and Found. Engrg. [C]. A. A. Balkema, Rotterdam, The Netherlands, 1981.3, 391—394.
    [63] Arai K, Tagyo K. Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis [J]. Soils and Founddations, 1985, 25(1):43—51.
    [64] Li KS, White W. Rapid evaluation of the critical surface in slope stability problems[J]. Int. J. for Numer. and Anal. Meth. In Geomech. 1987, 11(5):449—473.
    [65] 阎中华.均质土坝与非均质土坝稳定安全系数极值分布规律及电算程序简介[J].水利水电技术,1983,(7).
    [66] 周文通.最优化方法在土坝稳定分析中的应用[J].土石坝工程,1984,(2).
    [67] 孙君实 条分法的数值分析[J].岩土工程学报,1984,6(2):1—12.
    [68] Yamagami T, Ueta Y. Search for noncircular slip surfaces by the Mor2 genstern2Preice method. Proc. of 6th Int. Conf. on Numerical Methods in Geomechanics[J]. Innsbruck, 1988. 1335—1340.
    [69] 陈祖煜,邵长明.最优化方法在确定边坡最小安全系数方面的应用[J].岩土工程学报,1988,(4):1—13.
    [70] Greco V R. Numerical methods for locating the critical slip surface in slope stability[A]. Proc. of 6th Int. Conf. on Numerical Methods in Geomechanics[C]. Innsbruck, 1988. 1219—1223.
    [71] Boutrup E, Lovell C W. Search technical in slope stability analysis[J]. Engineering Geotechnical, 1980, 16(1):51—61.
    [72] Siegel R A, Kovacs W D, Lovell C W. Random surface generation in stability analysis[J]. J. Geotech. Engng., ASCE, 1981, 107(7):996—1002.
    [73] Greco V R. Efficient Monte Carlo technique for locating critical slip Surface[J]. J. Geotech. Engng., ASCE, 1996, 122(7):517—525.
    [74] Abdallah I H, Waleed F H, Sarada K S. Global search method for locating general slip surface using Monte Carlo Techniques [J]. J. of Geotech. and Geoenviro. Engng., ASCE, 2001, Vol. 127:688—698.
    [75] 刘汉东.小浪底水利枢纽近坝库段岸(边)坡变形监测及预报信息管理系统研究报告[R].郑州:黄河水利委员会勘测规划设计院,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700